
ANNALES DE L’I. H. P., SECTION A

J.-P. ECKMANN

C.-A. PILLET
Scattering phases and density of states for
exterior domains
Annales de l’I. H. P., section A, tome 62, no 4 (1995), p. 383-399
<http://www.numdam.org/item?id=AIHPA_1995__62_4_383_0>

© Gauthier-Villars, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1995__62_4_383_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


383

Scattering phases and density
of states for exterior domains

J.-P. ECKMANN

C.-A. PILLET

Section de Mathématiques, University de Geneve,
CH-1211 Geneve 4, Switzerland.

Departement de Physique Theorique,
Universite de Geneve,

CH-1211 Geneve 4, Switzerland.

Ann. Inst. Henri Poincaré, ’

62, n° 4, 1995, Physique theorique

ABSTRACT. - For a bounded open domain Q E R 2 with connected
complement and piecewise smooth boundary, we consider the Dirichlet
Laplacian -.ðn on H and the S-matrix on the complement Using the
restriction AE of (-.ð - E)-1 to the boundary of H, we establish that

AE AEo ~2-1 is trace class when Eo is negative and give bounds on
the energy dependence of this difference. This allows for precise bounds

- 

on the total scattering phase, the definition of a (-function, and a Krein
spectral formula, which improve similar results found in the literature.

Soit H E R 2 un domaine ouvert borne avec bord regulier par
morceaux et complementaire connexe. Nous considerons Ie Laplacien de
Dirichlet sur H et la matrice S sur Ie complementaire de H. Utilisant
la restriction AE de ( - 0 - E) -1 au bord de H, nous demontrons que
AEo est un operateur a trace si Eo est negatif et nous
donnons une borne sur la dependance en energie de cette difference. Ceci
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384 J.-P. ECKMANN AND C.-A. PILLET

conduit a des bornes precises sur Ie dephasage de diffusion total, a la
definition d’ une fonction ( ainsi qu’ a une formule de Krein spectrale, qui
ameliorent des resultats analogues trouves dans la litterature.

1. INTRODUCTION

We consider bounded domains H in R2 and study the Dirichlet Laplacian
A~ in S2 as well as the scattering matrix (also with Dirichlet condition)
in the complement In the paper [EP] we have begun this study by
describing a "spectral duality" between the eigenvalues of the Laplacian
and the scattering phases of the S-matrix restricted to an energy shell.
In this paper, we will go further and show how (-functions for this

problem can be derived. This allows to establish a relatively precise
relation between the eigenvalues of the Laplacian and the phase shifts,
which leads to improvements of the results of [JK], [M] and extensions
to more complicated domains. Similar such relations have been studied
numerically and in perturbation theory in [DS]. We also establish a Krein
trace formula.

To set the stage, we define "standard" domains H and we then assume

throughout that Q is a standard domain.

DEFINITION. - A domain 03A9 C R2 is called a standard domain if it has
the following properties: H is a bounded, open set, whose boundary is

piecewise C2 with a finite number of pieces. Furthermore, the angles at the
comers are required to be non-degenerate, i. e. , different from 0 and 27r.

Finally, the complement of the closure of H is connected.

Thus, a standard domain is for example a union of squares and circles,
and it need not be connected nor convex. In order to simplify the notation,
we shall only consider connected domains, but the proofs carry through
without problems for the general case, by replacing the function spaces
by direct sums of the spaces for each piece of n. We also assume for
simplicity that the perimeter of n has length 2 7r. Throughout, x denotes
the 2703C0-periodic map

which maps (isometrically) the arclength to the boundary.
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385SCATTERING PHASES AND DENSITY OF STATES

We next define the central object of study: The boundary Green’s function
AE . With a slight change of notation from [EP] we let AE denote the integral
operator (and the integral kernel) of the Green’s function on the boundary:

Here, G E is the Green’s function of the "free" Laplacian on R2:

whose integral kernel is

The functions Jo, Yo and Ho are the Bessel and Hankel functions [AS].
Some care is needed with the square root:

DEFINITION. - We let £ denote { E : E E C, R+ }. We denote by
B/E the root of E with the following determination: For E &#x3E; 0, 
is the positive root, and then E - i 0 is the negative one. So the square
root maps £ to the upper halfplane. We also denote by ?Z the Riemann
surface associated with the logarithm.

