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Localization for random Schrödinger
operators with Poisson potential

Günter STOLZ (1)
University of Alabama at Birmingham,
Department of Mathematics, CH 452,
Birmingham, Al 35294-1170, U.S.A.

Ann. Inst. Henri Poincaré,

Vol. 63, n° 3, 1995, Physique théorique

ABSTRACT. - Localization at all energies is proved for the one-

dimensional random Schrôdinger operator with Poisson potential f (x -

Xj (w)). The single site potential f is assumed to be non-negative and
compactly supported. The result holds for arbitrary density of the Poisson
process. Eigenfunctions decay exponentially at the rate of the Lyapunov
exponent. Crucial to the proof is a new result on spectral averaging.

RÉSUMÉ. - On montre la localisation à toute énergie pour le Hamiltonien
de Schrôdinger aléatoire à 1 dimension avec un potential de Poisson

f (w)). Le potentiel de site f est supposé non négatif et à support

compact. Ce résultat est valable pour une densité arbitraire du processus de
Poisson. Les fonctions propres décroissent exponentiellement avec un taux
égal à l’exponent de Lyapunov. Un élément crucial de la démonstration est
fourni par un résultat nouveau sur les moyennes spectrales.

1. INTRODUCTION

The Poisson model is a random Schrôdinger operator, which describes
random média with extreme structural disorder. For the one-dimensional

(1 ) Partially supported by NSF-grant DMS-9401417.
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298 G. STOLZ

case it is known that this model does not exhibit absolutely continuous
spectrum, cf. [ 14] . But in contrast to other random operators, in particular
Anderson-type models describing random alloys, no proof of localization
could be given so far. The main problem for the Poisson model is the
apparent lack of "monotonicity" in the random parameter, a property which
was successfully used in proofs of localization for Anderson-type models,
e.g. [27, 20, 4]. ~

For the one-dimensional Poisson model we will be able to overcome this

difficulty by providing a new result on spectral averaging, which allows to
give a version of "Kotani’s trick" adapted to the Poisson model and can be
seen as a consequence of some kind of monotonicity of the Poisson model
in the distance of neighboring Poisson points. Once we have established
Kotani’s trick we can use positivity of the Lyapunov exponent and the
strategy used previously for Anderson models [20] to prove localization for
the one-dimensional Poisson model.

To define the one-dimensional Poisson model (for general information
see [22] and [2]) we start with the Poisson random measure p, which

depends on a parameter 0152 &#x3E; 0 called the concentration (density, intensity).
This is a weakly measurable random variable ~c on a complete probability
space (H, 0, P) with values in the space M+ (R) of non-negative
Borel measures on R. It has the property that for every Borel set B C R the
real random variable (B) is Poisson distributed with parameter 
i.e. P (B) = n) = (c~~B~~n e2014’~!, and that (B1), ..., (Bn)
are independent if Bi,..., Bn are mutually disjoint. The distribution of
~c makes À4+ (R) a probability space, which henceforth is identified with
(f2, °

The process xt defined on by == ~c ((0, t]) for t &#x3E; 0

and zt (~c) = - p ((0, t] ) for t  0 is strictly stationary in the sense that
the multivariate distributions of xt2 +t - ~~~~,..., xtn +t - do not

depend on t. Furthermore it has independent increments xt2 -xtl , ... , 
Thus the shifts Tt, t E R defined by (Ttp) (A) = p (A + {t}),

p E À4+ (R), are a metrically transitive family of one-to-one measure
preserving transformations on ./~1 + (R) (cf. [7, Ch. XLI]).
With probability one /-lw is a counting measure for a locally finite set of

points Xi (w) E R, i.e. pw (B) = # {i; Xi (c~) E B~ [12]. The Xi can be
labeled measurable way such that

The concentration a is the average number of points Xi (cv) per unit

interval. The random variables :== Yn: = Xn - Xn-1 and

Annales de l’Institut Henri Poincaré - Physique théorique



299LOCALIZATION FOR RANDOM SCHRÔDINGER OPERATORS

Y_n: := X-(n-l) - X-n (n &#x3E; 2) are independent and each has absolutely
continuous distribution with density ae-at, cf. [13, Ch. 4]. Note here that
the distribution of is different from the distributions of Yn,

