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ABSTRACT. - The object of the study is the trace of the form

.J~t ( h, == with a compactly supported function 
where H$, v is the Schrodinger operator with a magnetic vector-potential
a and an electric potential V; h and  denote the Planck constant and
the intensity of the magnetic field respectively. We establish the Weyl
asymptotics of M (h, 0,  const with a remainder estimate.

L’ objet de l’étude est une trace de la forme ( h, ) =
tr ~ ~g (Ha, v ) ~ avec une fonction a support compacte ou Ha, vest
un operateur de Schrodinger avec un potentiel vecteur a et un potentiel
electrique V; h signifient la constante de Planck et l’intensité du champ
respectivement. On etablit une asymptotique de Weyl pour (h, lorsque
h -~ 0, ~ch  cons~ avec une estimation du reste.
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326 A. V. SOBOLEV

1. INTRODUCTION AND MAIN RESULT

We study in LZ d ~ 2, the Schrodinger operator

Here Ha,o is the free operator in the magnetic field of intensity
~ ~ 0 (see [2] or [ 10]) with a (magnetic) real-valued vector-potential
a = (al, a2, ..., ad), and V is a real-valued function (electric potential).
Sometimes for the sake of brevity we use the notation a = (a, V). We
analyse the asymptotics as2 h ---+ 0,  ~ 0,  C of traces of the form

Here 03C8 E Co (Rd) and g is a suitable function. For the main result we
assume that g (~) = 98 (A),~ ~ 0 with

A part of intermediate results (e.g. Sect. 4), however, will be established for
a more general class of functions. If g (A) (A) one uses for .~! (h, ~)
the notation (h, or (h, a).

In the case d = 3 and a homogeneous magnetic field a = (-x2, 0, 0)
our results can be viewed as complementary to those of [ 18], where the
quasi-classical asymptotics of the trace ( 1.2) has been studied under the
conditions ch-e ~  ~ Ch- for arbitrary  ~  &#x3E; 0. In particular, the
case 2014~ oo was permitted. On the contrary, in the present paper we
suppose that ~uh  C, but do not assume any lower bound on One should
mention that the definition of the operator Ha in [ 18] differs from ( 1.1 )

This fact does not play any significant role since in the present
paper this term is assumed to be bounded and therefore can be always
incorporated into V. Along with [ 18] our local asymptotics provides a
crucial step for the study of a two-term asymptotics of the global quantity

(h, 1, a) = tr {gs(Ha) }, which is finite if the potential V decreases
at infinity sufficiently rapidly. For the physical motivation 
we refer to papers [3], [6] and [ 11 ]-.[ 14], where the asymptotics of M1 was
used to study the ground state of a large electronic system. In particular,
for the homogeneous magnetic field the leading term of the asymptotics

2 Here and in what follows we denote by C and c (with or without indices) various positive
constants whose precise value is of no importance.

Annales de l’Institut Henri Poincaré - Physique theorique



327QUASI-CLASSICAL ASYMPTOTICS OF LOCAL RIESZ MEANS...

as h 2014~ 0 uniform in ~c was found in [ 14] . Our results on the two-term
asymptotics of M1 in this situation are announced in [ 19] .

Let us specify the assumptions on the Schrodinger operator for which
we study the trace ( 1.2). The presence of the cut-off ~ in ( 1.2) allows
one to assume that it has the form Ha in a vicinity of supp 03C8 only. To
distinguish it from the "true" Schrodinger operator we use the notation 7~.
Below D (A) denotes the domain of a self-adjoint operator A
Assumption 1.1.

(1) The operator selfadjoint and semiboundedfrom below in L2 
(2) There exists an open set D C Rd and real-valued functions

V E Co E Co (Rd), 1  l  d, such that Co (D) c D (x) and

To point out the connection of 7-l with Ha we denote it sometimes by
We keep notation A(/~ for the trace It will not

cause any confusion with (1.2). We stress that no restrictions on ~-l outside
D are placed (except for the qualitative requirements of selfadjointness and
semi-boundedness). In particular, 7-l does not have to be local.

0

As a rule, we assume that 7~ obeys Assumption 1.1 with D =B (4E) for
0

some fixed E &#x3E; 0, where B (E) stands for the open ball { ~ : ~  E }
(The corresponding closed ball is denoted by B (E)). The function ~ is
supposed to belong to Co (B (E/2)). As we shall see, the leading term
of the asymptotics of ,Ms (h, J-L; ’ljJ, a) depends neither on ~c nor a and
is given by

Here S - stands for the surface area of the (d - 1)-dimensional unit
sphere. Note that Ms (h) is nothing but the classical Weyl term, which
yields the leading order of the asymptotics of .Ms (h, 0) as well (see [7]).
The error estimate in the asymptotics below will depend only on the

constants in the following bounds on al, V and 

Vol. 62, nO 4-1995.



328 A. V. SOBOLEV

In other words, the asymptotics of .MS (h, ’l/J, a) is uniform in the

functions a~, V and satisfying (1.6). Note that due to the presence of the
parameter  the condition |~x al (x)| ~ 1 can be always satisfied. Notice
also that ( 1.6) contains no estimates on the function a~ itself, but only on
its derivatives. This fact is quite natural, since the constant component of
a~ can be chosen arbitrarily or eventually eliminated by a simple gauge
transformation.

Next Theorem constitutes the main result of the paper.
0 .

