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Analytic properties of the resolvent for the
Helmholtz operator outside a periodic surface

B. DUCOMET

Service de Physique et Techniques Nucleaires,
CEA-Centre d’Études de Bruyeres-le-Chatel, BP 12, 91680 Bruyeres-le-Chatel, France

Ann. Henri Poincaré,

Vol. 61, n° 3, 1994. Physique ’ théorique ’

ABSTRACT. - In this paper, we study the analytic properties of the
resolvent of a "periodic Helmholtz operator" in three dimensions, which is
the first step in studying the decay of the local energy for the solutions of
the associated wave equation, outside a three-dimensional periodic surface
in R3. In particular, we show that the results proven by Gerard in the
Schrodinger context also hold for the wave equation.

Dans ce travail, nous etudions les proprietes analytiques de la
resolvante d’un « operateur de Helmholtz periodique » en dimension trois,
qui constitue la premiere etape de l’étude de la decroissance de l’énergie
locale pour les solutions de 1’ equation des ondes associees, en dehors d’une
surface periodique de R3. En particulier, nous montrons que les resultats
de Gerard, dans Ie contexte de 1’ equation de Schrodinger, s’ appliquent a
1’ equation des ondes.

1. INTRODUCTION

We consider the following Dirichlet initial boundary problem for the wave
equation in an- exterior domain SZe of R3, with a smooth boundary re :
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294 B. DUCOMET

The local energy for any solution w of ( 1 ), in a given bounded region
D c is defined as:

If R3 B SZe is bounded, a lot is known about the decay of the local energy
E (w, D, t) (see [8], [ 16], [ 17]). It has been shown that the rate of this

decay is tightly related to the geometry of f.
When 03A9e and R3 B SZe are both unbounded, apart some scattering

results (spectral theory, asymptotic completeness, partial isometry of wave
operators), the situation is less clear.

In the case of scattering of classical waves by a bounded non-trapping
obstacle, Ralston [ 16] has shown that the analytic properties of the time-
independent propagator == (0394D + k2)-1 for complex k, allow us to
derive the decay of the local energy, using a contour deformation in the
inverse Fourier-Laplace transform. In particular, in the 3d case, the contour
may be pushed in such a way that the decay is exponential. Following
these lines, it is natural to try to extend the previous investigations to the
unbounded (periodic) case.

In the present paper, we give preliminary results in that direction: we
investigate, following the ideas developped by Gerard [1] in the Schrodinger
context, the analytic properties of the resolvent R (k), which is a necessary
intermediate step to improve the decay.
The plan of the paper is the following: after the definition of the periodic

geometry of the problem (section 2), we study in section 3, the analytic
continuation for the "unperturbed" (free) reduced operator corresponding
to the plane surface, then we study (section 4) the boundary problem in
a fundamental domain, via a Fredholm integral equation, and we give, in
section 5, the analytic continuation for the "perturbed" reduced resolvent.
We end the paper with the analytic continuation for the total resolvent.

2. GEOMETRY OF THE PROBLEM

Let SZe be a domain in R3 such that:

for ’
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295ANALYTIC PROPERTIES OF THE RESOLVENT

We write the points of R3 as (x’, x3), with x’ E R2 and x3 E R.
Let us consider, in R2, the lattice defined by:

where is a basis for ,C.

We also denote by ,C* the dual lattice of ,C, well defined by the dual basis

~ei ~i=1, 2, with the "normalized" scalar product in R2 : e2 . ej = 

To ,C, we associate the fundamental domain C :

with~~~.
The dual domain C* is defined 0 in an analogous way by:

Then the domain SZe satisfies the periodicity condition:

For all l E ,C,

This geometric framework allows us to restrict problem 1 to the fundamental
domain C.

2.1 The periodic formulation

In the following, we focus our attention on the simplified Dirichlet initial
boundary problem for the wave equation in 

This unessential restriction is used to clarify the exposition.

Vol. 61, n° 3-1994.