&#x3E; 2, an example of the waiting time paradox [ 13] .
We take a single site potential

f E L2 (R), real valued and compactly supported, ( 1 )

and define the Poisson potential by

where

This means that

By Campbell’s Theorem ([13], Sect. 3.2]) we have

Thus

is almost surely essentially selfadjoint on Co (R) [14, App. 2]. By (2) the
family Hw is metrically transitive, thus (cf [22]) there exist susbsets ~a~,
~sc and ~pp of R such that almost surely

with aac, ~s~ and app denoting the absolutely continuous, singular
continuous and point spectrum.
We will now assume that in addition

f &#x3E; 0 and not identically 0. (5)

Our main result is

Vol. 63, n° 3-1995.



300 G. STOLZ

THEOREM 1. - For the one-dimensional Poisson model Hw defined by ( 1 ),
(2), (4) and (5) one has

i.e. Hw almost surely has pure point spectrum. The eigenfunctions decay
exponentially at the rate of the Lyapunov exponent.
From f &#x3E; 0 it easily follows that o- (Hw) _ [0, oo) almost surely, i.e.

Theorem 1 actually proves dense pure point spectrum for Hw .
To prove Theorem 1 we will rely on Kotani’s general results [ 18] on one-

dimensional random Schrôdinger operators. Kotani assumed boundedness
of the potential, which does not hold for the Poisson potential. (In the case
of bounded f there almost surely is a logarithmic bound for Vw [10]). But
is was shown in [14, App. 2] that the results to be used below extend to
general metrically transitive Hw = as long as (3) is satisfied.

First we note that f being compactly supported implies that Vw (x) is
a non-deterministic process in the sense of [ 18], cf. [14], [22]. Therefore
the Lyapunov exponent 03B3 (E) of Hw is strictly positive for (Lebesgue-)
a.e. E E R, and, in particular, ~a~ = 0, a result known to hold in much
more general situations [14]. It remains to be proved that 03A3sc = 0 and that
eigenfunctions decay exponentially at the rate of the Lyapunov exponent.

Since q (E) &#x3E; 0 for almost every E we can use the Osceledec-Ruelle
theorem (e.g. [22, Sect. 11A]) to conclude that for a.e. E there exist non-
trivial exponentially decaying (at Lyapunov rate) solutions at +00 as well
as -~ of - u" + Vwu = Eu for a.e. w. An application of Fubini yields

PROPOSITION 2. - To a. e. E E f~ there exist non-trivial solutions u+ and
Eu such that u+ is exponentially decaying at and

u- is exponentially decaying at - oo at the rate of the Lyapunov exponent.
This will serve as one of the basic ingredients in the proof of Theorem 1.

The other ingredient is spectral averaging, a method which has turned out
to be extremely useful in proofs of localization for various random models
(e.g. [27], [20], [4]). Having the standard facts leading to Proposition 2
above and using the Kotani-Simon proof [20] of localization for the one-
dimensional Anderson model as guidance, the main obstacle to overcome
for the Poisson model was the lack of a result on spectral averaging. Such
a result is given in Section 2, where a deterministic family of Schrôdinger
operators Ha involving a shift parameter a is studied.

In the proof of Theorem 1, which is completed in Section 3 this shift
parameter will be found from the value of Yi = Xi, while all the other
distances Yn will be kept fixed (independent of Yi). Since Yi has absolutely

Annales de l’Institut Henri Poincaré - Physique théorique



301LOCALIZATION FOR RANDOM SCHRÔDINGER OPERATORS

continuous distribution we can apply our result on spectral averaging from
Section 2.

At the end of Section 3 we will comment on possible generalizations of
Theorem 1. In particular, we state that our main result can be extended to
"mixed Anderson-Poisson models" of the type

We also note that after dropping the assumption ,~ &#x3E; 0 we at least get
~sc n (0, oo) = 0.
For convenience, we include an Appendix to collect suitable versions of

some more or less standard results used in Section 2.

