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Mass generation for an interface
in the mean field regime:

Addendum.

François DUNLOP, Jacques MAGNEN Vincent RIVASSEAU

Centre de physique theorique, CNRS, UPR14,
6cole Poly technique, 91128 Palaiseau Cedex, France.

Ann. Inst. Henri Poincare,

Vol. 61, n° 2, 1994, Physique , théorique ,

ABSTRACT. - We fill a gap in the proof of the main theorem in [DMR],
and give some extensions of that theorem to more general potentials.

Nous comblons une lacune dans la preuve du theoreme

principal de [DMR] et nous etendons son domaine de validite a des

potentiels plus generaux.

In [DMRR] and [DMR] we studied solid-on-solid models of interfaces
corresponding mathematically to two dimensional massless field theories
with an ultraviolet cutoff and a small attractive potential. Physically the
massless Gaussian measure can mimic the surface tension and the potential
an attracting wall, as occur e.g. in the problem of wetting. We considered
the case of an even potential monotonous on In [DMRR] we proved
that on the lattice for any even monotonous non-constant such potential,
the mean value of the field (interface height) at the origin is bounded in the
thermodynamic limit. We used a large/small field analysis and correlation
inequalities.

In [DMR] we considered the question of the exponential decrease of
correlation functions (mass generation), using a cluster expansion together
with a large/small field analysis. We stated this exponential decrease for
the potential
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with a and ~ both positive, in a certain regime of parameters a and ~
in which the generated mass is well approximated by the curvature at

the bottom of the potential. The method of cluster expansion allows a
detailed estimate of the generated mass and clearly applies to smooth but
not necessarily monotonous potentials and is not restricted to lattice cutoffs.
However there is a gap in the proof of the theorem stated in [DMR] and
the first purpose of this note is to fill this gap.

We also take advantage of this note to state that for a large class of
monotonous even non-constant potential, mass generation can be proven by
correlation inequalities methods combined with large/small field analysis.
For instance one can combine the results of [BPS] and [DMRR] to get
exponential decrease for any smooth strictly monotonous even potential*.
Indeed in [BPS] exponential decrease of correlation functions was proven
for lattice models with strictly monotonous potentials which grow at infinity
at least as

(so that /  oo (condition (b) on page 137 of [BFS])). These

potentials which grow at infinity are not suitable for the modelization of the
attraction of a wall. However reading carefully [BFS] one finds that using
the random walk representation [BFS] actually proves mass generation for
any strictly monotonous potential for which one can by other means prove
that the value of the field at the origin is not almost surely infinity in the
thermodynamic limit. But the results of [DMRR] imply this last fact!

In fact using other correlation inequalities we can extend the proof of
mass generation to a class of potentials which are not strictly monotonous.
This is shown in part II of this note.

I. THE RESULT OF [DMR] REVISITED

The proof of the main theorem (theorem 11.1) in [DMR] is incomplete.
On pages 351 and 352 it is explained how "large field squares) are rare
in probability. This is correct but it is assumed without proof that the
small probabilistic factors that one obtains for a set of "large field squares"
are independent so that the probabilistic factor for a set of such cubes is
essentially the small probabilistic factor for a single square to the power
the number of squares.

* We thank J. Frohlich for a remark which lead us to realize this fact.
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This assumption is in fact subtle and although it is basically correct it

is technically not obvious to justify it. The difficult case is when the small
probabilistic factor does not come from the potential but from anomalously
large gradients of the field. In that case we concluded that the best way
to prove the approximate factorization of the small factors associated to
each large field square is to use the fact that the massless propagator with
many regularizing gradients has good decay properties. But to use this
fact one has to reconstruct this massless propagator deep inside the large
field regions, and this leads to a somewhat non-trivial restructuring of the
expansion of [DMR] itself.