THEOREM 1.2. - Let 7-l obey Assumption 1.1 with D =B (4E*) for some
E &#x3E; 0, let s E [0, 1] and 0  ~c  E (0, Then for any

E Co(B(E/2))

The remainder estimate in (1.7) is uniform in the functions ai, V 
satisfying the bounds (1.6) but may depend on s and E.

o

The restriction D =B (4E) is imposed for the convenience only. The
result can be easily extended to arbitrary open set D by using an appropriate
partition of unity. We emphasize again that no quantitative information on
H for x ~ B (4E) enters the answer. Note that ( 1.7) for 03C8 = 1 is formally
consistent with [ 14] .
The proof of Theorem 1.2 is based mainly on the auxiliary results

obtained in [18]. These along with other general facts used in the proof,
are collected in Sect. 2. Some preliminary estimates for the Schrodinger
operator in the magnetic field are given in Sect. 3. The proof itself is
divided in two steps. At first, in Sect. 4 we study the asymptotics of
M ( h, ’ljJ, g ) for a function g of a more general form that gs under
a supplementary "non-critical" condition (4.2) (see Theorem 4.1 ). The key
fact is that the remainder estimates "do not feel" the behaviour of the

operator ~l outside the ball B (47?) (in the sense specified in Theorem 1.2).
This is a consequence of the fact that ~‘~C is local inside B (4E). This
allows one to replace 7~ by an operator which has the form Ha in the
entire space L2 ( 8~~ ) . Then the standard quasi-classical methods provide
the asymptotics of M (h, ’ljJ, g). To complete the proof of Theorem 1.2
it remains to remove the condition (4.2). This is done in Sect. 6 with the

help of a method initially suggested by V.Ivrii (see [7]-[9]) which can
be naturally referred to as the multiscale analysis (see also [3], [6]). The
detailed description of a version of this method adjusted to our purposes,

Annales de l’Institut Henri Poincaré - Physique theorique



329QUASI-CLASSICAL ASYMPTOTICS OF LOCAL RIESZ MEANS...

is given in Sect. 5. Schematically, it provides the asymptotics (1.7) by use
of an appropriate partition of unity and Theorem 4.1 in combination with
scaling-translation transformation.

Notation. for a domain X denotes the set of functions

f E (X) bounded along with all their derivatives. This space
forms a Frechet space for the family of natural =

supx |~mx f(x)|, m ~ zt.
A constant C is said to be uniform in f E (X) if it depends only

on the constants in the estimates ~| f ~m ~ Cm, m E Zd+.
A function g is said to belong to uniformly in f E 

if the derivatives (x) ~, m E ~+, are estimated by constants which
are uniform in f E (X).
The basic configuration space is denoted by ~dd or R~, c! ~ 1. The dual

space is denoted by B (z, E), z E Rd, E &#x3E; 0, denotes the closed ball

{x E :r - z’l :::; E } ; B (E) = B (0, E). Sometimes we use open
balls B (z, E) = { x E Rd : |x - z j 1  E } and B (E) as well.

(E), E &#x3E; 0, denotes the ball { x2 + ç2 .::; E2, xE 

2. PRELIMINARIES

In this section we list some results from the theory of pseudo-differential
operators to be used throughout the paper. The most of the
properties below can be found in any textbook However, to
be definite, we usually refer to [16]. The results on the quasi-classical
asymptotics (see subsections 3, 4) are borrowed from ’(18], where they
have been obtained in the form convenient for our needs.

1. Basic properties and definitions. - By a {3 - A = opw03B2 a we
always mean the operator with the Weyl symbol a, that is

Here /3 E (0, ,~o~, /30 &#x3E; 0, and the symbol a x (sometimes
we drop (3 from the notation of a) is assumed to satisfy the condition

Vol. 62, n" 4-1995.



330 A. V. SOBOLEV

with some positive temperate weight function p, so that the iterated integral
in the r.h.s. of (2.1) converges. In this case the symbol is said to belong
to the class S (/9), which is a Frechet space with the family of natural
semi-norms

In the spirit of definition given at the end of Sect. 1 we say that a symbol
a belongs to some class S (p) uniformly in a’ E S (p’) if the semi-norms
of a are bounded by constants uniform in a’ E S (p’). Unless otherwise
stated throughout the paper we tacitly assume that the estimates involving
one or more BliDO’s are uniform in their symbols.
One can prove that the operator A = oPø a with a real-valued bounded

from below symbol a (x, ~), is essentially selfadjoint on For

simplicity we denote its closure again by op~ a.
The following criterion will be important:
PROPOSITION 2.1.

(1) If p is bounded then the operator bounded and

where the constant Cd and the integer number k (d) depend only on d.
(2) If p E L1 (R~ x Rg) then A E 61 and

where Cd depends only on the dimension d.
The first part of this Proposition is nothing but the Calderon-Vaillancourt

Theorem. The second statement can be found in [ 16] .
Let us consider now products of /3 - Suppose first that

x Then there exists a unique Weyl symbol
a E (R~ x such that oPø al oPø a2 = oPø a. Moreover,

Annales de l’Institut Henri Poincaré - Physique theorique
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By Proposition 2.1 the operator RN+1 (/3) = opw03B2rN+1 is bounded uniformly
in al, a2. Moreover, if one of the symbols al or a2 is supported in the
ball R~(E), E &#x3E; 0, then

The next Lemma follows directly from (2.4):

LEMMA 2.2. - Let al, a2 ~ B~ (Rdx x and

Then

If, in addition, a2 E Co # (E)) with some ’ E &#x3E; 0, then

The constant C’N in (2. S) depends on E.
2. Functional calculus for We give here the asymptotic expansion

in powers of {3 for a Co-function of a To that end we assume

that A = opw03B2 a with a symbol a E S (p) independent of /3 such that
for some b E R

Sometimes we refer to operators ~4 whose symbols satisfy (2.6), as

operators (see [4] or [16] for more general definition).

PROPOSITION 2.3. - COO (Ii). Then for
any integer N &#x3E; 0 the expansion holds:

Here ~ ~ R9, N+1 ({3) II :::; CN and the symbols a9, n are given by the formulae

. where the coe, fficients are universal polynomials of 8";1 8"2 a, ml +
m2  n.

This Proposition is a simplified version of a more general result

established in [4] (see also [16]).