We have earlier announced our main result in [30].

2. SPECTRAL AVERAGING

Let Wi E Lloc (R) vanish in (-00, 0) and be such that the differential
expression -d2/dx2 + W1 is limit point at +00. Note that a quite general

x

criterion for the latter to hold is given by / Wi,- (t) dt = 0 (x3) as

x ~ oo for the negative part Wi,- of W1 [9]. Also let W2 E (R)
vanish in (0, oo ) + W2 be limit point at 2014oo.
We define a family of potentials Va, a &#x3E; 0 on the real line by

and denote the unique selfadjoint realization (in the sense of Sturm-
Liouville theory) of + Va in L2 (R) by Ha . (Under the slightly
stronger assumption Wi E i = 1, 2, Ha coincides with the closure of

+ Va with domain Cô (R).)
The operators Ha have spectral multiplicity one and their spectral

type is determined by the Weyl-Titchmarsh spectral measures p~, i. e. the
trace measures corresponding to the standard 2 x 2-matrix valued spectral
measures for Ha [3].

In the proof of the proposition below we will make use of Prüfer variables
and their dependence on various parameters: For some potential V let u
be the solution of -u" + Vu = Eu with u (c) = sin 0 and u’ (c) = cos 8.
Then the Prüfer amplitude and angle are

and

Vol. 63, n° 3-1995.



302 G. STOLZ

where Çc is normalized such that Çc (c, 8, E, V) = 0 and Çc (., B, E, V)
is continuous.

The family Ha satisfies spectral averaging at positive energies:

PROPOSITION 3. - For fixed a2 &#x3E; al &#x3E; 0 and arbitrary Borel sets B c R
define

Then the Borel measure ~c is absolutely continuous on ( 0, 00).

Proof - It is enough to show that ~c is absolutely continuous in (Eo, El )
for every fixed pair Ei &#x3E; Eo &#x3E; 0. This will in turn follow from the

existence of a C &#x3E; 0 such that

for every non-negative continuous f with compact support in (Eo, Ei).
(So in fact we show local Lipshitz continuity of ~c in (0, oo).)

In the proof of (6) we will make use of the fact that pa is the

weak limit of spectral measures to operators defined by -d2/d~2 + Va
on finite intervals : Let ( p~ ) NN a be the Weyl-Titchmarsh spectral
measure to the selfadjoint realization of -d2 / dx2 + Va in L2 (-N, N)
corresponding to boundary conditions f (-N) f’ (-N) sin a = 0,
f (N) cos j3 - f’ (N) sin /3 = 0. Define the averaged spectral measures
~ ,

For every a we have that pa is thé weak limit of thé (03C1a)N-N: v

cf [2, Ch. III].
The measures are absolutely continuous with densities which

can be expressed in terms of Prüfer amplitudes ([1], [2] for continuous V,
[29, Appendix B] for more general V):

Annales de l’Institut Henri Poincaré - Physique théorique
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Using (7) we can therefore write

Solving -u" + Va u = Eu first in [0, a] (where Va = 0) and then in

[a, N + a] shows

Positivity of Prüfer amplitudes and continuous dependence of solutions
of -u" = Eu on parameters shows ro (a, 8, E, 0) &#x3E; C &#x3E; 0 for all
a E ~2]. ~ ~ [0, 7r] and E E [Eo, Together with a similar result
for ro ( - N - a, 6~, E, Va) we get

In (9) we now substitute the new variables

We use

and (see Proposition 11 of the Appendix)

Vol. 63, n° 3-1995.
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uniformly in a E [al, a2~, 8 E [0, 7r], E E [Eo, We get for the Jacobian

uniformly in E E [Eo , E1] and therefore the r.h.s. of (9) can be estimated by

where also ([ai, a2] x [0, 7r]) C ci] x [b2, uniformly in
E E [Eo, Ei] was used.
The integral ( 11 ) factorizes in /3i and fl2 . The general identity

