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ABSTRACT. - Using techniques of quantum stochastic calculus, a family
of representations of the extended canonical commutation relations is
constructed over a space of maps from the positive half-line into the
Hilbert-Schmidt operators on a complex Hilbert space.

A l’aide des techniques du calcul stochastique quantique, nous
construisons une famille de representations des relations de commutation
canoniques etendues, sur un espace d’ applications depuis la demi-droite
positive dans l’espace des operateurs de Hilbert-Schmidt d’un espace de
Hilbert complexe.

1. INTRODUCTION

Let r - (h) denote fermion Fock space over a complex Hilbert space
h and let dT (T) be the differential second quantisation in r - (h,) of
T E B (h). It is well known (see e.g. [Tha]) that when T is trace class,
we have the following (basis independent) representation for 
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2 D. APPLEBAUM

where (ei, i E N) is a maximal orthonormal set in h, and a ( f ) (respectively
at ( f )) is the fermion annihilation (creation) operator with test function
f E h.
Now let h = L2 (R). Physicists like to introduce the formal annihilation

and creation operators {a (x), x, E and { at (y), y E which satisfy
the improper canonical anticommutation relations (CAR’s)

where { A, B } = AB + BA denotes the anticommutator.
Of course we cannot make rigorous sense of these relations as they

stand, (a (~r) can be densely defined but at (x) has domain { 0 }) however
we note that the bona fide annihilation and creation operators are formally
obtained by "smearing":

Now suppose that T is a Hilbert-Schmidt operator on L2 (R) so that T
is an integral operator with square-integrable kernel k : R x R -3 C.
We can then formally write

( 1.4) can be made rigorous in a weak sense, using distributions [CaRu].
In this paper we propose a generalisation of ( 1.1 ) and ( 1.4). We work

in h = L2 (R+, S)) where S) is a complex Hilbert space and aim to give
meaning to "dY (Y)" where Y == (Y (t), t E R+) is a suitable family of
linear operators in ~).

Our main tools will be provided by quantum stochastic calculus

([HuPa 1], [Par]). This enables us to make rigorous sense of more general
integrals than ( 1.3) as quantum stochastic integrals wherein f and 1 are
replaced by suitable operator-valued stochastic processes and a (x) d~
(respectively at (x) dx) are replaced by the "stochastic differentials"

(dAt (x) ), using techniques obtained by generalising the Ito

stochastic calculus for functions of Brownian motion to a non-commutative

framework.

In fact the theory also allows the construction of stochastic integrals
with respect to the conservation differential dl~ (x) which acts formally like
dr (b (x) ) ( 8 (x) ) = at (x)a We then find that we can make rigorous
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3ON THE SECOND QUANTISATION OF HILBERT-SCHMIDT PROCESSES

sense of dTt (Y), for each t E R+ as the quantum stochastic integral

where i, j E N) is an appropriate family of conservation processes.
Note that as quantum stochastic integrals are defined in an ~2-sense, we
find that we must require each Y ( s ) to be Hilbert-Schmidt rather than trace-
class. We also define df t (Y) oh boson Fock space in the first instance

and associate it in a natural way to a representation of the CCR’s which
we construct by quantum stochastic integration over a suitable space of
Hilbert-Schmidt valued processes. The equivalent fermionic operators are
then obtained using the unification procedure of [PaSi] and [HuPa 2].
The organisation of this paper is as follows. We introduce appropriate

spaces and algebras of Hilbert-Schmidt processes in Section 2. A brief
description of the sense that the term "second quantisation" will be given
in this paper can be found in Section 3. In Section 4, in order to make
this paper as self-contained as possible, we summarise those results about
quantum stochastic integration which we will need and then use these
to construct our required operator-valued processes. It is then shown in

Section 5 that these yield a second quantisation in the sense of Section 3.

Notation. - All inner products are conjugate-linear on the left. If T is an
unbounded operator in a Hilbert space 5), its domain is denoted Dom (T).
Dirac notation will be used where appropriate.

2. HILBERT-SCHMIDT PROCESSES

Let 5) be a complex separable Hilbert space and B () be the *-algebra
of all bounded linear operators in 5). B (5)) is complete with respect to
the operator norm defined by

for X E B (~J).
An operator T E B (.~) is said to be Hilbert-Schmidt if

where { en, n is an arbitrary maximal orthonormal set in 5).