Vol. 62, n ° 4-1995.
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3. Let ~4 be a with a real-valued

symbol semi-bounded from below therefore essentially selfadjoint)
and let 0 = be a BliDO with the real-valued symbol

We are " going ’ to discuss the ’ of the trace "

with a bounded function g. This quantity is finite since ~ e 111  oo by
Proposition 2.1.

First of all we study the propagator Up (t) = exp { -i{3-1 At} (see [16]).
We approximate (t) by a integral operator G/3 (t)
having the kernel

with the phase ,~ Ew,_ ~, ty and the amplitude

where the smooth functions ~(., ., ~) are compactly supported. We
suppose also that

where ~ = c~ with a function (/? such that

To satisfy the initial condition (2.11) we have to assume that 9 (x, ~, 0) =
xç and vo, (:1:-, ~t 0) = ~?(~, ~)~ ~~ (x, ~, 0) = 0, ~ ~ 1. Note however

that we: do not need this information in what follows. The only fact we
shall be using is given by

PROPOSITION 2.4 [18]. - There exists a number To &#x3E; 0 and functions

Annales de l’Institut Henri Poincare - Physique ’ théorique "
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such that for any integer l~ ~ v

To state the result on the asymptotics of N03B2 we first fix notation. Let
T E (0, To] (To is the number from Proposition 2.5) be some number and
let x E Co (-T, T) be a real-valued function such = (-t)

= It I  T/2. Define

We assume that

and that there exist Ti E (0, T) ,and c &#x3E; 0 such that

One can always guarantee these two properties by 
(if necessary) and assuming x &#x3E; 0. Denote

For a function g E £1 (R) we define its smoothed-out version:

Notice that

To find the asymptotics of we impose
Assumption 2.5. t~n the se~

the lo~ver bound 1 B7 a (~, ç) I ~ 5 &#x3E; :0 

If Assumption 2.5 is satisfied, value 03BB is said to be 

(critical) value of the operator A on denote A(03BB) = A(03BB, l}.
PROPOSITION 2:6 "[18]. - the operator A be as specified above and

-(2.9).
(1) If g E o (R) t~en

62. n° 4-1995.
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(2) Let Assumption 2.5 be fulfilled for some ~, ~ a ~ I :::; ~o. Then

(3) Let g , E L1 (R) be a ’ compactly supported function and , let

Assumption 2.5 be fulfilled for all À E supp o g. Then

The constant C in (2.18) is uniform in .~, ~ A I :::; Ao.
4. The Tauberian theorem. The relation (2.19) provides the asymptotics

of for the function g~°~. We are going to deduce from here the result
for g itself. First we have to specify the class of functions we shall be
working with.

DEFINITION 2.7. - A function g E coo (RB{ 0 }) is said to belong to the
class (R), s E [0, 1~, s &#x3E; 0; r &#x3E; 0

and , (iii) for I :::; C, A 7~ 0, and all non-negative ’ integer m

A function g is said to belong to (IR), s E [0, 1], if g is compactly
supported and g E s 

Note that gs E C°°’ S 

PROPOSITION 2. 8. - Let A be a selfadjoint operator and g E S ,
s E [0, 1]. Let the function xl be as defined above. If for an operator
B E 62

where ’ D dist { supp g, ~ }  6 ~, with some ’ positive function
Z ({3) and some number 6 &#x3E; 0, then

The constants C and C’ depend on the number S andfunctions g, Xl only.
Proof for s &#x3E; 0 can be found in [18]. The case s = 0 can be treated

analogously.

Annales de l’Institut Henri Poincaré - Physique theorique
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3. AUXILIARY ESTIMATES FOR THE MAGNETIC OPERATOR

1. Our objective in this section is to establish some preliminary estimates
for trace norms of the form ~03C8g (H)~1. Recall that we use the notation a
for the pair (a, V). Those estimates will be uniform in the Planck constant
h E (0, and the field a. Thus one can assume ~ = 1. The central result

is Theorem 3.12 which justifies the possibility of replacing the operator
with Ha in the asymptotics of for g E C~(R). For

the case d = 3 and a homogeneous magnetic field a similar result has
been obtained in [18].
We begin with the study of an operator H defined by (1.1) in the entire

space L2 (Rd). Let al E (Rd), l = 1, 2, ..., d. We denote by Ql the
closures of the formal differential expressions on Co (R~).
Then the operator Ho = Ha, o = Qi Ql (Here and below we assume
summation over repeating indices) is selfadjoint and Co (R~) is its form
core (see [2]). We are interested in the properties of H = Ha = Ho + V
with a real-valued function V E L°° (~d). First we obtain estimates for
’ljJ (Ho, v + A)’B a &#x3E; 0 in the Neumann-Schatten classes 6p of compact
operators. Then by the diamagnetic inequality these estimates are extended
to the case a ~ 0 as well. Finally, to study functions of Ha we use the
formula (3.11) (see [1]), expressing a function g E Co (R) of an arbitrary
selfadjoint operator in terms of its resolvent.

Let ao be a number such that 1 + V (x) ~, so that

N ~ -Ao/2. Unless otherwise stated we assume that z E oo) and
denote d (z) = dist { z, [-Ao, oo) }, ( z ) = (1 + ~ z Throughout the
Section C denotes a constant depending only on Ao (and not on a, V, h).