296 B. DUCOMET

The stationary version of (7) is then obtained by Fourier-Laplace
transforming (7) in the t variable:

where

With the classical notation Di = 
1 9 

we are led to solve theWith the classical notation # -2014 , we are led o o solve the

Helmholtz equation:

with

As is well known, to garantee the uniqueness of the solution, we must
add a radiation condition. Due to the periodic character of the problem, this
condition is unusual and will be given below.

We consider re as a perturbation of the plane ro == ~x3 = 0}, and the
region ne as a perturbation of the half-space R2 x R+.
To take advantage of the periodicity, we define the cylindrical domains:

Ho = C x R+ (the "unperturbed" cylinder), and S2 D Ho (the
"perturbed" cylinder).

Let us consider the "unperturbed" Dirichlet laplacian:

with domain:

where :

with the norm:

Then, the perturbed o operator H can be 
" defined o formally, in the same ’ way,

by replacing l everywhere i by 

Annales de Henri Poincaré - Physique " theorique "



297ANALYTIC PROPERTIES OF THE RESOLVENT

Following the analysis of Gerard [ 1 ], we shall see in the next sections,
that the following reconstruction formula for the resolvent of H is valid:

As in [ 1 ], the p-integration may produce complex singularities in the k-
variable, leading to a first kind of obstruction for the decay of energy in
time, the second being a bad asymptotic behaviour of ( H - 1~2 ) -1 in the
1~-complex plane, for large 

2.2 Functional spaces and boundary value problems

We follow the definitions of Alber [9], to define suitable restrictions of

periodic operators, and periodic extensions of operators acting on functions
defined in the period.

First, we consider the following truncated domains:

The space of £-periodic test functions Cr (R3) is the set of smooth

functions such that:

for a suitable p &#x3E; 0.

For each open set U in S2, we denote by .H~ (U) the Sobolev space:

and by (2), the closure of C£ (R3) in HS (U).
Now we can define a suitable domain for the reduced operators.
Let u E L2loc (2), and ic its unique £-periodic continuation. We say that

u E ~A,/;(~), if:

Vbl. 61, n° 3-1994.



298 B. DUCOMET

Then we define the reduced operator Hp by:

Now we introduce a convenient radiation condition, adapted to the

periodic situation.

To see this we consider the Fourier expansion of an arbitrary solution u
of the equation ( H p - 1~ 2 ) ~c = 0 :

where the functions un satisfy:

and, for p E C * :

Then, we say that:

CONDITION 1. - (Alber) Thefunction u satisfies Condition R for k E R, if :

Then we consider the problem:

PROBLEM 1. - Let k E R, such that 1~2 ~ Mn, V n E L.

Let g E L2loc (oe) with support in the strip {x3  R &#x3E; 0, large
enough.
We look for u E L2loc (SZe), £-periodic, such that:

and satisfying 1 the radiation condition 7Z.

Annales de l’Institut Henri Poincare - Physique " theorique "
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3. ANALYTIC PROPERTIES OF THE

"UNPERTURBED" REDUCED RESOLVENT

In order to consider ne as a perturbation of we need to extend any

operator .4, with domain D (,,4) = Doe, acting on functions defined in ne,
to an operator acting on functions defined in the unperturbed space Hg?
with domain we extend it, after [2], by zero on D|03A9e = D|03A9e0 e Doe,
the orthogonal of D~e in 

The same extension holds for the "reduced" quantities relative to Ho
and H.

For any 03C6 E we write :

where ~1 G 
We shall use freely this convention, for the reduced operators Ho,p, Hp ,

or the "complete" operators Ho and H.

3.1 Properties of the "unperturbed" resolvent kernel

Let us consider, for any (x, ~/, p) e Ho x Ho x C*, the following formal
series, representing the kernel of the reduced resolvent (Ho,p 2014 )~2 ) -1 :

where: cvn = Wn (k, p) _ ~1~2 - (n + p)2~1~2, with the choice Im (c~n) &#x3E; 0,
for the determination of the square root.