Therefore we have given a complete proof of a slightly revised version
of the main theorem of [DMR] in [R]. But for completeness we state here
this slightly revised theorem and give an outline of its proof.
A continuous solid-on-solid model of interface is a two dimensional field

theory with ultraviolet cutoff. The field represents the interface height. To
model the surface tension we consider a massless Gaussian measure in a

finite volume A = [-L, L]2. This massless Gaussian measure is formally
proportional to

However such an expression, even with an ultraviolet cutoff, is ill-defined
since it is invariant under global translation of the variables {1; (~c), ~ E A}.
To have a true measure we must break this global invariance, using some
kind of boundary condition at the border of A. A particularly convenient
choice is to use free boundary conditions on the massive lattice propagator
C defined by

(An other type of ultraviolet cutoff is used in [R], but this has no effect
on the results). The value of the mass m is fixed to precisely the curvature
expected at the minimum of our potential. We then make this propagator
massless inside A by insertion of the suitable "mass counterterm";

This boundary condition is well adapted to cluster expansions. (Any set of
bounded boundary conditions would here lead to the same thermodynamic
limit, but in a less convenient way.)

Vol. 61, n ° 2-1994.
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Therefore we define:

where d~ is the normalized measure with propagator C (this measure can
be defined directly in the infinite volume limit). (An estimate of Z~ is

given in [DMR], Lemma 11.3).
By an easy Gaussian computation the mean value (~ (:c)2) at any fixed

site x diverges logarithmically as A 2014~ oo, as the thermodynamic limit
is performed. We add now the small interacting potential (1). It tends to a
constant when ~2 2014~ 00 and tends to confine ~ near 0.
We define the normalized measure:

using the notation &#x3E;V, for the expectation value with respect to this
measure.

The regime of parameters which we study is a » 1 and ~/~ ~ 1.

We want to prove that in this regime the two point function decreases
exponentially and to obtain an estimate of the corresponding mass gap.
More precisely we prove:

THEOREM I. - Let A = [-L, L~2, and let distributed

according to the probability measure (B.6b), i.e. the measure

where ’ the Gaussian measure ’ of covariance ’ C (x, ~) given by (1.2),
V given by (1) and m = Assume ’ 0  ê ~ 1. We also assume

that the parameters a 1 and ê satisfy

where I~ is a sufficiently large constant and r~ is some fixed number strictly
positive (this means that a is always large and that if ~ ~ 0, a ~ o0
in a certain way). Under these conditions the thermodynamic limit of the
correlation functions exists and satisfy an exponential clustering property
(the truncated correlation functions decrease exponentially). The decay rate
or effective mass is close to the decay rate m = of C when a is large.
More precisely there exist positive constants K and c such that:

Furthermore one can let c tends to ’ 1 (uniformly in c) if a  oo.
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The technical condition (1.7) restricts the model to the so-called "mean
field regime" of wetting (in this regime the mass is very close to the value
of the curvature at the bottom of the well, namely In [DMR] the
same theorem was stated directly with ~ = O. However in the corrected
proof ([R]), the natural result is to take r~ &#x3E; 0 (or to take r~ = 0 in (1.7)
but to divide by a large power of log a). It seems to us that the theorem
holds probably also for ~ = 0 but that its proof presumably requires some
heavier analysis which is perhaps not worth the trouble. A more interesting
task would be to treat a model with a regime which is not mean-field, and
then one certainly needs a multiscale analysis*.

Following [R] we summarize now how to correct the proof of [DMR].
We analyze the theory with respect to a lattice D which is a regular
paving of A by squares A of side l = namely the inverse of the
expected mass. In the squares where the average value of is less than

a2, which we call the small field region, the quadratic approximation to
the potential which gives a mass m = is valid, and the analysis of
this region by a cluster expansion essentially follows [DMR]. However in
the large field region in order to prove that the small probabilistic factors
for each cube are nearly independent, we change the conditions A)B)C) on
page 351 in [DMR], showing that either the potential itself gives the small
factors (in which case they are obviously independent), or some norm of
a high order derivative of the field (interface height) is anomalously large.
Now the massless Gaussian propagator when regularized by sufficiently
many derivatives has rather large power decay. Therefore one can prove by
explicit Gaussian integration on these norms of high order derivatives an
approximate factorization property. This proves that for a large field region
of N cubes one really has an associated small factor to the power N, the
missing element in [DMR].