(see Corollary 12 of the Appendix) and the 7r-periodicity of rx (y, 0 , E, V)
in 03B8 now yield the uniform boundedness of ( 11 ) and therefore the r.h.s. of
(9) in E E [Eo, El ] . This can be used to interchange the N-limit and the
a-integral in (8) (dominated convergence) and to thereby get (6). #

Results on spectral averaging are related to absence of continuous

spectrum for one-dimensional continuous and discrete Schrôdinger operators
by various versions of an argument known as Kotani’s trick. So far, it has

been applied to the case where the averaging parameter is (i) a boundary
condition for a half-line Schrôdinger operator, e.g. ([19] ,[15], [ 16] ), or (ii)
a coupling constant À in a family Ha = Ho + ~W, the latter being basic
to one of the proofs of localization for one-dimensional Anderson models
[27], [30]. Equipped with Proposition 3 we can now apply these well known

ideas to the model Ha from above (here U is the continuous

spectrum and W E [0, oo) means sup /  oo and
’ 

0] is defined analogously :
PROPOSITION 4. - Let Ha be defined as above and assume Wl, _ E

Lloc, uni f L~ ~ 00), W2, - E LL c, uni f (-00, ~] ~ Let I be an open subset of
(0, oo). Suppose that for almost every E E I there exists a non-trivial
solution L2 (0, 00) of -u" + W~ u, = Eu and a non-trivial solution

If the solutions u+ and u- are exponentially decaying at and -~,
respectively, then the eigenfunctions of -~a to eigenvalues E E I are

exponentially decaying for a. e. a &#x3E; 0.

Annales de l ’Institut Henri Poincaré - Physique théorique
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Remarks. - In our application to the Poisson model in the next section
we will have more information than used here, namely the existence of

exponentially decaying solutions at and -oo with all other solutions

exponentially growing. This would actually allow a somewhat simpler
proof of Proposition 4; compare the proof of Theorem 2.1 in [20]. We

think, however, that it is helpful to realize that the proposition holds under
the weakest natural assumption, namely square-integrability of the u+ and
u- . In the proof we follow the line of argument used in [15, Lemma 1] ]
for the discrete case.

We also expect that the uniform local integrability of Wi,- can be

replaced by merely assuming limit point behavior at This is suggested
by a corresponding result for the case of boundary condition variation

given in [6], see Corollary 3.2 in connection with a remark at the end of
the introduction there. But we do not yet know how to extend the method
of proof used in [6] to the situation of Proposition 4.

ProofofProposition 4. - Let ~ be the exceptional set of those E E I such
that at either or -oo there is no non-trivial L2-solution. By assumption
we have Lebesgue measure 1£1 = 0 for this set. Therefore ~c (?) = 0 with
the measure  from Proposition 3, independent of the choice of ai and
a2 there. This implies pa (?) = 0 for a E M, where M is a full measure
subset of (0, oo).
Now fix a E M and s E (1/2, 1]. By pa (£) = 0 we have non-trivial

solutions u+ E L2 (0, oo) of -u" + Wi u = Eu and u- E L2 (-oo, 0) of
-u" + W2 u = Eu for pa-a.e. E E I. In addition, Shnol’s theorem, see

Proposition 9, gives the existence of non-trivial solutions u E (R) :=
{f : (1 + IxI2)s/2 f E L2 (R)} of -u" + Va u = Eu for pa-a.e. E E I.
Note that u (. + a) is a solution of -u" + Wi u = Eu on (0, oo) and

u (. - a) is a solution of -u" + W2 u = Eu on (-00, 0).
From Proposition 8 (and its analogue on half lines) we get u+ E

L2 (0, oo), ul E L2 (-00, 0) and u’ E L2 s (R). Constancy of the

Wronskian

yields

which can only hold with C = 0 since s  1.

