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ABSTRACT. - Noether transformations whose conserved quantity is

identically vanishing are studied. Such transformations occur only for

singular lagrangians, and are related to the fact that the number of

independent primary lagrangian constraints is less than the number of the
hamiltonian ones, or, equivalently, the number of independant secondary
hamiltonian constraints is less than the number of first-class primary
hamiltonian constraints.

On etudie les transformations de Noether dont la quan-
tite conservee est identiquement nulle. Ces transformations apparaissent
seulement avec les lagrangiennes singulieres, et sont liees au fait que Ie
nombre de contraintes lagrangiennes primaires independantes est plus petit
que Ie nombre de hamiltoniennes, ou, de façon equivalente, Ie nombre des
contraintes hamiltoniennes secondaires independantes est plus petit que Ie
nombre de contraintes hamiltoniennes primaires de premiere classe.
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316 X. GRÀCIA AND J. M. PONS

1. INTRODUCTION

In a given lagrangian formalism, Noether’s theorem establishes the
relation between an infinitesimal transformation and a conserved quantity.
These transformations are called Noether symmetries, and leave the
action invariant-up to boundary terms. Moreover, when the lagrangian
is regular, the canonical version of the conserved quantity becomes the
generator-through Poisson bracket-of the Noether transformation.

In the singular case, however, there is room for different situations,
either concerning the Noether transformation or the conserved quantity. As
to the first, it can be a rigid or a gauge symmetry and, moreover, there
is the possibility that the Noether transformation could not be expressed
in phase space variables and therefore it makes no sense to consider a
canonical generator for it. In [1] ] this case is considered to a full extent,
and it is shown that in certain cases-when some of the usual regularity
conditions are dropped-the relation between lagrangian and hamiltonian
Noether transformations is by no means one to one.

With regard to the conserved quantity, it can exhibit special features when
the lagrangian is singular; for instance, it can be a lagrangian constraint
or even vanish identically. The purpose of this paper is to study which
conditions allow this last possibility. In this case, the correspondence
between Noether transformations and conserved quantities fails to be one-
to-one ; therefore, the usual statement of Noether’s theorem is incorrect for
some singular lagrangians. More precisely, we will show that this happens
when the number of independent primary lagrangian constraints is less
than the number of the hamiltonian ones; this also amounts to say that the
number of independent secondary hamiltonian constraints is less than the
number of first-class primary hamiltonian constraints.

The paper is organized as follows. In section 2 we introduce our

notations and some useful results concerning projectability of functions,
lagrangian and hamiltonian constraints, and evolution operators. In section 3
we state some basic results from [1] ] concerning Noether transformations.
The core of the paper is section 4, where the construction of Noether
transformations with vanishing conserved quantity is explored. Finally,
section 5 considers briefly the specific case of gauge transformations,
together with two examples: the reparametrization-invariant lagrangians
and the bosonic string.
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317NOETHER TRANSFORMATIONS WITH VANISHING CONSERVED QUANTITY

2. PREVIOUS RESULTS AND NOTATION

We consider a configuration space Q, with velocity space V = T(Q),
and a lagrangian function L (q, v) defined on it, that is to say, a function
L : T ( Q ) 2014~ R. From it we construct the Legendre’ s map, which is a
function from velocity space to phase space FL : V 2014~ P == T (Q)* locally
defined by F L ( q, v) _ (q, p), where we have introduced the momenta
p = 

Given a function g (q, p) in phase space, its pull-back (through the
Legendre’s map FL) is the function FL* (g) in velocity space obtained by
substituting the momenta by their lagrangian expression: FL* (g) (q, ?;) =
q (q, p). A function f (q, v) in velocity space is called (FL-)projectable if
it is the pull-back of a certain function g (q, p).
We shall always assume that the hessian matrix W = 82 cw has

constant rank, which amounts to say that FL has constant rank. Let
= 1, ..., po) be a basis for the null vectors of W; then the

necessary and sufficient condition for a function f ( q, v) in T Q to be
(locally) projectable to T* Q is

for each where : == 

Under the same assumption on the hessian matrix W, the image P0 of
the Legendre’s map can be locally taken as the submanifold of the phase
space described by the vanishing of po primary hamiltonian constraints

linearly independent at each point of po. Then the basis can be

taken as [2]

The time-derivative operator acting on, a function f (7, v; t is

with the acceleration a as a independent variable. Then the Euler-Lagrange
equations can be written = 0, where we have defined

a2 z 
.

with a = 2014 2014 ~ . The pnmary iagrangian constraints arise 
. trom it,

d~ ’ 1 ’ 
~ 
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318 X. GRACIA AND J. M. PONS

though they are not necessarily independent; their vanishing defines a

subset VI C V.

