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ABSTRACT. - We consider a natural approximation scheme for piecewise
expanding, piecewise C1+Lipschitz, mixing Markov interval maps f by
piecewise affine maps. We prove that the densities of the absolutely
continuous invariant probability measures of the approximations converge
exponentially fast to the density of the absolutely continuous invariant
probability measure of f in the uniform norm. To do this we compare the
relevant transfer operators of the approximations with that of f , and use
recently developed perturbation techniques.

Nous considerons un algorithme naturel d’ approximation par
des transformations affines par morceaux d’ applications de l’intervalle f
dilatantes et C1+Lipschitz par morceaux, melangeantes et markoviennes.
Nous montrons que les densites des mesures de probabilite invariantes
absolument continues des approximations convergent uniformement vers la
densite de la mesure de probabilite invariante absolument continue de f ,
avec une vitesse exponentielle. Nous utilisons pour cela des techniques
perturbatives recemment introduites qui nous permettent de comparer les
operateurs de transfert des approximations avec celui de f .
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1. INTRODUCTION

A transformation f of [0, 1] ] is called Markov if there exist disjoint
open intervals 7i,...,~, the union of whose closures is [0, 1 ], such
that f restricted to each 7~ is monotone and continuous, and such that
the closure of each is the closure of a union of intervals 
When this property holds, one may study the dynamical system generated
by the iteration of f using symbolic dynamics and transfer operators
which are the same as those in equilibrium statistical mechanics [13].
However, the statistical properties of the dynamical orbits of f can
only be fully described in terms of Markov chains if the restriction
of the Markov map f to each interval 7~ is affine. Indeed, in this

case, the associated transfer operator (see below) has a finite matrix

representation. Thus, given a (non-linear) Markov transformation f , which
we will assume to be topologically mixing, we are faced with the

problem of approximating it with a sequence of piecewise affine Markov
maps.

We show that the above problem can be solved constructively. More
precisely, we obtain a sequence of finite Markov stochastic matrices whose
normalised eigenvectors to the eigenvalue one approach the stationary
probability density of f exponentially fast in the uniform norm. Our
main technical tool is a non-standard perturbative argument, first used
in [3] to deal with stochastic perturbations. The problem of finding the
invariant probability measure by discretization of the transfer operator
was first raised by Ulam [ 17] and has been studied by many authors. In
particular, Gora and Boyarski [6] considered more general approximation
schemes than ours, and did not need any Markov assumption. However,
they only obtained the L 1 convergence of the invariant densities, and no
estimate on the speed of this convergence (we believe that the methods
from [3] used in the present article would yield another proof of the L1
convergence of the invariant densities obtained by [6, p. 865] for piecewise
affine, Markov approximations of topologically mixing piecewise monotone
interval maps which are not necessarily Markov). See [ 11 ], [9, p. 328] for
other approximation schemes, also with results in an L1 framework, and
[ 16] for some numerical results. See also [ 14], and references therein, for
related results.

This work was made possible by a visit of the first two named authors to
the Universite de Bourgogne and we are grateful for the warm hospitality
enjoyed in the Laboratoire de Topologie.
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2. MARKOV TRANSFORMATIONS OF [0, 1]
AND THEIR PIECEWISE AFFINE APPROXIMATIONS

Our assumption on the transformation f : [0, 1] --+ [0, 1] is that there

exist points 0 = ao  a 1  ...  a.~ = 1 such that

1) for each i = 1,..., l the restriction/, = ai[ 
is monotone, C1 and

C1-extends to with a Lipschitz derivative this extension

coincides with f at least at one of the endpoints ai-1 or a2 ;

2) there is a number p &#x3E; 1 such that p, i = 1,..., ~;

3) for any 1 ~ i, j  .~, if 0, then

4) there exists 1 such that is onto on each branch of

monotonicity (this is equivalent to a topological mixing assumption).
We set :== (?/)!} (with the

obvious modification for ao, a~).
It is well known that under the above conditions there is a unique

absolutely continuous invariant probability measure (a.c.i.p.m.) whose

density h is the unique normalised positive eigenfunction with eigenvalue
one of a transfer operator ,C defined on measurable functions ~ by

Several interesting properties of the dynamical system generated by f are
intimately related to 03C3 (,C), the spectrum of  (see e.g. [4]). However, the
latter depends crucially on the Banach space considered. If one is interested
in the unique a.c.i.p.m., one can let £ act on the "large" function space L1

(Lebesgue). Then, the spectral radius of  is equal to 1, which is the only
element of the spectrum of  on the unit circle and is a simple eigenvalue
with a positive normalised eigenfunction h mentioned above, finally each
z C C with |z|  1 is an eigenvalue of £ with infinite multiplicity [ 10] .