Remark. - The operator AE is analytic in 7~.
In [EP], properties of AE were studied which allowed us to prove several

results about the Laplacian and the S-matrix, when restricted to the energy
shell E. The definition of SE will be given below, but see [EP] for a
rederivation from first principles of scattering theory. We showed

THEOREM 1.1. - The number Eo &#x3E; 0 is an m-fold eigenvatue of -039403A9
if and only if exactly m scattering phases ~~ (E) of the S-matrix S’E tend
to 03C0 as E I Eo.

In the current paper, we improve our control over the operator AE and
use it to define (-functions, and Krein formulas.
Our first main result is the Structure Theorem II which says that

is an operator in the Birman-Solomiak class ?2/3 and satisfies the bound

Similar bounds are known in potential scattering, but our bound is new
for the problem of obstacle scattering, and stronger than earlier bounds
in the literature. The definition of AE and the bound Eq. ( 1.3) allow for
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386 J.-P. ECKMANN AND C.-A. PILLET

a very simple definition of a (-function in the present case of obstacle
scattering, i. e. , hard-core potentials, and an identity for the determinant of
the S-matrix (Theorem 3 .1 ) :

Note that these quantities are expressed by operators on the boundary of the
obstacle. One can use all these estimates to improve the results of earlier
papers [JK], [S], [MR], (Theorem 3.2), which gives pointwise bounds on
the total phase shift 8 and the number N of bound states for a very general
class of domains:

The earlier estimates where for the integral over E of this quantity (for
obstacle scattering). Finally, in the same vein, the Krein formula can be
derived in the same framework.

2. STRUCTURE THEOREMS

In this section, we derive very detailed representations of the operators
AE which we call structure theorems. They tell us that properly regularized
versions of AE are proportional to (1+trace class). Denoting by as the
derivative with respect to arclength, and setting A = ( 1 + (i as ) 2 ) 1~2, the
regularizations which we consider are:

and

A-1/2E0 AE A-1/2E0, where Eo is an arbitrary negative constant.

Notation. - If C is a compact operator, we let == 1, 2, ...

be the nth eigenvalue of (C* C)1~2 (in decreasing order). We define for
1 ~ p  oo, and for p = oo the usual norms

We also need the weak Schatten classes [S], [BS]: We let

de Henri Poincaré - Physique theorique



387SCATTERING PHASES AND DENSITY OF STATES

The class Ep of operators C with finite (C )p is a complete topological
vector space for p &#x3E; 0 and is normable for p &#x3E; 1.

Remark. - We shall need the inequalities:

which are obvious from the definition, and the more subtle one, see [BS],

which holds for all q &#x3E; 0, r &#x3E; 0, p-1 = q-1 + r-1.

Notations.

- The bounds which will be given below are of the form log E ~.
We shall use the shorthand notation

- Constants, such as 7~ which are used in bounds can change their
meaning from one equation to the next.
- We let jFo denote the orthogonal projection onto the constant functions

in L~(~).
Our main technical result is the

STRUCTURE THEOREM I. - For E E ’R the operator A AE has the following

representation:

where ’ B is bounded,  Hilbert-Schmidt, and ’ TEl~
is trace ’ class. There ’ is a constant K so ’ that for E E £ one ’ has the bounds

The proof will be given in Sect. 5.

Remarks. - 1) The bound (2.5) suggests that the nth eigenvalue of T~
is about L~’3~4 n-3/2 ( for large E).

2) The choice of H is somewhat arbitrary, since we can add to it part of
the trace class operator without changing the statement of the theorem.

3) If r = aSZ is G2 (i.e., if there are no corners) then one can choose
j9 = 0.

Vol. 62, n ° 4-1995.
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4) The improvement of this result over the structure theorem in [EP],
Theorem 4.1, Eq. (4.25) is the observation that those parts of A AE which
are not trace class do not depend on the energy. The bounds (2.5) are
also new.