As a matter of notation, we write f M 0 to mean that f (x) = 0 for all
x E M (Dirac’ s weak equality), and f M 0 to mean f  0 and df  0
(Dirac’s strong equality); for instance 0 and 0.

Now we will introduce a useful differential operator K connecting
lagrangian and hamiltonian formalisms. It takes a function g (q, p; t) in
phase space and gives its time-derivative (~ g) (q, v; t) in velocity space,
without any ambiguity:

This operator was introduced in [2], and is especially worth in the study
of singular lagrangians. For instance, all the lagrangian constraints are

obtained by applying it to the hamiltonian constraints [3]; on the other
hand the geometric formulation of K allows to write the Euler-Lagrange
equations in an intrinsic way [4], even for higher-order lagrangians [5].
The operator I~ can be given several interesting expressions. Some of

them are

and

In the last expression H is any hamiltonian function and the ~~‘ (q, v)
are functions uniquely determined by this equality; these functions are not
FL-projectable, and indeed 

.

so in a certain sense they correspond to the velocities lost through the
Legendre’ s map. On the other hand, from (2.6) and (2.4) we obtain another
expression for the primary lagrangian constraints:
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319NOETHER TRANSFORMATIONS WITH VANISHING CONSERVED QUANTITY

3. NOETHER TRANSFORMATIONS

In general, we call dynamical symmetry transformations those

transformations that map solutions into solutions of an evolution equation.
A careful study of these transformations in the hamiltonian formalism

is in [6]. Let us only point up that an infinitesimal function GH (q, p; t)
generates-through Poisson bracket, 6 f = {/, G H }-a hamiltonian dynamical
symmetry transformation if and only if

where V f C V is the final lagrangian constraint submanifold.
Now we are mainly interested in the lagrangian formalism. A particular

type of lagrangian dynamical symmetry transformations are Noether

transformations: they are infinitesimal transformations bq (q, v; t) in velocity
space TQ such that ~L is a total derivative. In this case, Noether’s

theorem [7]-[14] guarantees that bq maps solutions into solutions, and

that a conserved quantity G (q, v; t) arises from it, as expressed by

A careful analysis of this relation has been carried out in [ 1 ], where the
fact that G is projectable is used to prove the following:

THEOREM 1. - Let L be a lagrangian whose hessian matrix W has
constant rank. Then every infinitesimal lagrangian Noether transformation
bq (q, v; t) (3.2) can be obtained as

where , the infinitesimal function GH (q, p; t) satisfies

and

and the satisfy

Conversely, and infinitesimal function GH (q, p; t) satisfying (3.5) generates
through (3.3) a lagrangian Noether transformation. []

Vol. 61, nO 3-1994.



320 X. GRACIA AND J. M. PONS

The function GH is a kind of "hamiltonian generator" [in the sense of
(3.3)] for the lagrangian transformation bq. Notice, however, that such GH
is not necessarily a hamiltonian gange generator, since in general it does
not satisfy (3.1). Both conditions coincide only when K ~ GH = 0. On the
other hand, notice that GH is determined from G up to primary hamiltonian
contraints; this indetermination does not change the Noether transformation,
because it amounts to a change of the 
The expression (3.3) can also be written

Let us also say that the transformations of the momenta can be shown

to be

in agreement with (3.7) when the equations of motion are taken into account.
Observe that the determination of the functions from (3.5) suffers of

two types of ambiguities:
l)The change -7 with antisymmetric,

v

leaves (3.6) invariant, and the corresponding transformation changes as

bq ---+ [L], where B is an antisymmetric matrix.

This corresponds to adding a trivial gauge transformation (antisymmetric
combination of the equations of motion) [15]. The presence of such terms
in the r.h.s. of the commutator of two gauge transformations gives rise to
open gauge algebras [ 16] .

2) Suppose that the primary lagrangian constraints are not all them

independent, that is to say, there exist functions such that

= 0. Then additional indetermination appears, since under the

change -7 -t- relation (3.6) still holds. These are the ambiguities
we are interested in, and the rest of the paper is devoted to their exploration.