The properties of Ko, P are the following:
LEMMA 1. - (~‘, ~3) any given point in SLo.
1. The operator Ko, P, with kernel K0, p (x‘, x3, y‘, y3, p) is bounded

from L2 into H2 (SZo), if ~k2 - (n + p)2~1~2 &#x3E; 0, ~/n E £*.

2. If |In + p| ~ k, the series (18) is convergent and defznes an element of
L2loc ( SZo ) , which satisfies, as a distribution in D‘ ( SZo ) , the equation:

Vol. 61, n° 3-1994.
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3. The series (18) satisfies, in (C~ the equation:

Proof. - Relation ( 19) is verified by a direct computation: ( 18) is the

(periodic) elementary solution of the problem.
Let p &#x3E; 0, and 0  7/3  p, and consider:

and:

It is sufficient to check that:

But an elementary computation gives:

which is the general term of a convergent series. This shows that
 oo. The same result holds clearly for 

If Im &#x3E; 0, we can make ~ 2014~ oo, which allows the convergence
in L2 (Ho) : exponential decay in x3 implies that Ko, p is bounded from
L2 to H20

Now, we split the kernel 1~) into a regular contribution,
and a singular part, and we consider the decomposition: Ko, p (x, ?/, I~) ==

~/, ~). .

LEMMA 2. - Let Go (x, y, k) the fundamental outgoing solution for the
Hemholtz operator:

Then the difference : (x, ~, 1~) = Ko,p (x, ~, 1~) - Go (x, ~, 1~), is a

function COO in the x variable, in each open set of ,Cy , where:

Annales de Poincaré - Physique theorique
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Moreover the ’ ~Z (Alber) radiation condition is satisfied:

Proof. - (~~ y~ 7~) satisfies, E Helmholtz equation:

in P’(~).
After lemma 1. ,, ~ is in the regularized kernel~o,p~. ~ A) enjoys the same property, and the C°° regularity is a

consequence of standard elliptic regularity of A.
The radiation condition holds because it is clearly satisfied for each tennin the series. D

Finally, we give a further property of Ko., (x, ;, k), which completesthe decomposition given in lemma 2:

LEMMA 3. - For Im (k) &#x3E; 0, p E C*, E R3, the following formulaholds:

The proof is just a Poisson transform of the series defining Ko p C ~ x ~~ ~)We just remark that the free Green’s function Go x ~’ is the ’firstterm on the left hand side of (26). 
C ~ ~~ ) rst

3.2 Properties of the "unperturbed" resolvent kernel

Because of the presence of square-roots in the preceding definitions[see equation ( 18)], the global definition of Ko,p (x, ~, ~) for complexarguments requires to uniformize the wn.
In our periodic situation, the "quasi momentum" p is placed on the same

footing as the temporal Fourier variable ~. So, following closely Gerard[ 1 ], we suppose that k belongs to a bounded open set Z.f C C and that premains in a bounded complex neighbourhood W of £*. Then, as k and
p move, only a finite number of the Mn change their determination, and

61, n° 3-1994.
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we call y c £* the set of the corresponding indices J = (nl, ..., n N ),
with card (:1) = N.
We consider the following complex analytic set:

The part of G restricted to the zj with positive imaginary part,
for j = 1... N, is a smooth submanifold of G denoted by Then

Ko, p (x, ~/, 1~) can be considered as the restriction to of the following
expression:

Denoting collectively by z the N-uplet (~i,..., we observe that, for
(p, 1~, z) E the function Ko (x, y, p, &#x26;, z) is the kernel of an operator
Ko (p, 1~, z) bounded in L2 
Now, we restrict the variations of z to the following product of half-

planes, each of them including a small negative neighbourhood of the real
axis:

for E &#x3E; 0.

Now we need to extend the results of lemma 1 in the complex domain, to
control the exponential growth of Ko (p, ~, z) in a complex neighbourhood
of infinity. So we introduce the weighted spaces [ 1 ] :

and:

Annales de Henri Physique theorique
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where (x3~ _ (1 + x3)1~2 for 0152 E R, and we put on these spaces the
natural associated hilbertian structure.