Recall that a compact operator A is said to belong to 6p, 1  p  oo,

if the value

is finite. This functional defines a norm in Note the inequalities

Our basic tool in the analysis of the resolvent is the so-called diamagnetic
inequality [2] :

Vol. 62, n ° 4-1995.
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By virtue of [17, Theorem 2.13] this yields

PROPOSITION 3.1. - a function such (H~, o , + ~)-’~ ~ ~2~,
with E N. Then 03C8(Ha, V + A)’" E 62n as well and ’

To estimate the 6p-norm + A)’" we apply the following
criterion [15] which provides the bounds of Op-norms for operators, having
the form fi f2 (~):

PROPOSITION 3.2. - Let p ~ 2. If f 1, /2 E then A =

fl f2 (a-) E 6p and

This result allows one to establish estimates for the Sp-norms of the
operator + A)’~ A &#x3E; 0 with arbitrary ~ &#x3E; 0:

LEMMA 3.3. - E Co (Rd) &#x3E; O. Then ~(H0,0 + A)’" E 6p
for any p &#x3E; 2, p &#x3E; d(2/~)’~ and

Proof. - It suffices to recall that (Ho,o + ~)-" - with

f (t) = (t2 + A)’" and apply Proposition 3.2. D

In combination with the diamagnetic inequality this Lemma yields

LEMMA 3.4. - E Co (Rd), k &#x3E; 0 and n be a natural number such

d(4~)~. Then for any A &#x3E; Ao

Let 03BB ~ Ao. It follows immediately from Proposition 3.2 that

Now Lemma 3.3 yields (3.2). 0

2. Let us study now the properties of the resolvent of H sandwiched
between two functions with disjoint supports. We need the following
preparatory

LEMMA 3.5. - Le~ m = 0, 1. ~Qx ~~~ A &#x3E; Ao

Physique " théorique ’
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Proof. - Inequality (3.3) is obvious for m = 0. Further,

Here we used the fact that ~ &#x3E; V (x) ~. This yields (3.3)
form==l. D

Note also the obvious equality

Further, due to the resolvent identity, we have

for Note that

LEMMA 3.6. - Let x E Co and 03C6 E S°° be such that

and let r, m = 0, 1. Then for any N &#x3E; d / 2

The constant eN depends only on the number N, the functions ~, 03C6 and
the constant c in (3.7).

~’roof. - We start with the following simple observation. Due to (3.7),
for a fixed L ~ N one can define a family of functions ~(j) &#x3E; E Co 
j - l, 2, ... , L such that

Therefore ~ i = t ~ ~ 1 ~ and 0

Vol. 62. n° 4-1995.



338 A. V. SOBOLEV

Thus the following representation holds:

According to (3.5) for any A &#x3E; Ao one can write

where

Therefore

By (3.4)

By (3.2) and (3.3), for any natural N &#x3E; d/2

Let 03BB = Ao + ( z ). Then by (3.1) and (3.6),

Annales de l’Institut Henri Poincare - Physique " theorique ’
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It follows from (3.9) with L = 2N that

Using (3.3), (3.6), we obtain (3.8). 0

COROLLARY 3.7. - Let x E Co and let 1~, n be two integers such
that n &#x3E; d/4, k :::; 2n. Then for 03BB ~ 03BB0

Proof. - By (3.2) the bound (3.10) is true for k = 1. The further proof
is by induction: assuming that (3.10) is true for some 1~, we shall deduce

(3.10) for k + 1. Let x 1 E Co be a function such that the pair
x, 1 - xl satisfy (3.7). Denote ~ = 1 - xl. Then by (3.1)

By Lemma 3.6 the first summand is bounded by

Choosing t = d(l - (k + 1) (2n)-1), we get (3.10). Further, by (3.2) and
the inductive assumption the second term does not exceed

Two last estimates provide (3.10) with ~+1, which completes the proof. 0

3. Let us proceed now to the study of functions of the operators with
magnetic field. Our basic tool in this analysis will be the following
representation established in [ 1 ] :

Vol. 62, n° 4-1995.
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PROPOSITION 3.8. - Let g ’ E Co (R). Then for any selfadjoint operator
A the relation holds:

We start with

LEMMA 3.9. - Let g , E Go (R) and x E Co 1" ’ Then

If the functions satisfy the conditions of Lemyna 3.6, then for any N &#x3E; 0

Proof. - Let 03BB ~ Ao and k &#x3E; d/2. The inequality

and the bound (3.10) with n = 21~ lead to (3.12).

Now, by (3.11 )

Set n = 2N + 2. Then in view of (3.14) )) ~I(n)1 111  ON and

This proves (3~3). 0

Annales de Henri Poincaré - Physique - théorique
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So far the operator under consideration was assumed to have the form
H = Ha in the entire space. Now we weaken this restriction and replace
77~ by an operator ~-l = ~-(a which obeys

ASSUMPTION 3.10. - The operator 7-( satisfies Assumption 1.1 with
0

D =B (4E) for some E &#x3E; 0.

Below by H = H03B1 we denote the operator from (1.3). We are going to
compare tr {~g (H)} and tr{~g (H) } for some x E Co (B (4E)). At
first we look at the resolvents of ~-l and H. In this analysis the crucial
role will be played by the following version of the resolvent identity. Let
x E Co (B (4E)). Then for any z, Im z ~ 0,

To prove (3.15) we use (1.3) and the fact that Co (B(4E)) C 
Recall that due to the boundedness of a the operator Ql is selfadjoint and
therefore one can rewrite Z as

LEMMA 3.11. - Let H satisfy Assumption 3.10 and x E Co (B (3E)) be
some , function. Then for any N &#x3E; d/2

The constant CN depends only on the function ~ and Ao.

Proof. - Define ~1 E Co (B(20E/6)) such that = 1,
~ x ~  19E’/6, so that xl x = x~ Denote ~ = 1 - xl. Due to the
obvious identity

the problem amounts to proving the bound (3.16) for the operators

Vol. 62, n° 4-1995.
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By (3.8), the estimate (3.16) is obviously satisfied for T2. Taking into
account the resolvent identity (3.15), we have

By definition supp ~x xl and supp x obey (3.7), so that the conditions
of Lemma 3.6 are fulfilled. Estimating the terms in the curly brackets by
means of (3.8), and the last factor by Im z |-1, we get (3.16). D

We apply this Lemma to the study (H):
THEOREM 3.12. - Let H satisfy Assumtion 3.10. Let g E n

COO, 1 (R). Ifx E then for any ~V &#x3E; 0

and

The constants CN and , C ~ f~.77~ and , (3.18) respectively depend only on
~a, constants Definition 2.7 and the function x.