Recall that given a Banach space of functions on the interval (B, ~) II)
such that our transfer operator ,C : 8 -+ 8 is bounded, we may define the
essential spectral radius, ress (,C) (B), by:

Vol. 62, n ° 3-1995.
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We define the discrete spectrum of G acting on B to be the set of points
z in 03C3 (/;) with |z| &#x3E; Tess (/;) (B). If ja E 13, ress (£,) (S)  1, and if 1 is
the only eigenvalue of modulus 1, then, setting

for any ø E B and any 6; &#x3E; 0, the spectral decomposition yields that

In other words, T determines the rate of convergence to equilibrium, also
called rate of mixing.
We shall consider ,C acting on the space of function of bounded variation

Recall that the total variation of ø : [0, 1] -7 R on an interval
[a, 6] is

Let then BV :== {Ø : [0, 1] -+ R :  00} and

The spectrum of ,C in this setting has been studied by several authors ([ 18],
[7], [14], [ 10], [2]): the spectral radius is equal to one, ,C has 1 as an

eigenvalue (and no other eigenvalues on the unit circle), and its essential
spectral radius ress (,C) is

We now construct a sequence {fn} of piecewise affine approximations to
f . For any 7~ &#x3E; 1 let ,A~ be the (mod 0) partition of [0, 1] whose elements
are the intervals of the form Ii0 n f-l (7,J n ... n where

7j =] a~ _ 1, a~[ (x.~., the iterate f n is monotone on each I E ,~4.~ ) . Let 
be the partition (in the strict sense) of [0, 1 ] obtained by adding one or two
endpoints to atoms of ,A.n, in such a way that is continuous for each

(there might be several ways of doing this).

Annales de l’Institut Henri Poincaré - Physique theorique



255TRANSFER OPERATOR FOR PIECEWISE AFFINE APPROXIMATIONS

DEFINITION. - The n-th piecewise ’ affine ’ approximation of f is the

transformation f n of [0, 1] such that for any I E An the ’ restriction 
affine, ’ and ’ for any extremal point x of 1 E 

Again, we set |f’n (x) ( :== min{limyy~x |f’n (y)|, limy~x fn (y)|} if x is an
endpoint of I E An, with the obvious modification for ao, at. /

The transfer operator associated ’ to f n is

The results mentioned above apply, in particular 1 is a simple eigenvalue
of ,Cn acting on BV, with normalised positive eigenfunction hn equal to
the density of the unique a.c.i.p.m., and (2.3) yields a value 8~ for the
essential spectral radius.
We now want to characterize the discrete spectrum and the corresponding

eigenfunctions of BV ~ BV. Let 0394n be the closed n-invariant
subspace of BV defined by

Then, for any n &#x3E; 1, we may consider the restricted operator and

the coinduced operator ,Cn~ , acting on the quotient space rn = 
We have the decomposition [5] 7 (n) C (7 ~ 03C3 (0393nn). Moreover,
it is easy to check that in the natural basis for On, the restriction 
is given by the .~n matrix defined by:

By the mixing assumption, the matrix is irreducible and aperiodic, so
that 03C3 (M(n)) = {1}~03C3n, where 03C3n is strictly contained in the unit disc. On
the other hand, the norm induced by (2.2) on iB, is ~ ~ ~ ~ ( r~ _ ~ ~ ~ - Qn ~ ~ ~ ,
where Qn : BV 2014~ 0~ is given by

so that the spectral radius of /~ : BV 2014~ BY is easily seen to be  8n
and thus == 8n (see e.g. [1]). Putting together these observations we have:

Vol. 62, n° 3-1995.
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LEMMA 2.1.

In particular, the normalised fixed function hn of ,Cn is in On, and is a
fixed vector of the matrix 
We are now in a position to state our main result.

THEOREM. - Let f be a piecewise monotone interval map satisfying
assumptions ( 1 )-(4) from the beginning of this section, let h be the density
of its unique a.c.i.p.m. and T its rate of mixing. Let ,Cn be the transfer
operators of the n-th piecewise affine approximation off

Then there is a constant Cl &#x3E; 0 and for each ç-2 &#x3E; T a constant C2 &#x3E; 0

such that for each n &#x3E; 1 the normalised eigenfunction hn E On for the
simple eigenvalue 1 of ,Cn satisfies

Moreover, the spectrum U ~n with rate of mixing
Tn == E E~}  1 and ress (,C), the rates Tn converge to the
rate of mixing off, i.e., lim Tn = T.