Then we have:

PROPOSITION 1. - For a &#x3E; é, Ko (p, 1~, z) can be extended into a

bounded operator from La (no) into (00), meromorphicfor ( p, ~, z ) E
W x Zl x ,~, with polar singularities defined by:

2. The residues of K0, (p, &#x26;, z) are finite ’ rank operators, and one has the ’
following 1 decomposition, for (p, k, z) E W  u x Z :

where M (p, 1~, z) is bounded from La (no) into (SZo), holomorphic
near the singular set ~z~ = 0, j = 1...N~, and the projectors 7rj are rank
one operators in La (SZo).

Proof. - The proof of these properties is a straightforward extension of
the corresponding proposition of [ 1 ] .

4. THE BOUNDARY PROBLEM FOR THE

"PERTURBED" REDUCED OPERATOR

Let us come back to problem 1, restricted to the fundamental domain n :

with the radiation condition 7Z.

As seen before, we look for the solution u of (33) in the space (f2).
Then, the solution in the total exterior region f2e is recovered as the periodic
extension  of the solution u.

Let g be the right hand side, in equation (33). It is £-periodic, and may
be written as a function of f :

In order to use Green’s formula, it will be useful to modify slightly the
periodic kernel Ko (x, ~, p, 1~, z), defining the quasi-periodic expression:

Vol. 61, n° 3-1994.
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It is clear that the properties of G are deduced directly from those of Ko :
we change Ko only be a phase depending only on the tangential variables
~. In particular, proposition 1 applies to G without any change.
We introduce the volume potential T in H by:

and the simple-layer potential V 

To give an integral representation for the solution of problem 1 [equations
(33)], we call uad the set of admissible solutions of (33):

To perform limit processes in the potentials, we need a trace result, the

proof of which is a direct generalization of the standard Lions-Magenes
results [7] :

LEMMA 4. - Let ~c E Ho, ~ (0), and let v E H1 (0) with bounded support.
Then, the trace "Yo u = is well defined in H 1 ~ 2 ( ~ ) , and the "second"

trace u = 
- |03A3 is defined in H-1/2(03A3) b the formula:

in the ’ duality between H1~2 (~), and ~ H-1/2 (~).
Then we have " the representation formula:

LEMMA 5. - V v E we have the following # expression:

cw
where:  = w I~.

Proof - Let us consider the truncated domain SZR.
Its boundary is composed of three pieces. The lateral surface of the

cylinder: Slat = x’ E x3  R~, the upper plane region:
~R = ~x3 = R~ n SZ, and the portion of the periodic surface, situated in
the fundamental ~03A9e n O.

Annales de l’Institut Henri Poincare - Physique theorique
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If we transform the equation:

with: h = eip.x’ g, and: v == i6, then, using: Hp u ==

we get:

Using this transformation, we have also for the Green function G:

Green formula in S2R gives:

Decomposing the surface term in the left hand side, into three parts
according to the three contributions of we check first that, by the
quasi-periodicity of v and G, the Slat-contribution is zero. Secondly, we
see that the integral on 03A3R tends to zero, as t increases.
To see that, we Fourier expand v and G on R. Denoting by vn and

Gn, their Fourier coefficients, we find, after an elementary computation
the integral:

Then, by the radiation condition 7~ we find that this integral is zero as
.R 2014~ which ends the proof. D

Now, as it is classical in potential theory, we have to perform a limit
process obtain an integral equation on ~, satisfied
by the normal derivative of v .

To this purpose, we consider the following limits for T, and V, defined
V?; E Co (S2), and V~ E, by:

and: E Coo (E), and B/ ç E S, by:

Vol. 61, n° 3-1994.
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We can extend these operators:

LEMMA 6. - The volume potential ~ extends to a continuous operator
from Homp (0) into Hs+2 (SZ), for any s E R, and its restriction U extends
to a continuous operator from Homp (0) into HS+2 (),for any s E R.