Proof - Let A E R and o 0  ! T ~  1. Denote

Then (3.16) yields for any N &#x3E; d/2:

The representation (3.11) does not apply to the function g since it is
allowed to grow as A ~ 2014oo. Instead of g we use its modification. Since
the operators H, H are semi-bounded from below and g obeys ( 1.4), one can
find a function  E Co (R) such that  (7-l) = g (H),  (H) = g (H) and

with constants Cn independent of 7~, H. According to (3.11 )

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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Set n = 2N + 3 and choose N &#x3E; r + (d + 1)/2. In view of (3.21) and
(3.19), (3.20)

To estimate the integral (3.22) we present it in the form

According to (3.21 ) and (3.20)

Further, by virtue of (3.19) and (3.21)

Combining these bounds with (3.23), we obtain from here (3.17).
The estimate (3.18) follow from (3.17) and (3.12). D

4. ASYMPTOTICS IN THE NON-CRITICAL CASE

1. Here we obtain the asymptotics of the trace (~, /~; ’ljJ, g, a) as
h ~ 0 for an arbitrary function g E s, assuming that 0     1.
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Our result will follow from Proposition 2.6. To be able to apply the latter,
we shall have to impose on the potential V a "non-critical" condition (see
(4.2) below), so that the symbol

of the operator jH~ (h, satisfies Assumption 2.5. All the results to

be obtained will be uniform in  E (0, and in the functions

a, E Co (Rd) satisfying the bounds (1.6). Unless otherwise stated
the dependence on other parameters or functions is not controlled.

THEOREM 4.1.-Z~0~~o~ ~ E 

s E [0, 1].
o

Suppose that the operator H obeys Assumption 1.1 with D =B (4 E) and

Then

In particular, for g = gs the asymptotics (1.7) holds. The remainder estimate
in (4.3) is uniform in the functions a, Y and 03C8 satisfying the bounds (1.6),
(4. 2), but may depend on the function g and the numbers E, 

Indeed, in the particular case g = gs the asymptotics ( 1.7) follows from
(4.3) by integrating in ~. In Sect. 6 we shall get rid of the condition (4.2)
for this case.

Remark. - Theorem 4.1 remains true if we replace the condition (4.2) with

In fact, (4.2’) implies that either I + ~V (x) ~2 &#x3E; c/2 for all

x E B (2 .E) c/2. In the former case the desired result follows
from Theorem 4.1 with condition (4.2). In the latter case the trace Ms is
bounded uniformly in h by Theorem 3.12. The same is true for both terms
in the r.h.s. of (4.3). Therefore one can write down in the form (4.3).

2. First of all we establish the asymptotics of M (h, ; 03C8, g, a) for
the "true" Schrodinger operator ~ = Ha with the same a, V E Co 
as above. Due to the semiboundedness of H from below one may think

that the function g is compactly supported. Below f denotes a real-valued
C~0-function such that
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All the estimates will be uniform in the functions a, V and 03C8 satisfying
the bounds ( 1.6) and

As was pointed out in Sect. 1 the restriction (4.5) is superfluous as far
as the trace M ( h, a ) is concerned. In the context of the 03A8 DO
calculus, however, we need to impose this condition to be able to control
the symbol ~~ (~, ~ ; ct).

LEMMA 4.2. - E Ca (B (E/2)) and 0  ~c  1.

(1) (R), then

(2) Suppose that for some ’ ~, ~ ~ ~ I  C the condition

is satisfied. Then

(3) Let g 1 E £1 11 be a compactly supported function and let the
A E supp g. Then

For the proof we need, apart from Proposition 2.6, the following £ technical

LEMMA 4.3. - E Co (B (E/2)), ~ # E Ca (M) and let the ’ symbol
(2.9) and ’

Then for sufficiently big R = R (g)

The ; constant CN depends # , j 

Vøli- 62~ II: 0 
% 4~996~.



346 A. V. SOBOLEV

Throughout this section we shall be using the following convention: for
any two bounded operators A1 = A2 = A2 (h) we shall write

AZ if ~A1 - A2~1  eN hN for any N &#x3E; 0, uniformly in the other
parameters (if there are any).

Proof of Lemma 4.3. - Let E Co (~(3E/4)) be a function such
that (~r) = l, x E B (5 E/8), so that the functions ~ and ø = 1 - 
satisfy the condition (3.7). Let f E Co (R) be a function satisfying (4.4).
Then by (3.13)

In view of (3.12) it suffices to check that for large R

It is easy to see that the symbol k  (x, ç) (x, 03BE; a, V) defined by
(4.1 ) satisfies (2.6), so that the operator H is h-admissible. Therefore one
can use the representation (2.7):

where are given by (2.8). The bound (4.12) is obviously fulfilled for
the remainder ( h) . Let us prove that each term in the sum satisfies
(4.12) as well. According to (2.8), the estimate (4.12) amounts to proving
that the product of three operators with the symbols

obeys (4.12). Since the function f is compactly supported and the functions
a, V are bounded, we have

with a suitable constant C = C (a, V, Thus

supp 03C81 ~ supp f (k (.,.)) ~ {(x, ç) : |x| ~ 3 E/4, |03BE| ~ C}.

Therefore, choosing R in (4.10) large enough, one can guarantee that

supp 03C81 n supp ( . , . ) ) ~ supp (1 - 0) = 0.
Now the desired result follows from Lemma 2.2. D
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Let us establish a lower bound on k  which will guarantee the validity
of Assumption 2.5:

~, ~/ ~- ~1-~~~~) ~ ~ B~, ,

i a) 12
~ (1 - [! aY ~~) ~2 + ~ ~ - V (~)!]. (4.14)

Proof. - Let l~~ (~, ç) (a;, ~; a). Let us calculate:

|~x ky (x, ~)|2 2 &#x3E; (1 - ~)(~x a(x))2.