Finally, one can consider the particular case of gauge Noether

transformations, that is to say, transformations depending on arbitrary
functions of time. The general form for the (infinitesimal) "generators"
can be taken as [ 1 ], [6], [ 17]-[20]
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321NOETHER TRANSFORMATIONS WITH VANISHING CONSERVED QUANTITY

is a primitive of an arbitrary function of time é. Since
GH has to satisfy (3.5) and c is arbitrary, a recursive algorithm is obtained
to complete the G~ [ 1 ] :

This also shows that GH is made up of hamiltonian constraints.

4. NOETHER TRANSFORMATIONS WITH

VANISHING CONSERVED QUANTITY

We will study the multiplicity of Noether transformations deduced from
a fixed lagrangian "generator" G. This amounts to study the Noether

transformations !~ which admit as a lagrangian "generator" the function
G = 0, that is to say, the transformations with vanishing conserved quantity.

Consider (3.2) with G = 0:

The coefficient of the acceleration a yields W 03B4q = 0, so there exist

infinitesimal functions uniquely determined by such that

The other term is Q bq = 0; with the preceding expression of bq, and using
the expression (2.4) for the primary lagrangian constraints it becomes

If the transformation bq of the solutions does not vanish, then not all the
functions are constraints. Therefore the primary lagrangian constraints x~
are not all them independent (on the lagrangian final constraint submanifold

This reasoning can be reversed: if the primary lagrangian constraints
satisfy a relation (4.2) then we can construct the corresponding 0

which satisfies Noether’s theorem with G = 0.

Our problem is therefore the analysis of relation (4.2) in generality. First
let us quote the following trivial case:

PROPOSITION. - primary hamiltonian constraint ~ such that

Vol. 61, n° 3-1994.



322 X. GRACIA AND J. M. PONS

then we have a projectable Noether transformation with G = 0:

where ~ is an infinitesimal parameter. []
Now let us assume for a while that (4.2) is satisfied with the functions T~‘

projectable through = FL* (~). That is to say, we are assuming
bq projectable through FL. Then

Therefore there exists a (non-vanishing) primary hamiltonian constraint
cP _ 03C6  TH which is cancelled out by the differential operator .K.

According to the preceding proposition, we obtain a Noether transformation
with vanishing conserved quantity. We claim that this is the usual case, as
stated by the following theorem:

THEOREM 2. - Consider a singular lagrangian L such that the following
conditions are satisfied:

1 ) The hessian matrix hfj has constant corank po; let be po primary
hamiltonian constraints defining Po, and whose differentials are linearly
independent on it.

2) The matrix ~ ~~, , has constant rank po = po - po on Po .
3) The primary lagrangian subset VI C V is a submanifold of

codimensioh po, and the differentials of the primary lagrangian
constraints x,~ = I~ ~ have constant rank nI on Y1.

Then there exist pa - nl independent primary hamiltonian constraints ~d
such that I~ ~ ~d = 0.

Proof - The constancy of the rank of the matrix implies that
the primary hamiltonian constraints can be redefined into two subsets 
and in the following way:

1 ) The po constraints are first-class on o.
po

2) The po constraints are second-class on Po; that is to say, the

matrix C~~~v~~ _ is invertible on Po.
The secondary hamiltonian submanifold Pl C P is thus defined by the

secondary constraints :== H~, though they are not necessarily
independent. Let us also say that, by redefining the hamiltonian, one can
enforce the constraints to be stable under H on Po, H~ ^_~ 0,

Po

though this will not be needed.
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323NOETHER TRANSFORMATIONS WITH VANISHING CONSERVED QUANTITY

The primary lagrangian constraints can be expressed in the following
way, using (2.7):

Therefore the splitting of the primary hamiltonian constraints into first- and
second-class classifies these lagrangian constraints in two types:

which are respectively FL-projectable and non FL-projectable, since the
functions ~v are not projectable (2.8) and the matrix C is invertible on Po :

indeed the constraints describe the same submanifold as the

which shows moreover that these po non-projectable constraints are

independent.
From these considerations we conclude that, if the differentials of the

are not linearly independent on Yl, but still they have constant rank
nl  Po, the dependence is among the po projectable ones, and p0- nl

of these ones, say xd, can be (locally) isolated as function of the other
po - Po ones, let us call them xi :

Moreover, using appropriate coordinates if needed, it is easily seen that the
coefficients jj in this last expression are projectable, so jj = FL* 

Finally we obtain

and the expressions in parentheses are the primary hamiltonian constraints
we looked for..