Vol. 63,n° 3-1995.
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Thus we have shown that u is a multiple of u+, i.e. square-integrable
near +00 for pa-a.e. E E I. Using u- in the same way we also get square-
integrability of u at -oo for pa-a.e. E E I, and therefore u E L2 (R) for
pa-a.e. E E I. This means that pa-almost every E ~ I is an eigenvalue of
Ha. The set of eigenvalues of Ha is countable, thus pa is a point measure
on I, i.e. 7c (Ha) n l = 0. Since we choose the eigenfunctions from the
supply provided by the u+ and u- , the statement about exponential decay
is obvious. #

3. PROOF OF THEOREM 1 AND COMMENTS

Combining the results of Section 2 with the general properties given in
Section 1, the proof of Theorem 1 is now readily completed:
By Proposition 2 and Fubini’s theorem we have that for almost every

choice of the séquence ..., Y_ 2 , Y_ 1, Y2 , Y2 , ... there exist exponentially
decaying solutions u+ at +0oo and -oo, respectively, of Hw u = Eu for
almost every E E IR. This does not depend on the value of Yi (since together
with the potential we can shift the exponentially decaying solution).

Fix such a séquence..., Y-2, Y-1 , Y2, Y3,... and choose 8 &#x3E; 0 with

supp f c [-03B4, 03B4]. Defining

we are in the situation of Proposition 4. Thus for almost every a &#x3E; 0

we have

with exponentially decaying eigenfunctions. Since the operator +

Wl (x - a) + W2 (x + a) is unitary equivalent to HW for the choice
2a = Y1 - 28 (by shifting the potential) this event has probability
~ (Y1 &#x3E; 28) = dx = This holds for almost every126
..., Y-2 , Y- 1 , Y2, Y3,..., thus by Fubini we finally get ~~ ==

o with probability e-2a6 &#x3E; 0. Since a (Hw) C ~0, oo) we get in particular
that ~s~ (Hw) _ ~ with positive probability. This implies ~S~ _ 0.

Annales de l’Institut Henri Poincaré - Physique théorique
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Noting that exponential decay of eigenfunctions at the Lyapunov rate
also is a non-random property ([20, Theorem Al]) and that 0 is an

eigenvalue of Hw with zero probability [22, Thm. 2.12] completes the

proof of Theorem 1. #

There are a number of generalizations, comments and open problems
related to the above result, which we think are worth to be mentioned:

(i) It can be checked that all the basic properties of the Poisson process
p = B~ 8xn needed in the proof of Theorem 1 are also satisfied for

n 
_

more general compound Poisson processes ~c = ~ ~n bXn discussed for
n

example in [ 12] . Here the An are non-negative i.i.d. random variables with
E (À~)  oo, also independent from the Poisson points Xn . The associated

metrically transitive potential is

By E (~n)  00 one gets E (Vw (0)~)  oo. We therefore have the following
generalization of Theorem 1:

THEOREM 5. - Let Hw = -d2 1 dx2 + Vw with Vw defined by (12), f
as in (1), (5) and compound Poisson process with ~n &#x3E; 0 i.i.d. and

lE  oo. Then the conclusion of Theorem 1 holds.

It is enlightenning to compare our result for the "mixed Anderson-Poisson
model" (12) with a result of Combes and Hislop [4] on localization for the
multidimensional version of this model. Under stronger assumptions on the

An (bounded, absolutely continuous distribution) and suitable assumptions
on f (in particular, non-compact support with suitable decay) they prove
localization at low positive energies. They essentially use the randomness
in the coupling constant in their proof (and can not treat the "pure"
Poisson case), whereas we use the randomness of the Poisson points. So
the Anderson-Poisson model is treated as an Anderson model in [4] and
as a Poisson model here.

(ii) One can try to relax the assumptions on the single site potential f :

a) The proof of Proposition 3 actually does not need that f is non-negative
as long as it is compactly supported, but note that spectral averaging only
holds for positive energies. Proposition 4 can also be extended (note that
the negative part of the potential may grow like Inlxl now [10], i. e.