Thu s

! ~ A:.. f:c. ~) I2 + ! ~., (a;. ~ P

Since  ~ 0  1, for ~ = 0 the r.h.s. has the positive lower bound

~1 
_ 2 2

so that

la~~~(~~ ~&#x3E;IZ+la~~~(x, ~&#x3E;IZ &#x3E; 

Proof of Lemma 4.2. - Let us begin with proving (4.9). Without loss of
generality assume that g (03BB) and 03C8 (x) are real-valued. Let 03B8 be the symbol

’~f ~H) 9~h~ ~H) ^’ ~f ~H) ~9~h~ ~H)~
Vol. 62, n° 4-1995.
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Using the representation (4.13) and the formula (2.4) for the product of
Bl1 DO’s, one can show that

Here

and i91 E Co (R~ x Im 81 - 0, is a subprincipal symbol of the
operator 03C8f (H) 8, calculated by means of (2.4). Therefore

Note that all the Nh here are real-valued. Hence ~B H) _
O(h2-d). Further, by Lemma 4.4 and (4.7) the symbol k  satisfies.
Assumption 2.5. Thus the conditions of Proposition 2.6 are fulfilled. It
follows immediately from (2.19) that the first summand in the r.h.s. of
(4.15) has the asymptotics

Direct calculation shows that for sufficiently big R

Making the change ç - a (x) -~ we obtain (4.9).
Analogously, (4.6) and (4.8) follow from (2.17) and (2.18)

respectively. 0

3. Let now the operator H be as in Theorem 4.1. Without loss of
generality we assume that in addition to (1.6) the field a obeys (4.5). To
pass from Lemma 4.2 to Theorem 4.1 we have to compare propagators of
H and ’H. We denote them by U (t ; H) and U (t ; ~-l) respectively.
LEMMA 4.5. - Let 7-L be as in Theorem 4..1 and (4.5) be fulfille.d. Then

there exists a number To &#x3E; 0 such that for |t| I  To

The constant WN is uniform in 03C8, a, V satisfying the bounds (1.6), (4.5).

~~ ~.~ ; :I~) a:~ ~a ; ~il,’~ . start
with .an approximation the ~~~ ~t ; ~~. Since the symbol
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(x, 03BE; a) is smooth, we can use the approach described in Sect. 2. Let 03B8
be the symbol from Lemma 4.3. Let Gh (t) denote the with the kernel

(2.10) for some fixed N E N. By Proposition 2.4 one can find a number
To &#x3E; 0 and the smooth functions ,~ and vn in (2.10) in such a way that

Since Gh (t) acts into Coo (B (3 E)) we have in view of (1.3):

Using this fact and the estimate (4.17) we are going to verify that the

operator Gh (t) is a good approximation for both Uh (t ; ~-l) and II~ (t ; H):

Here Uh (t) denotes any of the two propagators Uh (t ; H) or Uh (t ; 7~).
For brevity we shall prove (4.19) for Uh (t) = Uh (t ; ?-l) only. Denote

Recall that by (2.11) Gh (0) = ~. Since the propagator !7~ (t ; ?-l) satisfies
the equation

the difference Uh (t) - Gh (t) = Eh (t) will satisfy

Integrating this equation we get

so that

The last term obeys (4.19) by Lemma 2.2 since in view of (2.12) the

supports of B and 1 - cp are disjoint. To estimate Mh (t) we take into
account the equality (4.18) and the estimate (4.17), so that

In combination with the bound (2.3) for e this completes the proof of (4.19).
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Step 2. Proof of (4.16). - We present the operator in the l.h. s. of (4.16)
in the form

Thus its trace norm does not exceed

The desired bounds for the first and the second terms follow from
Lemma 4.3 and the bound (4.19) respectively. D

Our next step is to prove the following analogue of Lemma 4.2 for the
operator 7-f satisfying Assumption 1.1.

LEMMA 4.6. - Let H be as in Theorem 4.1 and E Co (B (E/2)).
(1) E Co (R) then

(2) Let for some ~, IÀI ~ C the condition (4.7) be fulfilled. Theng E
Co (R)

(3) Let g , E L1 (R) be a compactly supportedfunction. Suppose that the
condition (4.7) is fulfilled for all À E supp g. Then

Proof. - Without loss of generality we assume that a satisfies (4.5). Then
the relation (4.20) follows immediately from (3.17) and (4.6).

Let us prove (4.21 ) and (4.22). By (3.17)
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Furthermore, by Lemma 4.5 and definitions (2.13), (2.14) and (2.15)

It remains to apply (4.8) and (4.9). 0

4. Now we are able to prove Theorem 4.1. We shall derive it from

Lemma 4.6 with the help of the Tauberian argument (Proposition 2.8).

Step 1. - Assume that g is compactly supported, E Co ’ 9. At
first we shall prove (4.3) under the condition that (4.7) is fulfilled for all
A E suppg. Note that this automatically implies that (4.7) is fulfilled for all
A E D (b) _ { .~ : dist { supp g, A }!)} with sufficiently small 6 &#x3E; 0.

Let E Co (Rd) be a function such that = Set B = f (7-l)
and A = ~. According to (3.18) ~ B* B ~ ~ 1  Ch-d and by (4.7) the bound
(2.20) holds with Z (h) = h-d. Therefore by (2.21)

By cyclicity of trace this means that

Now (4.22) provides (4.3).

Step 2. - We still assume that g E C~,s0. However instead of (4.7) the
condition (4.2) is assumed to be satisfied. Let us break up the function g
into two where g’ E Co (R), g" E (R) and
supp g" E [-c, c]. The formula (4.3) for g’ follows directly from (4.20).
For sufficiently small c the lower bound (4.2) guarantees the validity of
the condition (4.7) for all A E suppg". Consequently, according to Step 1,
(4.3) holds for g". Adding up the answers for g’ and g", we arrive at
(4.3) for g.