Based on 4), we now proceed as follows: Let Eo be an arbitrary negative
constant, which we fix throughout the remainder of the paper. Since -~
has spectrum in R+ one can check from the definition of AE that AEo is
invertible. Therefore the following statement makes sense:

STRUCTURE THEOREM II. - Let E E ~Z and Eo  0. Then one has the

representation

where ’ TE is trace class. For E E ~, and E ~ &#x3E; 1, one has the bound ’

Furthermore, there ’ are a rank one orthogonal projection P and a constant
C &#x3E; 0 such that for E E ~, and E ~ I  1,

Finally, TE = TE, and if Im E &#x3E; 0, then Im TE &#x3E; 0.

Proof - We start by deriving a few consequences of the Structure
Theorem I. Note first that A AEo is of the form

and 0 is not in its spectrum since Eo  0. Therefore,

Throughout, we shall need the bound

which follows by observing that the spectrum of A is { ~/1 + ?~ }~ ~ z. We
next bound ( )2. Since AEo is positive, we have

Using now the Structure Theorem I, we see that for E ~ I &#x3E; 1,

Annales de l’Institut Henri Poincaré - Physique " theorique "
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It is straightforward that

Using Eq. (2.3), we obtain, for I &#x3E; 1,

Substituting the previous bounds and observing that AEo A = (AAEo)*,
we obtain the inequality (2.7). Defining Pl = Po and
P == one obtains the bound (2.8). Since AEo is selfadjoint,
and G(E) = (G (E))*, the last assertions follow because G (E) is a

Herglotz function. The proof of the Structure Theorem II is complete.

3. THE (-FUNCTION

By the Structure Theorem II we can define the analytic function of E E 7~:

((E) = det = exp Tr log (1 +TE) . (3.1)

From the Herglotz property we conclude immediately that 0) ==
0 if E  0, and is positive if E ~ 0. We have the following

THEOREM 3.1. - The determinant of SE is given, for E &#x3E; 0, by

The proof will be given at the end of this section.

DEFINITION. - We define the total scattering phase 8 (E) by the identity

Since SE is analytic (as can be seen, e.g. from Eq. (3.7) below), e can
be chosen continuous. There is an overall indeterminacy of which

we eliminate by requiring e (0) = 0. This choice is possible because
det = 1. Indeed, Eq. (2.8) implies = 0, from
which det ( SE-o ) - 1 follows.

We next define N ( E ) : R+ --~ Z as the integrated density of states of
2014A~, i.e., the number of eigenvalues of 2014A~ below E. Then we have
the important identity:

Vol. 62, n° 4-1995.
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This can be seen as follows: It is a well-known fact from potential theory
-and reproved in [EP], Lemma 5.5- that AE has an m-fold eigenvalue 0
if and only has an m-fold eigenvalue equal to E. Therefore, the
same is true for AE and thus, by Eq. (3.1), the quantity
Im log ~ (E + i 0) jumps by at each such eigenvalue. It is continuous
elsewhere, since in fact TE is a real analytic function of E. It follows that
7T N (E) + Im log ((E + i 0) is also continuous. Thus, Eq. (3.3) holds.
We obtain the following important bound, which improves [JK], [S],

[MR] :

THEOREM 3.2. - Let 0, be a standard domain &#x3E; 1. 77  

K such that

Remark. - Note that N (E) typically grows like C~ (E) so that the

bound says that the phase shift and the integrated density of states are
"comparable" in this case. Of course, in the case of (smooth) potential
scattering, one has additional information about the phase shift, so that

inequalities like Eq. (3.4) give direct information on N (E). This is not
the case for the much more singular problem considered here, where the
resonances can accumulate near the real axis from below as E T oo.

Furthermore, extending slightly [MR], or from numerical experiments [U],
one can see that if S2 is a circle of radius R, then an averaged version N
of N and the phase shift satisfy

Therefore the difference in Eq. (3.4) cannot be smaller than 0 

Proof of Theorem. 3.2. - Starting with Eq. (3.3), we see that

18 (E) - 7T N (E) ~ _ ~ Im log ~ (E + i 0) I. From Eq. (3.1), we deduce that

Since TE has the Herglotz property, we can apply the inequality of Sobolev
[S], Lemma 2.2 to obtain

Substituting j the bounds of the Structure Theorem II, the assertion of

Theorem 3.2 follows.