Proposition 4 does not apply directly). We can therefore prove

Vol. 63, n° 3-1995.
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THEOREM 6. - Let HW be defined as in Theorem 1, but with the weaker
assumption that f is square-integrable, compactly supported and not
identically zero. Then we have

with eigenfunctions to positive energies decaying exponentially at the
Lyapunov-exponent rate.
Hw will now in general have negative spectrum. We expect that this

spectrum is also pure point, but our method does not allow to prove this.
Technically this is caused by the fact that and used in the
proof of Proposition 3 will now have zeros. We note that a very similar
problem arises in Minami’s work on localization for Lévy noise potentials
[21, p. 232].

b) If f is non-compatly supported, then generically Hw will be
deterministic in the sense of Kotani [14]. Nevertheless, it is known for
many such f that ~a~ (~) = 0 almost surely ([14], [ 11 ], [28], [29]). This
leads to 03B3 (E) &#x3E; 0 for a.e. E and the validity of Proposition 2 again,
leaving us with the need to extend Propositions 3 and 4 to a more general
version of Ha, which includes interfering "tails" of Wi and W2. We do
not see how to do that.

(iii) Our results in Theorems 1, 5 and 6 can, of course, not be extended
to guarantee pure point spectrum for every ~. For example, if all the Xi
are of equal distance (a zero probability event), then Vw is periodic, i. e.
H~ absolutely continuous.

In addition, there are recent results which suggest that the spectrum of
Hw should be purely singular continuous for many values of ~. A result of
del Rio, Makarov and Simon [5] and independently of Gordon [8] shows
"genericity" of singular continuity for discrete Anderson models exhibiting
localization. We expect similar ideas to apply to the Poisson model.

(iv) As a final comment we point out that it would be very useful to have
a result on spectral averaging for models of the type

in L (R ), ~ &#x3E; 1. Using this in d = 1, a proof of localization for the
one-dimensional random displacement model

wim i.i.a. ranaom variables in could be completed along the lines of the
above proof. The multidimensional version of ( 14) has been studied by

Annales de l’Institut Henri Poincaré - Physique théorique
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Klopp [ 17] . For suitable f and Çn he proved localization at low energies in
the semiclassical limit (i.e. under large coupling for f ).

In d &#x3E; 1 a result on spectral averaging for (13) would also be needed
to treat the Poisson model, using in addition the ideas developed in [20]
and [4] for the multidimensional continuum Anderson model.

Unfortunately, the model (13) does not seem to have any nice

monotonicity properties in the parameter c, not even in d = 1. So far,
monotonicity had a crucial part in all proofs of spectral averaging. In the
proof of Proposition 3 above, it appears in the form of (10). Our inability
to prove localization at negative energies in Theorem 6 is also caused by
the breakdown of this monotonicity argument.

APPENDIX

In this Appendix we provide some technical results which were used in
Section 2. All these results are more or less standard. We include proofs
since some of them may not be known to hold under the given generality.
We start with a lemma providing infinitesimal formboundedness of

unif-potentials, but also showing that uniform constants can be chosen
on général subintervals (a, b) of R. Here ~) = {/ ~ L2 (a, b) :
f absolutely continuous, f’ E L2 (a, 6)} is the first order Sobolev space.

LEMMA 7. - Let W E uni f (R), 8 &#x3E; 0 and ~ &#x3E; 0. Then there is a
constant C such that 

for every a and b with -~ ~ a  b ~ ~, b-a ~ 03B4 and f E Hl (a, b).

Proof - Let 7 G (a, b) (1 c [a, b) or 7 G (a, b] if a or b are finite) with
~ = 8. There is y e 7 such that 1 == 1 (if a resp. b are

.ce7

finite, then lim f (x) resp. lim f (x) exist). For every choice of 6~ &#x3E; 0
.c2014~

and x E 7 we have

Vol. 63, n° 3-1995.
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which implies that

From this we get (15) by covering (a, b) with intervals of length 8 such
that each x E (a, b) is covered by at most two intervals.
Next we study weighted L2-solutions of -u" + Vu = zu, using the

notation LS = ~ f : I~s f E L2 ~, where l~s (x) _ ( 1 + 

PROPOSITION 8. - Let V+ E (R) and V- E unif (R). If z E C,
s and u is a solution of -u" + Vu = zu with u E Ls (R), then also
u’ E Ls (R).