Step 3. - Now we can prove (4.3) for any g E (R). We present
g + ~ where g’ E Coo (R) n (R) and g" E 

Referring to the semiboundedness of H, we may assume that g’ (H) = 0.
Thus according to (3.17)
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Therefore

Now the desired result follows from Step 2. Theorem 4.1 is proven.

5. MULTISCALE ANALYSIS

So far we have been interested in the asymptotics of M (~, a)
uniform in the functions ’l/J, a, V satisfying the bounds (1.6) and (4.2) (see
Theorem 4.1 ). In this section we describe an elementary approach due to
V. Ivrii (see [7]-[9] and also [3], [6]), which provides an explicit control of
the remainder in the asymptotics in question under more general conditions
on ’l/J, a, V in the case g = gs, s E [0, Ij.

1. We are going to study the following problem. Let D E IRd
be an open set. Suppose that one is given two real-valued functions
f E C (D), l E C1 (D) such that

Our objective is the asymptotics of for an operator 1{, satisfying
Assumption 1.1 with the domain D and some functions E

Co E Co (P) which obey the bounds

One can think of f (x) 2 as a measure of the size of V (x), while l (x)
characterizes the behaviour of V (x), a (x) and 03C8 (x) under differentiation.
Emphasize that we do not assume any uniformity of f (x), l (x) for x E D
in the parameters ~, so the conditions (5.3) are definitely more general
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than (1.6). The aim is to obtain an asymptotics of with an explicit
dependence of the remainder on the functions f ( x ) and l ( x ) . To that end
we shall use extensively the following scaling properties of the operator
~ a and the trace ( h, ~ , a ) . Let be some positive numbers
and let z E Let the unitary dilation operator L~h and the translation
operator ~’z be defined by -

Denote

Define also two auxiliary parameters which will play the role of the Planck
constant and the size of the magnetic field after the scaling:

It is clear that the operator

satisfies Assumption 1.1 with the set E -~- z E D ~ and
the operator 1/), a = { a, V }. Therefore it is natural to denote the
operator (5.6) by By the unitary equivalence of trace,

Note that in the case D =B (z, l ) the set D is simply B (1).
It is important that the precise form of the leading term of the asymptotics

of is irrelevant to our method. We assume instead that the leading term
is given by some functional Bs (h, ; 03C8) = Bs ( h, ’l/J, a ) which obeys
the same properties as Ms (h, ’l/J, a). First of all, it is additive:

Secondly, as in (5.7),

It is easy to check that these conditions are fulfilled for the Weyl coefficient
defined in (1.4).

4-1995. 
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2. Reference problem. Our starting point is the asymptotics of

ø, b) W ~ and a function ø satisfying the
0

conditions (5.3) with f = l = 1 for D =B (8) (in other words, for b, H~, ~
obeying ( 1.6) with E = 2). Then, by the use of an appropriate partition of
unity (associated with the function l (x) ) in combination with scaling and
translation transformations we obtain an asymptotics for ( h, ’ljJ, a)
under conditions (5.3). Our result will have a conditional nature: we shall
deduce the asymptotics in general case, making certain assumptions on the
reference problem. First of all, we assume that

with the functional 938 introduced above and a remainder r = r (/~, ~z) &#x3E; 0.

The function r is supposed to be uniform in W, b, ~ satisfying ( 1.6), in
the sense that it depends only on the constants in ( 1.6). This assumption
is crucial for the approach.
We need also a sort of a non-critical condition, generalizing (4.2’).

Precisely, let F = F (t, x), t E E be a real-valued function

such that

Then we assume that

with some 03BA ~ 0.

Let us sum up the hypotheses on the reference operator 

ASSUMPTION 5.1. - If the operator obeys Assumption 1.1 with
0

D =B (8), and h E (o, hoJ, 0 :::;  :::; 0 h-s for some fixed
ho &#x3E; 0, 0 ~ 0, ç ~ 0, then under the condition (5.12) the estimate
(5.10) holds with a functional Bs ( h, 03C6, b), which obeys (5. 8), (5. 9), and
some locally bounded function r ( h, &#x3E; 0, which is uniform in W, b, ~
satisfying (1.6).

Note that by Theorem 4.1 this assumption is fulfilled for any ho &#x3E; 0,
 1, r~ &#x3E; o and s = 0, F (t, x) - t + I x 12, 23 8 = r (h~ -

C h s+ 1- d, C = C (h0, ",).
3. To apply the reference problem to that formulated in subsection 1 we

have to impose the following supplementary restrictions on the functions
f (x), l (x), V (x). We suppose that
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with the parameters ho &#x3E; 0, 0,~ ~ 0 introduced in Assumption 5.1.
Furthermore, for some cv &#x3E; 0

with the same number", as in (5.12). We also need the following condition
on supp ’ljJ: 

.

where the union is taken over those x E P, for which B (x, L (~)) n
supp 03C8 ~ 0.

For any set we denote

where the function r is defined in Assumption 5.1. This integral makes
sense since L (x) is positive in 15.

We shall need the following notion:

DEFINITION. - A measurable function f . ---+ C, m ~ 1, is
said to be of moderate variation if for a. a. x, x’ E. Rm the condition

C-11 :::; x 1/1 x’| I :::; Cl implies CZ 1 :::; f (x) 1/1 f (x’)| I :::; C2 with

C2 = C2 (Cl). 
_

Now we can state the main result of this section:

THEOREM 5.2. - Let the functions l (x), f (~) satisfy (5.1), (5.2) with
e  1/8 and Assumption 5.1 befulfilledforany W, b, ø satisfying (1.6)for
E = 2, with some functions r, F of moderate variation. Let the operator
Ha obey Assumption 1.1 for an open set D with the functions V, a and 03C8
satisfying the conditions (5.3), (5.13)-(5.15) with a sufficiently big w &#x3E; 0.
Then

where the constant C is uniform in the functions al, V, f, l, satisfying
(5.1 )-(5.3) and (S.13)-(S. I S)..
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4. Particular case. We start the proof of Theorem 5.2 with the following
particular case. Let the operator ~a satisfy Assumption 1.1 for the ball
0

B (z, 8l) with some z E ~8d, l &#x3E; 0. Suppose also that the conditions

(5.3), (5.13), (5.14) are fulfilled with ~ E Co (B (z, 1)), 1 (~) = 1, f (x) _
f &#x3E; 0, úJ = 1. Let the parameters a, v and the functions a, V~ be defined

0

by (5.5), (5.4). Obviously, these functions satisfy ( 1.6) for all x E B (8)
with the constants from (5.3).