To implement this simple idea there are however some technical

complications described in [R]. First the use of high order derivatives
(instead of the "ordinary derivative" like in [DMR] case C) page 351)
creates somewhat longer formulas. More seriously to patch the analysis
between the small field region where the measure is essentially massive,
and the large field region where apart from a boundary condition it is

essentially massless, one has to add some technicalities to the analysis of
[DMR]. Essentially in [DMR] we introduced a corridor around the outside
of the large field regions to test their couplings through the small field

* For a model with two linear exponentials (for which renormalization reduces to some
explicit Wick ordering) we are presently attempting this multiscale analysis.
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regions. In [R] we have to add a second corridor around the "inside"
of the large field regions. Indeed to reconstruct the massless Gaussian
measure deeply inside the large field region one needs to show that the
effect of the boundary condition at its border is small, and this is done by
some additional expansion which tests the effect of this boundary condition
through this "inner" corridor and shows that deep inside the large field
region this effect is small.

We refer the reader further interested by these technical aspects to [R].

II. GENERATION OF MASS WITH LARGE/SMALL FIELD

ANALYSIS PLUS CORRELATION INEQUALITIES.

We shall discuss here potentials of the following three types:

The analysis of [DMRR] can be applied to all these potentials for

arbitrary c &#x3E; 0 and a &#x3E; 0, proving

where a = inf 1) and ~ = 1 . Theorem 1 of this paper applies
to , a (~) when condition (1.7) is satisfied, i.e. I~ log (1 + ~-1)  a2 -~.
Theorem 1 could be extended to (~), under the same hypothesis and
with the same conclusion, namely

We shall now derive some comparison inequalities between expectations
~~ (~r) ~ (~/))c,a for different choices of c, a and ~,a or WE;, a.

LEMMA 11.1. - Suppose b &#x3E; a and r~ / b2 &#x3E; ~ / a2 . Then

Annales de l’Institut Henri Poincaré - Physique theorique
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and ’

Proof. - Let us first consider the potential V. It suffices to prove for

all p, q odd that

which is true because V~, a(03C6) - V~,b(03C6) is a decreasing function of 03C6
under the hypothesis of the lemma.
The same applies to W, but some analysis is required to check that

W~, a (~) " W~, b is a decreasing function of ~. We write

and consider We compute

which is negative for all x E [0, if we choose é (03B1) + (a) = 0
and A = 2. Then

is a decreasing function of 03C62 if b &#x3E; a. To compare s (a-2) and e (b-2),
we use s (a) + as’ (a) = 0, which gives a-2 e (a-2) = (b-2). The
proof of Lemma II.1 is then concluded by noting that 03C6(x)03C6(y)&#x3E;W~,a is a

decreasing function of ~ (this is true also with U or V).
The next lemma, which is clearly not optimal, bounds a correlation

function obtained with a square well potential U by that obtained with a
smooth potential W:

Vol. 61, n° 2-1994.
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LEMMA 11.2. - _ ~ e-4 a2. Then

Proof. - It suffices to prove that

for all p, q odd. Using the definition of U and W, this integral reduce to

Using (~)  0, we have

The worst case is for p = q = 1, where we find by explicit integration

and

which proves the lemma. a

Annales de l’Institut Henri Poincaré - Physique theorique
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We conclude that we can prove exponential decay for some non-smooth,
non-strictly monotonous potentials, such as the square well potentials 
satisfying K log (1 + ~‘1 e4a2)  a(1/2)-~. However remark that these
wells have to deeper and deeper as a 2014~ oo. Therefore we consider that

it is still an open problem to prove or disprove exponential decay of the
interface correlation functions for any square well potential.
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