Remark. - We only prove convergence of the maximal eigenvector. This
is related to the fact that the nature of our approximations forces the use
of balanced norms (see below). It would be interesting to know whether
a different approach would yields results on eigenvectors corresponding to
other elements of the discrete spectrum. Note also that we do not know
whether the obtained exponential rate of convergence (TI/3) is optimal.
The proof of our theorem uses two lemmas. Lemma 2.2 is the analogue

of the "dynamical" Lemma 9 in [3] and Lemma 2.3 corresponds to the
"abstract functional lemmas" in [3]. The Markov situation considered here
yields a simplification and a strenghtening of the results, because there are
no "bad" intervals of monotonicity (in the terminology of [3]).
We first make some preliminary remarks. For each 6’ &#x3E; ~ there exists

1 so that for all 7~ ~ 1~ &#x3E; 1~1 and all 

Annales de l’Institut Henri Poincaré - Physique theorique
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and also (see [2, Lemma 2.3])

(We may assume that l~l is a multiple of A;o: this will be convenient below.)
Observe also that for any () &#x3E; ~ there exists a constant C such that for all
1~ &#x3E; 1 the maximum length of the intervals in is not larger than

It will be necessary to make use of balanced norms in BV: for 0  ’1 ~ 1
define

LEMMA 2.2. - Let 9  ç2  1. Then there ’ exists C3 &#x3E; 0 such that for
(3/2) ~ &#x3E; ~ ~ l~l

Proof of Lemma 2.2. - Fix 6’ with ?  6’  ç-2.
We start by preliminary computations useful to control the supremum

part of the norm. For n &#x3E; k &#x3E; we denote by and (~n, 
the collection of the inverse branches of all the restrictions to the atoms of

of fk and fn respectively. Since n ~ k, we have for 03C6 E BV:

where the characteristic functions x f~ ~I~ = x fn (1) are the same in both
sums by the definition of Therefore

3-1995.



258 V. BALADI, S. ISOLA AND B. SCHMITT

A straightforward calculation using (2.6) yields

The second term can be estimated as follows. Let K &#x3E; 0 be such

that 1 (~r)  K for all k &#x3E; 1 (such a constant K exists because

1 dx, + Gk 1 = 111, and (2.1) implies that

~ and let C &#x3E; 0 be the constant from (2.8).
Then we will prove that there is a constant C such that for all n &#x3E; k; :

To obtain (2.11 ) we will use the following distorsion inequality: if / is

piecewise C1+Lipschitz and expanding (in particular, is piecewise
Lipschitz), there is a constant C &#x3E; 0 so that for each interval J of

monotonicity of / and all 

To apply this inequality, we first observe ~ that for all n &#x3E; l~ &#x3E; 1, and 0

all ’ the mean value ~ theorem (and 0 the remark that

( I ) = f n ( I ) for all 0  m  ~), yields

where each ~2, m is in l. We now combine the distorsion inequality
with a second application of the mean value theorem and obtain points

Annales de l’Institut Henri Poincaré - Physique theorique
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= (~2 ) E I, and a constant C &#x3E; 0 with

Since f ~ and f ~ (~3) are in the same atom of we may apply
(2.8). It then suffices to exchange numerator and denominator to get the
other inequality required for (2.11). (On distorsion inequalities, see e.g.
[12, 1.2, V.2].)

Therefore, using 6’  ç-2, there is D 1 &#x3E; 0 so that for all n ~ (3/2)k ~
l~l and ~ E BV

To estimate the variation, we write

and bound each term of the right-hand-side separately. We consider first jC~
for k = where k1 is a multiple of We may assume that 2 03B8k1 1  çkl 1
(otherwise take 1~1 to be a larger multiple of Using the fact that for
each I E the branch can be extended to a surjective function
on the closure of 1 (and the inverse branches accordingly), we find for
each I E 

Vol. 62, n ° 3-1995.
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where ,Q &#x3E; 0 is the minimum length of the atoms of Hence taking
the sum over the atoms of Akl we find

Finally, applying recursively the above inequality (and using ~ I£n 4&#x3E;1 dx =

|03C6| dx) we find a constant Dz &#x3E; 0 so that for all n ~ k = m. kl + p &#x3E;

The estimate for /~ is exactly the same:

Putting together these estimates and using / we find a

constant D3 &#x3E; 0 such that for all ??, ~ ~ ~ kl

Annales de l’Institut Henri Poincaré - Physique theorique
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From (2.12) and (2.13) and using again 6’  ç-2, we obtain C3 &#x3E; 0 so that

for all n ~ (3/2)k ~ k ~ kl

We decompose the spectrum of ,C on BV into (7 (,C) == ~o U ~l
where ~o = {1}, with the corresponding decomposition into generalised
eigenspaces BV = Xo EÐ Xl = ~ h ® Xl, and projections Xo,

LEMMA 2.3. - Consider the operators ,Cn acting on BV and ’ "  ç-2  1.