LEMMA 5.3. - Let the operator Ha be as abave and Assumption 5.1 be
fulfilled. Let 03C8 E 1)). Then

The function r depends only on the constants Cr,.L in (5.3).

Proof. - Due to the condition (5.13) we have 0: :::; ho, 1/ :::; o:-ç. As
noted above, the functions W = V, b = â, 4&#x3E; = ;j; obey the conditions

0

( 1.6) in the ball B (8) . Furthermore, by (5.14) and (5.11 ),

Thus, by Assumption 5.1,

which gives the desired result by (5.5), (5.7) and (5.9). 0

5. Proof o~’ Theorem 5 .2 . - To apply Lemma 5.3, we need to introduce
a partition of unity assaciated with the function l (x) . Due to (5.1 ) we can
look at l = l (x) as a function which defines a slowly varying metric in D
(see [5, Sect. 1.4] for definition), which gives rise first to a covering af D
and then to a subordinate partition of unity.

LEMMA 5.4. - Let l (x) satisfy (5.1) with a constant o  1. Then

( 1 ) There exists a sequence x~ E D 1 I~ = 1, 2, ... such that the open
0 0

balls B l (xk)) form a covering of D, i.e. D C Uk B l (xk)).
There exists a number N = Ne, depending on the constant o in (5.1 ) only,
such that intersection of more than N balls is empty.
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(2) One can choose a sequence 03C8k E Co (B (xk, l (xk))), &#x26; == 1, 2, ...

such that

(x) = 1, ~ E D.
k

The constants (5.19) depend only on o.

This Lemma can be proven analogously to [5, Theorem 1.4.10].

Proof of Theorem 5.2. - Let { } be a partition of unity subordinate
to the function L (~r) constructed in Lemma 5.4. Denote Bk = B (~)).
Then

The second equality follows from (5.8). We can think that the index k
in (5.20) runs over the set S 6 N such that supp 03C8 n 0. We are
going to prove that

(See (5.16) for definition of R ( . ) ) . Here the constant C does not depend
on ~, l~. We claim that (5.21 ) leads to (5.17). Indeed, by (5.15) we have
B~ C D, E S and, in addition, the intersection of more than Ne (the
number from Lemma 5.4) balls B~ is empty, so that we arrive at the bound

Now, adding up (5.21) for different k E S and taking into account (5.20),
we get (5.17).
Thus it remains to establish (5.21). Denote for brevity lk = 

fx = f (~x). Notice first of all that by (5.1), (5.2) and (5.15)

with some constants c, C independent of l~. Since o  1/8, the
conditions (5.3), (5.19) imply that a, V obey the estimates (5.3)
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with f = = Since F is a function of moderate variation, (5.14)
implies in view of (5.22) that

Thus for sufficiently big W the conditions of Lemma 5.3 are fulfilled for
L = lk, f = f~ and therefore one can apply the estimate (5.18). Hence the
l.h.s. of (5.21) is bounded by

For r is of moderate variation, one can estimate the r.h. s. by

This provides (5.21). As was mentioned above, (5.21) leads to (5.17). 0

6. PROOF OF THEOREM 1.2

In this short section we complete the proof of Theorem 1.2. Below we
assume that the conditions of this Theorem are fulfilled. As we noted in

Sect. 4, the asymptotics (4.3) for g = gs provides ( 1.7). Thus it remains
to get rid of the condition (4.2). We do it in two steps, using a sort of a
bootstrap argument: first, by means of Theorem 5.2 we prove Theorem 1.2

 1 and then, relying on this result, complete the proof in
the general case.

Step 1. Proof of Theorem 7.2~br ~ ~  1. - By virtue of Theorem 4.1
Assumption 5.1 is fulfilled for any ho &#x3E; 0,  l, r~ &#x3E; 0 and s = 0,

The functions F, r are of moderate variation and F obeys (5.11). The
validity of (5.8) and (5.9) follows immediately from ( 1.4).
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. 
0

We shall use Theorem 5.2 with D =B (4 E). Define

Obviously, f, L E C°° (B (4 E)) and the conditions (5.1), (5.2) are

fulfilled for ~4 ~ 1 big enough. The estimates (5.3) for V, a, ’ljJ are trivial
consequences of (1.6) and definition of l. Furthermore, the bounds (5.13)
are obviously satisfied with A~, s = 0. The inclusion (5.15) holds for
sufficiently big A, since supp’ljJ C B (E/2).

Let us check that the condition (5.14) is also fulfilled. For f (x) = l (x),
it takes the form

By definition of l this holds for A2 03BA-1.

Thus, conditions of Theorem 5.2 are satisfied. Therefore the estimate

(5.17) holds. For f (x) = L (~),

This yields ( 1.7).

Step 2. Completion of the proof. - According to Step 1 Assumption 5.1
is fulfilled for any ho &#x3E;  1, the functions aes and r defined by (6.1 )
and F = 0, ~ = 0, s = 0. Suppose that ~ ~ for some  1. We apply
Theorem 5.2 with D as above and f (x) = 1, l (x) = 3 (8 Then
the conditions (5.3), (5.13), (5.15) are trivially fulfilled. By Theorem 5.2
the estimate (5.17) holds with an error bounded bv

In combination with Step 1 this yields Theorem 1.2.
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