Vol. 62, n° 1-1995. -



4 D. APPLEBAUM

Let 3 2 (h) denote the space of all Hilbert-Schmidt operators on ~3. We
collect below the following facts about such operators which can all be
found in [ReSi], p. 206-210:

(i) ~2 is a *-ideal in B (S‘7). Moreover ~2 (S~) is a complex Hilbert

space with respect to the inner product ( , ) 2 defined by

for all A e ~9 f~) and

for all A E B (~), B E 2 .

(iii) Every A E ~2 (~) is a compact operator. Hence there exists maximal
orthonormal sets and {gn, n ~ N in b and a sequence

{ ~n, n of positive real numbers with A~ 2014~ 0 such that

Moreover

LEMMA 2.1. -Let A ’ E ’]2 (~ ~ ~ ~3 with ~~ ~ II = 1 and i { en, n 
be a maximal orthonormal set in S)

Proof. - These are easily obtained by standard use of Parseval’s equation
and (for (b) the Schwartz inequality. D

Now let v be a 03C3-finite measure on R+ and C : R+ ~ B (b) be a
v-measurable map. Let 03C6 ~ b with ~03C6~ = 1 be such that

(i) ~ ~ Ker C (t) for all t E R+ except a possible set of v-measure zero

(ii) II C ( s ) 03C6~2v (ds)  oo for all t E R+

With the understanding that 03C6 and v are fixed once and for all, we

denote by C (R~, S)) the linear space of all mappings which satisfy (i) and

Annales de l’Institut Henri Poincaré - Physique theorique



5ON THE SECOND QUANTISATION OF HILBERT-SCHMIDT PROCESSES

(ii) above. jj) is an inner product space under each of the inner
products (., . }~ t defined by

where t E I

In the case where v is Lebesgue measure, we will write

Let Cc (H~ denote the lnear space 0 a norm continuous maps trom

R+ to B(b) which satisfy (i). Note that if C E Cc (R+, the map t ~
is bounded on finite intervals. Clearly SJ) C C(R+, ~).

It is not difficult to verify that Cc (IR+, jj) is a *-algebra where the product
and involution are defined pointwise.
A v-measurable map C : R~ 2014~ B () is said to be a Hilbert-Schmidt

process if

We denote by ~2 (R~, S)) the linear space of all such maps. ~2 (R~? S))
is an inner product space with respect to each of the inner products
(., .)2,~,t defined by

for t E 

LEMMA 2.2. - Let C E :12 (IR+, ). then

for E R+.

Proof . - Use the Schwartz inequality. D

Let ’]2, c (R~~ S)) == ~2 (R~, S)) n Cc (R+, S)) then by lemma 2.2 we
have

It is not difficult to verify that 2,c(R+, jj) is a *-subalgebra of

We consider ~2,0 (IR+, S)) as linear operators on the space ~2 (R~? jj)
where the action is defined pointwise.
Now consider the space B (~2 (R~? ~)) of all bounded linear operators

on ~2 (~3+, ~3). B (~2 (IR+, ~)) becomes a normed *-algebra with respect
Vol. 62, n° 1-1995.



6 D. APPLEBAUM

to the operator norm ~!. ~~,~ arising from each of the norms ~ . ~2,~ on
’]2 (iR+, S)) where t E R+.

LEMMA 2.3.

and if C E ’]2, c (R+, b), then each t E R+

Proof

However by (2.3),

and the required result follows. D

3. SECOND QUANTISATION

Let V be a complex inner product space and H a complex, separable
Hilbert space. We say that we have a representation of the canonical
commutation relations or RCCR over V on H if there exists a dense

linear manifold £ in ?-l and a family f a ( f ), f E V} of closeable linear
operators in ~-l such that

(i) E is a common domain for { a ( f ), f E V } and the map f -&#x3E; a ( f )
is conjugate linear,

(ii) £ C Dom (a (f)*) for all f E V,
(iii) writing at ( f ) == ~ ( f )* 1£, the following commutation relations hold

on E:

for E V.

Annales de l’Institut Henri Poincare - Physique " theorique "



7ON THE SECOND QUANTISATION OF HILBERT-SCHMIDT PROCESSES

A representation of the anticommutation relations (RCAR) is defined

similarly but with the commutators in (iii) replaced by anticommutators.
Now let A ç B (V) be a *-algebra. Given an RCCR as above we say

that we have an associated conservation map[ 03BB if for each TEA, there
exists a closeable operator 03BB (T) in H, such that

(i) E is a common domain for all {A(T), and the map
T --&#x3E; ~ (T) is linear,

(ii) E ç Dom (A (T)*) for each TEA and

(iii) The following commutation relations hold on f,

for each S, TEA, f E V.