For ’ ’ that T/~’  ç-  ç-’  1, there ’ exist C4 &#x3E; 0 and ~2 &#x3E; 1 so

that for (3/2) ~ ~ 1~ &#x3E; 1~2 :

1) The spectrum a decomposes into

with

2) Let 7r~ : ~fy 0 Xf ---+ ~fy be the projection associated with this spectral
decomposition, then for &#x3E; ç-/ç-’

(In particular, Eo = {1} and ’ 1 is a ’ simple eigenvalue ’ ’

Proof of Lemma 2.3 (We essentially follow [3]). - 1) Let T’ and 03BE’0
be " such that

Let 1~2 2: 1~1 be a fixed multiple of large enough for various purposes.
In particular, we require that for k &#x3E; k2

For n 2:: (3/2) k 2:: k &#x3E; l~2 we will show that ~ ~ 7 for A with

ç-’  1;B1  Ç-b by proving that the resolvent R (£~, ~k) _ (Gn - ~k 
is a bounded operator on If the resolvent exists, it can be

written as:

Vol. 62, n ° 3-1995.
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By Lemma 2.2, it is enough to show that  Since

~~) Xi = Xi for i = 0, 1, we have for ~ E X, 114&#x3E;llçk = 1

Since = ~ / ~ (x) dx, there exists a constant Ao &#x3E; 0 with

Therefore and areuniformlybounded (because
~ !!7ro~!! ~ ~!!7ro~!!~ ~ A~ Ao ~~~~~~  where

we have used that all norms on Xo are equivalent). It thus suffices to bound

There exists a constant A1 &#x3E; 0 that for E Xo

For ~ E X1, we have

from which it follows that there is a constant A2 &#x3E; 0 with

Therefore, there is a constant A3 &#x3E; 0 so that for all large enough 1~

2) Note that 1f0 can be viewed as the projection associated with

(G~, (Eo)~) for any k, and similarly for We will again consider a
fixed k &#x3E; k2 and n &#x3E; (3/2) k. We write Bb for the circle of radius b
centered at 0 in C. Let 03BE’0 be as in part (1) and let y = Bk U Brk0 for

some ç-’  ç  ~o, with ç-  ~7 (~y2~~ (using r~ (~~)2~~ &#x3E; ç’) and ro &#x3E; 1.

Then by ( 1 ), Eo and are contained in the annular region bounded
by y, and we have

Annales de Henri Poincaré - Physique théorique l
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Therefore

Using (2.14) we have

= and for a E B~~
[by (2.15)], we obtain A4 &#x3E; 0 such that

For IV, we use ~(B~) = 27rr~ to get ~5 &#x3E; 0 so that

The assertion in parenthesis follows from classical perturbation results, see
e.g. [8].

Q.E.D.

Proof of the Theorem. - Let T/~’  ç-  ç-’  1. First we show that for

n &#x3E; (3/2) l~ &#x3E; 1~ &#x3E; ~2 the space X o from Lemma 2. 3 is the graph of some
linear Sn : X o 2014~ X 1 : Let ø E since

it follows from Lemma 2.3 (2) that ~03C01 03C6~03BEk~03C0003C6~03BEk. In particular if
4&#x3E;, 4&#x3E;’ E Xo and 7ro 4&#x3E; == 7ro 4&#x3E;’, then 7r1 4&#x3E; == 7r14&#x3E;’ and thus 4&#x3E; == 4&#x3E;’.
We now estimate ~!!~. Since dim Xo = 1, and ~ô = {1}, there exists

4&#x3E;0 = ~o (n, Xo~ ~~~o~~~k = 1, such that

3-1995.
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For 03BE2 &#x3E; 7" &#x3E; 7 and large enough &#x26;, Lemma 2.2 thus yields

Therefore, there exist 1~3 &#x3E; 1~2 and a constant B &#x3E; 0 so that for all

In particular, writing [?/] for the integer part of y, for (3/2) k3

We need a bound on For ~ (3/2) k;;~ and ~ E X~ we have, using
the constant A’ from the proof of Lemma 2.3 ( 1 ),

By definition

Now (ja (~;) + Sn (h) (x)) dx - 1 ~ which tends to zero

oo by (2.18). Therefore (2.17) implies that for n &#x3E; (3/2) k3 :

Annales de l’Institut Henri Poincaré - Physique theorique
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which proves the existence of Cl . We now bound ~hn - h~~ using again

which proves the existence of C2.
The statement on the convergence of Tn follows from the property of the

convergence of the discrete spectrum in [ 1 ], Corollary to the main theorem.
Q.E.D.
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