Annales de l’Institut Henri Poincare - Physique " theorique "
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We can draw another nice conclusion from the Structure Theorems:

PROPOSITION 3.3. - Let 03A9 be a standard domain. constant D

such that the multiplicity of an eigenvalue E bounded by DE1~2+.

Proof. - The multiplicity of the eigenvalues less than 1 is bounded. It

suffices thus to consider E &#x3E; 1. We recall the result [EP] that -.ðn has an
eigenvalue E of multiplicity m if and only if AE has an eigenvalue 0 of
multiplicity m. Since AEo is invertible, has an eigenvalue 0
of multiplicity m in this case. But = 1 + TE, so that TE
has an eigenvalue -1 of multiplicity m. Since we have shown in Eq. (2.7)
that (7~)2/3 ~ (~ ~E3/4+) for E E E the assertion follows by observing
that m3~2 ~ ~ - 1 ~  (7~)2/3 = (~ (E3~4+).

Proof of Theorem 3.1. - Our starting point is the following
representation of SE [EP], Eq. (3.15):

which holds for E &#x3E; 0. The operator J E and its counterpart YE are
defined through their integral kernels

so that Az = Yz+iJz. The following facts are straightforward consequences
of the properties of the Jo and Yo functions [AS], § 9:
- Jo is entire, and Jo (w) = Jo (w). Therefore, Jo w) = Jo (w).
- Yo has a branch point at w = 0 (which we lift by putting a branch cut

on R-), and Yo = Yo (w). Finally, Yo w) = Yo (w)+2imJo (w).
Using the determination for as defined for (i.e., ~/A;~ + z 0 ==

the above identities imply in terms of the operators:

Consider now

so that by the Structure Theorem II,

Vol. 62 n° 4-1995.
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We find from Eq. (3.7) that one has

where the last equality holds by Eq. (3.9). Using Eq. (3.8), we see that
implies Tz = Tz. Therefore, since

the assertion Eq. (3.2) follows from

The proof of Theorem 3.1 is complete.

4. THE KREIN TRACE FORMULA

We consider here the "free" Hamiltonian Ho = - 0 and the "interacting"
Hamiltonian H = -Ao 0 -A~c. Then one has the

THEOREM 4.1. - For every F E s (R) with support in {E : E &#x3E; 0 }
one has the identity

where the ~n are the eigenvalues of -~n and denotes the on-shell

Remark. - The condition on F given above is too strong. One can for
example relax it along the lines of [Y], Theorem 8.3.3. In another direction,
probably more useful for applications, it seems that E4 F" + .~3 F’ E L2
is a sufficient condition (at E near oo).

Annales de l’Institut Henri Poincaré - Physique théorique
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Proof. - The proof is an application of the usual Krein trace formula.
All we have to show is essentially that (H - z)-1 - (Ho - is trace

class, and then perform a few changes of variables. It follows from the
definition of H, Ho, that (with a slight change of notation from the other
sections of this paper),

which we proved in [EP], Eq. (5.10). Here, , is the operator which restricts
a function on R2 to the boundary r = aS2. Let Eo  0 and define

One can relate this "Hamiltonian" formalism with the (-function we
considered above:

LEMMA 4.2. - One has the bound

and ’ (for E E £) the identity

The proof will be given at the end of this section. We define, for A E R,

By Eq. (4.5) and Krein’s theorem [Y], Theorem 8.3.3, this definition makes
sense and one has furthermore for all f for which f’ is the Fourier transform
of a finite (complex) measure, the identity

Assume now F satisfies the conditions of Theorem 4.1. If we define f by I
f ((E - = F (E), then we can apply Eq. (4.8) for this f . Defining

we get:

Vol. 62, nO 4-1995.
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By Eqs. (4.6) and (4.7), we find that

We next note that from its definition, 8’ (E) = -(2i)-1 Tr(S*E aE 
Therefore, when E &#x3E; 0,

Since we assumed F E 8 with support in E &#x3E; 0, we can integrate by parts
in Eq. (4.9) and obtain Eq. (4.1). The proof of Theorem 4.1 is complete.