Whenever, we can associate a conservation map to a RCCR we say that
(7~, E, a, A) is a boson second quantisation of the pair (V, ~4). A fermion
second quantisation is defined similarly with RCAR replacing RCCR.
One of the most familiar examples of a second quantisation is that which

underpins the construction of the free quantum field. Here we take V to
be a complex separable Hilbert space and A == B (V). ~-l is the symmetric
Fock space f (V) defined by

where 0 s denotes the symmetric part of the tensor product.
E is the linear span of the exponential vectors { e ( f ), f E V } where

c~ (/) is the annihilation operator with test function f E V (so that at ( f ) .

is the corresponding creation operator).
A (T) is the differential second quantisation of T E B (V).
The details of the above construction can be found in e.g. [Par]

(p. 123-152).
In the sequel we will refer to the above boson second quantisation as the

"standard model" (readers who are elementary particle physicists should
not take offence ! )

Vol. 62, n° 1-1995.



8 D. APPLEBAUM

4. QUANTUM STOCHASTIC INTEGRALS
OF HILBERT-SCHMIDT PROCESSES

In this section we take V = LZ (IR+, S)) where S) is a complex separable
Hilbert space and work in the standard model of boson second quantisation
as described above. We note that for f E LZ (~+), ~ the map

f ( . ) ~ -&#x3E; f ~ ~ extends by linearity and continuity to a canonical

isomorphism between V and L2 (R~) (8)~). We will use this isomorphism
to identify the two spaces.

Let { be a maximal orthonormal set in ~). We define families
of processes in with common domain £, as follows:- The annihilation
processes (~., ? E N) are A; _ (~4~- (t), t E ff8+) where each

similarly the creation processes (A~, ,y E N) are given by

and o the conservation processes N) are

Now for each t E R~, let Pt be the orthogonal projection in V defined
by continuous extension of

where f E L2 (~+), ~ is then canonically isomorphic to

the Hilbert space tensor product r(L~([0, t), ~)) ~T (LZ ((t, oo), ~))
by continuous linear extension of the map which takes each e (g) to

e (Pt g) ~ e ((I - Pt) g) for g E V. We will again use this isomorphism
to identify the two spaces.
Now let F = (F (t), t E R+) be a family of densely defined linear

operators in ~-l. We say that F is an adapted process if

(i) E ç Dom (F (t) for each t E R+,
(ii) F (t) = (t) Q9 I on £ where (t) is a linear operator in

0393(L2([0,t),b)).
An adapted process is said to be square-integrable if the map

t --+ F (t) e ( f ) is measurable from R+ to Hand

We denote by ,C2 (R~, 1-(,) the linear space of all adapted locally square
integrable processes in 1-(,. Local square integrability is sufficient to define

Annales de l’Institut Henri Poincaré - Physique theorique



9ON THE SECOND QUANTISATION OF HILBERT-SCHMIDT PROCESSES

stochastic integrals with respect to quantum noise with finitely many degrees
of freedom [HuPa 1 ] . For the case of infinitely many degrees of freedom,
as is required below, we need a stronger condition which we now describe.

For each f E V, let v f denote the cr-finite measure on R+ given by

Let { 0  i, j  ~} be a family of adapted processes in H. We say
that they satisfy the integrability condition (to be referred to
henceforth as condition (MS)) if

for each f E Y, t E R+ [MoSi].
Note that if condition (MS) is satisfied then each E £2 (R~, ~).

Furthermore, if condition (MS) is satisfied, it is shown in [Par],
proposition 27.1 (p. 222-223) that the quantum stochastic integral M =

(M (t), t E 0~+) exists as an adapted process in ~ where

and we have the estimate

for each f E V, t E R+.
Now let M1, M2 be stochastic integrals of the families (1~ == 1, 2),

00

respectively such that F1i,j M2, M1 Fi, j and 03A3 Fi, j E £2 (R+, H)
j=l

for all 0  z, j,  oo, where each product of processes is defined pointwise
and the following condition (MS’) is satisfied

Vol. 62, n° 1-1995.



10 D. APPLEBAUM

for each f E V, t E By combining propositions 25.26 and 27.1
in [Par], it then follows that M~ MZ exists as an adapted process in ?-~.

Moreover, we have the quantum 7~ formula

where the "Ito correction term" dM1dM2 is evaluated by bilinear extension
of the rule that all products of differentials vanish with the exception of

Now recall the discussion of Section 2 and let X, Z E ~2 (I~~, jj) and
Y E 32,c(R~ jj). We assume that

for all f E V, t E R+.