2. The simple-layer potential V extends to a continuous operator, from
HS (~) into Hl ~1 (0), for any s E R, and its restriction v extends to a
continuous operator from HS ( ~ ) into HS+1 ( ~ ) , for any s E R.

3. If 03C8 E H-1/2 (03A3), then:
. v ~ uad
. = 

~roof. - 1 ) After lemma 3, and relation (35), we have the following
expression for G: b p E C*, b (x, y) E SZ :

where

Then the operator Y can be clearly decomposed into v° + Vreg with

kernel: Go (x, y, p, k, z) = 0 (x) eik|x-y| 403C0|x-y| I 
where 9 is a C°° function,

and Vreg (x, y, p, k, z) is a smooth kernel.

Then we are going to apply a result of Seeley given by Giroire [8].
Let us first recall the definition:

DEFINITION 1. - Let K (x, ~/) be an integral kernel, defined in y.

We say that K (x, "pseudo homogeneous with degree m" if there
exist Coo functions (x, z), homogeneous in z with degree m -E- j for

0, such that:

is of class Cd, for each d  m -f- J.
Then, we have:

THEOREM 1 (Seeley). - Let 03A9 be an open set in Rn , and t a positive real
number. Then the operator A defined, for each f E Co (S2), and given by:

Annales de l’Institut Henri Poincare - Physique ’ théorique "
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where ’ K is a pseudo-homogeneous kernel of degree t - n, extends to a
continuous operator from Homp , into 

If we denote " by p the three-vector (p, 0), we can write the relation (47) as:

By the regularity of it is sufficient to verify the hypothesis of the
preceding theorem for the only singular term, corresponding to n = 0 :

Expanding the exponentials near zero shows that K (~/, ~/-~) has degree -1.
2) It is clear, using local charts for the compact Coo manifold ~, that

the theorem of Seeley holds if we replace H by 03A3 (in that case we have
n = 2), so the preceding arguments simply the result.

3) In this case it is sufficient, as before, to consider the singular part
n == 0 in the series.

First, we notice that the first part of 3) holds, due to standard properties of
simple-layer potentials [6]. On the other hand V maps continuously H-s (~)
into H-s+3~2 (0), for each s E R, just because it holds for the part V°,
corresponding to the singular part Go, after the results of Eskin (see [9],
p. 106). Then, the second part of 3) is proven by taking s = 1/2. D

Then we can solve problem 1, using:

THEOREM 2. - 1. For &#x3E; 0, the solution v given by:

is the solution of the first kind integral equation:

and ~o = U h.
2. E Hscomp (0), then the solution u belongs to (E).

Proof. - Just take the limit in the representation formula of lemma 5, as
x E H tends toward a point of E. Due to the formulae of lemma 6, we
obtain formula (53), denoting by 03C8 the normal derivative of v on E :

Vol. 61, n° 3-1994.
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We decompose V into:

where Vo is the operator with kernel Go (see lemma 2).
After lemma 6, we see that V is a compact perturbation of Vo. As it is

well known (see [8]), Vo can be also decomposed as J ~ K, where J is the

integral operator with kernel 1 and K is the integral operator withg p 

kernel . J is an isomorphism from HS (03A3) in (03A3), and
K acts from Hs (E) into ( ~ ) , by the Seeley theorem. As (E)
is compactly embedded into Hs+1 (~), K is a compact perturbation of J.
As Im ( 1~2 ) ~ 0, we deduce from part 1 of proposition 3 that J ~ K is an

isomorphism. The same conclusion holds for V, then the solution of (53)
is unique in Hs ( ~ ) , as the operator U maps Homp ( ~ ) . D

5. ANALYTIC CONTINUATION FOR THE REDUCED RESOLVENT

To analytically extend the reduced "free" resolvent, we need to control
the exponential growth of the various series defining the integral kernels T
and V together with their restrictions U, and V.