Proof of Lemma. 4.2. - We show first that V is trace class. Using Eq.
(4.4) we write V = -L* L, where L = (Eo). We shall bound
II V 111 by showing that ~ V III == II == II is finite. By the Structure
Theorem II, we know that Tz analytic and trace class, and therefore its

derivative is also trace class. The resolvent identity thus implies

Therefore,

and this proves Eq. (4.5).

We next note the resolvent identity

Annales de l’Institut Henri Poincaré - Physique theorique
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By the Structure Theorem II, we know that det A~ AEo ~2 ) exists.
Therefore, using Eq. (4.10), we can perform the following manipulations:

The second to last equality follows from Eq. (4.3). This proves Eq. (4.6)
and completes the proof of Lemma 4.2.

5. PROOF OF THE STRUCTURE THEOREM I

The proof of the Structure Theorem I is in two steps. We first decompose "

AE (s, s’) as

where r (s, s’~ _ ~ ~ (s) - ~ (s’) I. The idea is that the logarithmic term
is the most singular one in Eq. (1.2) and that all terms coming from
RE (s, s’) = R (s, s’)) are more regular near the origin.

Vol. 62, nO 4-1995.
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In order to bound A we bound the contributions from the logarithmic
term and from A RE separately. The logarithmic term is at the origin of

the two contributions - + B + H in Eq. (2.4) and 1 2 P0 log E which we
add in the estimates of Eq. (2.5). The first piece has been analyzed in
detail in [EP] and we will not repeat this analysis here. The reader should
observe that the first piece is independent of E, and that the E-dependent
terms are trace class.

The operator whose integral kernel is identically equal to 1 is of rank

one and maps to the constant functions. Therefore,

The Structure Theorem I is a consequence of the decomposition

which we proved o in [EP], of the identity (5.2), and of the new estimate "

THEOREM 5.1. - There is a ’ constant c such that for all E E ~, one has
the bound ,

Clearly, this shows the second inequality of Eq. (2.5). The first one

follows then from Eq. (2.9) and

The proof of the Structure Theorem I is complete.

Proof of Theorem 5 .1. - Since i ~s is selfadjoint, we have the following
representation for A:

where U is unitary. Similarly, we also have A = ( 1 - U* . In view of

these identities and the fact that ( . ) p is a unitary invariant, one has

We shall bound this latter quantity. It is useful to introduce 1~ == From

the definition (5.1), we find

Annales de l’Institut Henri Poincaré - Physique théorique
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Below, we shall use some detailed properties of these functions. We note
that the kernel of (1 + as) RE (1 - as) is

Defining rs = as r, = ~s’ r, and 03A8 (z) = R’ (z)/z, one gets

From the definition of r one finds

We analyze in detail the Green’s function in two regions which are
defined by

Corresponding to this decomposition, we write

We shall bound the Hilbert-Schmidt norms of Ml and M2. Throughout,
we use the following important inequality which holds for a (connected)
standard domain: There is a constant C &#x3E; 0 so that for all s, s’ one has

In the domain D1, we use the known expansions for the functions Jo
and Yo . They are, near z = 0,

where Jo and Yo are analytic near z = 0. It will be useful to write Yo as

Vol. 62, n ° 4-1995.
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Note that the first term in Yo is generating the logarithmic term of Eq.
(5.1 ), so that only the sum of all other terms contributes to M. Using Eq.
(5.4), it can be bounded by

Since R(~) = -4 Yo (z) + 4 Jo (z) + the expansions near
z = 0 lead to the bounds

Therefore, we get from Eq. (5.6),

Thus, the Hilbert-Schmidt norm of Ml is bounded by

The last bound follows because kr (s, s’) |  1 implies |s-s’|  (9 (k-1),
by Eq. (5.5).

In the complement of this region, we use that A~2 (s, s’) is bounded

by 0(~)(~r)"~~+log(~r): this follows again from the explicit
representations of the Bessel functions whose derivatives all decay like
z-1~2 for large z. It also has compact support (uniformly in k). Therefore,
the Hilbert-Schmidt norm of MZ can be bounded by

The proof of Theorem 5.1 is complete.

Remark. - It is only this last quantity which leads to the logarithmic
corrections of the power laws in E ~ 13/4. We believe that a bound

should be valid.
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