Now let 03C6~b with = 1 and consider the process M == (M (t),
t E given formally as follows, for each t E IR+

where

PROPOSITION 4.1. - M exists as an adapted process in ~C.

Annales de l’Institut Henri Poincare - Physique theorique
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Proof. - The integrands in (4.6) to (4.8) are clearly adapted. Hence we
have only to verify condition (MS). We obtain

 oo by (4.4), where we have used lemma 2.1 Q

A standard argument using the Fourier expansion in  shows that each
M (t) is independent of choice of orthonormal basis.

Furthermore the process M is a quantum martingale (see e.g. [Par],
p. 180).

PROPOSITION 4.2. - ~M)2 == (M (t)2, t E R+) exists as an adapted
process in 7~.

Proof. - For simplicity, we will take X = Z = 0. We need to show that
condition (MSQ is satisfied. We have by lemma 2.1,

Vol. 62, n° 1-1995.
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The first term is finite by (4.4) and (4.2). For the second term, we
observe that

by (2.3). Hence, since Y E ~2 (R~, we have

The general case where X, Z ~ 0 is established similarly. U

5. CONSTRUCTION OF THE SECOND QUANTISATION

Fix t E R+ for the remainder of this section.

We aim to show that we have a second quantisation, in the sense of
Section 3, with the following data.
V == ’]2 (R+, jj) equipped with the inner product (., . .) 4J, t
’H - r ~La ~~+~ ~7)
E is the linear span of the exponential vectors in 1-{

a (X) = AX (t) for each X E V

,A - ~z, ~ (ff~+, ~3)
A (Y) = Ay (t) for each YEA.

We will assume that assumption (4.4) is satisfied for all X, Z E V,
YEA.

Note that by lemma 2.2 and the fact that v f dominates Lebesgue measure
for all f E L2 (~+, ~), we have

Annales de l’Institut Henri Poincare - Physique " theorique "



13ON THE SECOND QUANTISATION OF HILBERT-SCHMIDT PROCESSES

THEOREM 5.1. - {a (X), X E V } defines a i RCCR in ~-l on the ’ dense ’
domain ~.

Proof. - We must verify the conditions (i)-(iii) described o in Section 3.

(i) is immediate from proposition 3.1. (ii) and o the closability of each a i (X)
follows from the easily verified fact that

for all E LZ (R+, ~), so that at (X) = AX (t).
To establish (in), we observe that proposition 3.2 allows us to use the

quantum Ito formula to compute, for each X, Z E V

Now by adaptedness, we have

and

and by the quantum Ito formula, dA~Z (t) . dAX (t) = 0.
Hence we obtain, by (4.6), (4.8) and a further application of the quantum

Ito formula,

As AX (0) = AZ (0) = 0, we find that

as required.

Vol. 62, n° 1-1995.



14 D. APPLEBAUM

The other commutation relations are obtained by a similar argument. D

THEOREM 5.2. - A : ,,4 2014~ B conservation map.

We verify the conditions (i) to (iii) in the definition. (i) is
immediate. (ii) and the closeability of each A (Y) follows from the easily
verified fact that

for all f , g E L 2 ( (~ + , ~3), V e A
To establish (iii), we again use quantum Ito’s formula, adaptedness

considerations and (4.7) to show that for W, YEA,

Hence since (0) = Av (0) = 0, we have

as required.
For X E V, we have by a similar argument to the above

Hence [a (X), A(V)] = 1 X) as required.
Annales ’ de l’Institut Henri Poincaré - Physique théorique .
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The other commutation relation is established similarly. D

COROLLARY 5.3. - (H, ?, a, A) is a boson second quantisation of the
pair (V, ,A)
We close by indicating how the results of this section can be extended

to the fermion case. Following [PaSi] (see also [HuPa 2] and [Par]), we
define an adapted process J = (J (t), t E R~) in ~-C by continuous linear
extension of

then each J (t) is self-adjoint and unitary. Moreover we obtain fermion
annihilation and creation processes in ?-~ by defining

for j E E To obtain a RCAR, we define for X, Z E ’]2 (~+, jj),
(4.6) and (4.8))

then a similar argument to that of theorem 5.1 above shows that the CAR’s
are satisfied i.e.

The same conservation map as described in theorem 5.2 (and defined
by (4.7)) works in the fermion case so that we indeed have a fermion
second quantisation.
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