Bearing in mind (4.6 a), which relates the secondary hamiltonian

constraints with the projectable primary lagrangian constraints, we can
restate Theorem 2 in the following way:

Voi. 61, n° 3-1994.
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THEOREM 3. - We keep the preceding notations as well as the hypotheses
in Theorem 2, but changing the third one to

3) The secondary hamiltonian subset Pl C Po is a submanifold of
codimension po and the differentials of the secondary hamiltonian
constraints 03C8 ’ = {03C6 ’, H} have constant rank p1 on Pa.

Then there exist pl independent primary hamiltonian constraints ~d
such that K ~ ~d = 0. .

Combining these theorems with the preceding proposition we have proved
the following result:

COROLLARY. - Assuming the hypotheses and notations in the preceding
theorems, there exist po - nl = pl independent Noether transformations
with vanishing conserved quantity. []
Of course, a relation (4.2) can arrive with non-projectable coefficients,

but our theorems assert the existence of a certain number of independent
relations with projectable coefficients, which can be obtained from the
primary lagrangian constraints as in the proof of Theorem 2. If our mild
regularity conditions are not satisfied then one can not exclude the possibility
of a linear dependence (4.2) with non-projectable coefficients and which
can not be obtained from Noether transformations constructed from the

theorems; we do not know if such pathologies can occur.

5. GAUGING THE TRANSFORMATIONS
WITH VANISHING CONSERVED QUANTITY

Consider a Noether transformation constructed from a relation

~   = 0 between the primary lagrangian constraints. This relation

still holds when multiplied by any function; in particular, by an arbitrary
function of time f (t) . Then the corresponding Noether transformation (4.1 )
is also multiplied, so it is a lagrangian gauge transformation

This is the simplest form that can have a gauge transformation, when there
does not appear any derivative of the arbitrary functions. Let us have a
look at two examples of it.

Annales de l’Institut Henri Poincaré - Physique theorique



325NOETHER TRANSFORMATIONS WITH VANISHING CONSERVED QUANTITY

Example 1. - Reparametrizations.
Let us consider a reparametrization-invariant lagrangian. This is a

lagrangian which is homogeneous of degree 1 in the velocity. Then it

is easily seen that W v = 0, so we know at least one of the null
vectors of the hessian matrix. From it we obtain the lagrangian constraint
x == 0152 (q, v) ~ v = 0, which vanishes identically due to homogeneity
of L. Accordingly we have an infinitesimal Noether transformation with
vanishing conserved quantity, bq = ~ v. This can be turned into a gauge
transformation:

which is the reparametrization. Notice that this transformation is not

projectable through FL since F - b = v 20142014 = ~ ~ 0, but Theorem 2p J g ~ q 
(7~

guarantees that it is equivalent to projectable transformations.
For instance, for the free relativistic particle, with L = 03C52, there is

only one null vector; then the transformation

is the covariant projectable reparametrization. Both transformations are

related through a change of the arbitrary function.

Example 2. - The bosonic string.
A different example is provided by Polyakov’s string, whose lagrangian

density is L = 9/3 Here we shall follow notations in [ 1 ],
[21 ] . The Weyl transformation

with A an arbitrary function, satisfies

and therefore its associated conserved quantity vanishes.
We can trace back this occurrence to the fact that there are three

primary hamiltonian constraints 03C003B103B2 (the momenta of g03B103B2), whereas their
corresponding primary lagrangian constraints K ~ are not independent;
indeed,

Vol. 61, n° 3-1994.
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This relation implies that there are only two independent primary lagrangian
constraints, and since its coefficients are projectable we obtain at once
a primary hamiltonian constraint

that satisfies K ~ ~W = 0. This yields a Noether transformation

which is the Weyl symmetry when A is considered as an arbitrary function.

6. CONCLUSIONS

In this paper we have exhibited the necessary and sufficient conditions

(under certain regularity assumptions) for a lagrangian system to present
Noether transformations with vanishing conserved quantity.

These transformations are identified as those generated by the primary
hamiltonian constraints whose lagrangian stability (2.9) is identically zero;
in order words, the primary hamiltonian constraints that do not yield
secondary constraints.
Due to the general form (3.9) of a hamiltonian gauge generator we can

identify gauge Noether transformations with vanishing conserved quantity as
those transformations whose hamiltonian gauge generator has the simplest
form, G == c (t) ~. Since such G generate gauge transformations, the fact
that the correspondence between Noether transformations and conserved
quantities is not one-to-one in the lagrangian formalism has no special
implication on the physical states, which remain unchanged under these
transformations.
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