PROPOSITION 2. - 1. For a &#x3E; ~, the operator ~ extends, for (p, I~, z) E
W x bounded operator from L~ (H) into (H), rccc
in the variables (p, &#x26;, z), with polar singularities on ~z~ = 0, j == 

2. For a &#x3E; 6;, the operator V extends, for (p, &#x26;, z) E W u x z, in a
bounded operator from H-1~2 (~) into (2), same

variables, with the same polar singularities.
3. For a &#x3E; c, the operator U extends, for (p, ~, z) E W x bl x 

bounded operator from L2a (H) into H1/2 (03A3), meromorphic in the variables
(p, 1~, z), with polar singularities on ~z~ = 0, j = 

4. The operator V extends, for (p, k, z) E W u x bounded

operator from H-1/2 (E) into H1/2 (03A3), meromorphic in the same variables,
with the same polar singularities.

Proof. - It is a consequence of the following property of the common
kernel of the four operators 7", V, U, and V: this kernel, G, enjoys the same
properties (boundedness, and analyticity) as because the tangential
variations of x and y (x’ and ?/) are bounded. Then it is a simple check to

Annales de Poincaré - Physique theorique
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see that proposition 8 applies as well, when the unperturbed cylinder no is

replaced by the perturbed one n, because the boundary 03A3 is smooth.

The remaining assertions come from the fact that the trace process
conserves the analyticity. 0

We have also the corresponding "polar" decompositions:

LEMMA 7. - The residues of the four operators T , V , U, and v are

finite rank operators, and for (p, 1~, z) E W x ?~l x ,~, we have the local
decompositions:

where ’ Jb, bounded from into H1 ~ (SZ), holomorphic
near the singular set ~z~ = 0, j == 1...N~, and the projector 1r] rank

one ’ operator in L~ (H),

where ’ M2 (p, 1~, bounded from H-1/2 (~) into (H), holomorphic
near the singular = 0, j = l...~V}, and the projector rank

one ’ operator in H-1/2 (~),

where M3 (p, k, z) is bounded from La (0) into H1~2 (~), holomorphic
near the singular set {zj = 0, j = 1...N}, and the projector 03C03j is a rank

one operator in La (SZ),

where M4 (p, l~, z) is boundedfrom H-1/2 (~) into H1/2 (~), holomorphic
near the singular set {zj = 0, j = 1...N}, and the projector 03C04j is a rank

one operator in H-1/2 (~).
The proof is analogous to that of the second part of proposition 8. 0

Let us consider equation (53):

As we have shown, the two operators U and V have the same analytical
properties, then we can isolate their singularities, and invert "explicitly"
the relation (60).

Vol. 61, n° 3-1994.
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PROPOSITION 3. - F6~ (p,~, ~) E W X ~ x ~, ~~ C~~ 

where D (resp. f) is holomorphic in (p, ~, z) as a bounded operator from
La (0) into H-1 ~2 (~) (resp. as a function), for a &#x3E; - inf (Im (z~ )).

zE~

Proof - First, we notice that the same Fredholm arguments used in
theorem 3 hold, insuring the invertibility of v, for (p, ~, z) E W x Ll x .~.
Then, it remains to check the "cancellation" of polar singularities. In fact,
using the decompositions of v and U given in the preceding proposition,
we can write:

and

where

The denominators fl and 12 are holomorphic functions for (p, k, z) E
W x Lf x Z, D1 is a bounded operator from H-1~2 (E) into H1~2 (~), and
DZ is a bounded operator from La (2) into H1~2 (~).

Then, the singular parts are the same on the two sides of (60), and
we have:

J

This ends the proof. D

We are now in position to study the total resolvent (H - h2 ) -1.