Proof - From u) u)’)’ _ ~ u)’ ~2 ~ (~s u) (~S u)" and (hs u)" ==
l~s’ u ~ 2k§ u’ + l~s (V - z ) u we get

Using 1  one gets

From Lemma 7 we have

with C independent of x. If follows that the integral on the r.h.s. of (16)
can be estimated by

Annales de l’Institut Henri Poincaré - Physique théorique
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If we L2 (0, oo), i.e. also (ks u)’ rt M2 (0, oo), then this last
expression would approach oo as x - +00. But then (16) yields

leading to the contradiction I~S (x) - oo. We have proved u’ E

Ls (0, oo). In the same way we get u’ E Ls (-00, 0). #
We are now going to provide a version of Shnol’s theorem for

operators H in L2 (R) defined + V, where V+ E Lfoc (R)
and V- E Note that by Lemma8V- is infinitesimally
formbounded with respect to + V+, H can be defined by
means of quadratic forms.

Let p be a spectral measure of H, i.e. a Borel measure p such that

p (A) = 0 if and only if E (A) = 0, A being any Borel set and E the
spectral resolution for H.

PROPOSITION 9. - Let h E L2 (R) be fixed. Then for p-almost every 03BB E R
there is a non-trivial solution ~ Vp = ~cp such that hp E L2 (R).
The classical example for which this result is well known (e.g. [25]) is

given by the choice h = &#x3E; 1/2. Below we provide a simple proof
which is modeled after a method developed in [23]. We start with

LEMMA 10. - For every z G p (H) we have that h ( H - is a

Hilbert-Schmidt operator. 
’

Proof - From the formboundedness of V- we get that (-d2/dx2 -
m)1/2(H - m)-1/2 is a bounded operator for m  inf (a (H), 0). A
standard result (cf. [24]) says that h ( -d2 1 dx2 - m) -1/2 is Hilbert-Schmidt.
Thus we get the Hilbert-Schmidt property for h (H - m)-1/2, i.e. also

for h (H - This extends to general z E p (H) by the resolvent
equation. #

Proof of Proposition 9. - Let U : L2 -~ dpj) be an ordered
spectral representation for H, cf e.g. [31, Ch. 8]. Then p = pi is a spectral
measure for H (e.g. Lemma 2b of [23]) and it remains to show the assertion
with this p, since any two spectral measures for H are equivalent. By [31,
Theorem 8.4] we have for every j that

the pj-almost every A E R and f E L2 (R) with compact support. Here
x R - C is dx x dp-measurable and Tvj (., À) = Àvj (., À) with

vj (., 0 for pj-almost every A. By Lemma 10 ( H - is the
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restriction of a Hilbert-Schmidt operator in L2 (R), thus

is the restriction of a Hilbert-Schmidt operator from L2 (R) to L~ (R, dp)
and thus has a kemel

To a given N E N let f n E Co ( - N, N ) , n = 1, 2,..., be given such
that ~ f n ~ is dense in L2 ( -N, N). From (17) and (18) we get that for
every n and p-almost every A

Since { fn~ is countable and dense in Lz (-N, N) this implies that for
p-almost every A

N was arbitrary, therefore (20) in fact holds for almost every x E R. (19)
and Fubini yield

The assertion is proven with p = vi (., À). #
We finally recall some properties of the Prüfer variables rc (x, B, E, V)

and ~~ (x, B, E, V) used in the proof of Proposition 3. Since E and V are
fixed here, we drop them from the notation.

PROPOSITION 11.

~e is found from this by the method of integrating factors.

Using Tc(C, 82) (c, ()) = 1 wet get (21). #
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We note that under our assumption interchanging 8x and âe in the above
proof is actually only justified for almost every pair (x, 0). This yields
that (21) holds for every x and almost every B, being sufficient for our
applications.

COROLLARY 12. - For any c, x and 03B8 we have

Proof - This follows by integrating (21) and using 03C6c (x, 0 + 1r) -
03C6c (x, ()) == 7T. #
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