6. ANALYTIC CONTINUATION FOR
THE COMPLETE RESOLVENT

We have the following formula, which "reconstructs" the complete
resolvent, by integrating on the periodic variables:

LEMMA 8 . - For Im (k) &#x3E; 0, e Co (03A9e), the resolvent of H is
given &#x26;y the following formula:

Annales de Henri Poincare - Physique theorique "
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Proof. - It is a direct consequence of Theorem XIII.85 of [ 10] : the

mapping p -7 Hp is measurable, the operators Hp are self-adjoint for
each p E C* and, as Im ( l~ ) &#x3E; 0, the borelian mapping t -7 (t - ~2 ) -1
is bounded on R. D

After the representation formula of lemma 5, the solution of (33) is

given by :

Then we have the formula:

If, for p E G* and Im (l~) &#x3E; 0, we denote by zi (p, k) the determination of
~k;z _ ~n + ~~zy/z with positive imaginary part, the operator T (resp. V)
is the (holomorphic) restriction to the smooth manifold Coo of a bounded
operator from La (H) (resp. H-1~z (E)) into Hla (2).

Using proposition 11, we can write (65) as:

Now, to study the properties of the total resolvent, we introduce "global"
(isotropic) weighted spaces [ 1 ] :

and:

and we put on these spaces the natural associated hilbertian structure.

Then we have:

PROPOSITION 4. - For &#x3E; 0, and 16 E Co ( SZe ) , let us write the

resolvent of Has:

where, in z = z (p, 1~) _ (zl...zN), the zi = zi (p, 1~) are the determinations
with positive imaginary part, of ~(1~2 - (n2 + p)2,1/2~ for p E C*.
Vol. 61, nO 3-1994.
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Then, , for (p, k, z) E W  u x z, the operator M (p, k, z) can

be extended bounded operator from into 

a &#x3E; sup (Im (p)~ - inf (Im (~)).pew ~~

Proof. - First, the mapping:

extends into a bounded operator from L~ into L~ (H), as soon as a
satisfies the above condition.

Then x’ -+ x3), extends, by periodicity, into a function
in which satisfies the bound: 
if a &#x3E; sup and the same estimate holds for the derivative of

PEW

~.

As, after theorem 4, ( H p -1~ 2 ) -1 is continuous from L~ (H) into ( SZ ) ,
the conclusion follows, by composition of these three mappings. D

Now, a study parallel to the lines of [ 1 ] shows the following general
result for the global analytic continuation for the total resolvent:

THEOREM 3. - Let u be an open bounded set in C.

For f and g E Co the mapping: k -+ ((H - k2)-1 f, (oe)
defined in u n {1m (k) &#x3E; 0} can be analytically continued to the universal
covering of the complex analytic LA U where LA is 
set of points in and LA~ is a closed set measure zero in M.

We can give the following interpretation of this result.
The first part LA of the singular set is a set of "resonances" obtained by

a "condensation" of eigenvalues of the reduced operators, which consists of
branch points for (H - 1~2 ) -1, rather than poles as in the compact obstacle
problem. Physically, this corresponds to Bragg incidence angles observed
in neutron scattering by crystals, in the context of the physics of solids, or
in electromagnetic scattering by gratings, in the microwave domain.
The second part, as Gerard notes, is less transparent and comes from the

technical problem of varying domains of unbounded operators while one
performs the p-integral leading to this subtle singular set 
What is unclear is the following: does the set LA~ actually exists, or

is it an artefact of the method? An optimistic point of view should be
that LA~ is absent, at least for small periodic perturbations of a plane.
Nevertheless, the following problem remains to connect the structure of
LA to the geometric properties of r.
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7. CONCLUSION

The previous qualitative result is the only one we can obtain, in the
general case, and, since we made no precise hypothesis on the surface, it
is not surprising that we recover the same results as Gerard, due to the
similarities between his Schrodinger framework and ours.
However, as the analytic extension of the resolvent is the first step toward

the estimate of the decay of the local energy, it is clear that the analytical
structure given by the previous result is not sufficient to obtain precise
information about the decay.

In fact, following the ideas of Ralston [ 11 ], we should need two types
of information, which deserve further study:

1. A lower bound for a number c &#x3E; 0, such that:

2. an asymptotic behaviour at most of exponential type for R (k) _
(H - kz)-1 in the strip  é}, for large 

for a smooth compactly supported f . In this case, exponential decay would
hold, using the results of Vainberg [ 13 ] .
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