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Local decay estimates for Schrödinger
operators with long range potentials

T. OZAWA

Department of Mathematics, Hokkaido University, Sapporo 060, Japan

Ann. Inst. Henri Poincare,

Vol. 61, n° 2, 1994,] Physique theorique

ABSTRACT. - For a class of long range potentials, sharp propagation
estimates of the corresponding Schrodinger evolution groups are obtained
without low-energy cut-off technique. Instead of low-energy cut-off, an
explicit condition is given on the vanishing order in the L2 sense at zero
energy of initial states.

Une estimation de propagation optimale est obtenue pour
Ie groupe d’ evolution d’une equation de Schrodinger avec un potentiel a
longue portee sans Ie recours a la technique de coupure a basse energie.
Nous proposons a la place, des conditions explicites sur l’ordre d’ annulation
des etats initiaux au sens de la topologie L2 a energie nulle.

1. INTRODUCTION

In this paper we consider the local time-decay of scattering solutions for
Schrodinger operators with long-range potentials. Concerning this problem,
explicit use of the low-energy cut-off function is often made in the statement
of the previous results (see [ 1 ], [3], [8], [10], [ 12], [ 14] and Remarks 2, 3
below). A major reason consists in the fact that the low-energy part of
quantum states, even in the short-range case, propagates slower than
the high-energy part and prevents the full dynamics from behaving as
a classical motion with velocity supported away from zero to provide
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136 T. OZAWA

a sharp propagation estimate (see [9], [ 11 ], [ 15] ). When one observes
the propagation of a particular state, however, the introduction of low-

energy cut-off function imposes the condition that the Fourier transform
of the state must vanish identically in a neighborhood of the origin. In
this paper we present an explicit condition on the vanishing order at the

origin of the Fourier transform of states which ensures sharp propagation
estimates. Instead of the states with energy vanishing near zero, we turn
our attention to the states in the range of a modified wave operator of

Dollard type and consider the condition on vanishing order at the orgin of
the Fourier transform of the inverse image of the states by the modified
wave operator. In the usual case the range of the modified wave operator
coincides with the absolute continuous spectral subspace (see [12], [ 17] and
references therein), and moreover, the evolution of the states in the range
of the modified wave operator turns out to be explicit as time tends to

infinity provided that the right comparison dynamics is constructed. In this

respect, the method in this paper is inspired by Cycon [2]. As compared
to [2], we adopt a different choice of comparison dynamics which seems
much easier to handle. Concerning the construction of the comparison
dynamics, we follow [4], [ 16] though the choice of the phase function in
the comparison dynamics requires a furher modification in order to exhibit
a sharp approximation for the full dynamics.

Let H = -- A + Y be a Schrodin g er operator on L2 with real

potential V. Throughout the paper we suppose that the potential V satisfies
the following condition.

Assumption (A). - V is a multiplication operator by a real-valued function

on R~ for which the corresponding Schrodin g er operator H == - - ð + V
is essentially self-adjoint on Co (R"B{0}). Moreover, V is decomposed as
v = _p _p V ~2~ _p V ~3~ with the following property:

There exist measurable functions úJj on R+, ~ = 0, 1, 2, such that
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137LOCAL DECAY ESTIMATES FOR SCHRODINGER OPERATORS

There exists a real constant ~, with 1/2  /~  1 such that

where (~) _ (1 + IxI2)1/2.
Example. - Let V (x) = + with Ai, ~Z E ~ and

1/2  /~  1  v  min (n/2, 2). We distinguish three cases.

(a) When v  1 + /~, we take (x~ _ Ai (~~-~, (~c) == ~2 (~~-V,
y(2&#x3E; - Y _ y(o) _ y(i)~ and V~3~ - 0. Indeed,

(b) When v = 1 + ~ we take (x) _ Ai 0,
y(2) ~ jl - y(o)~ IT (3) == O.

(c) When v &#x3E; 1 + Ec, we take (x) = al 0,
vc2y~~ - ~~3~(~) = 
where x is the characteristic function of the unit ball.

Under the assumption (A), the modified wave operator of Dollard type
for positive time

exists as a strong limit on LZ (ff8~), (see the proof below, or [17], [18] and
references therein), where U (t) = exp (i (t~2) A) is the free Schrodinger
evolution group. To measure the vanishing order at zero energy of states,
we introduce the following scale of function spaces Xm with m &#x3E; 0.

where Ls (R~), ~ E R, is the weighted L2 space given by
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138 T. OZAWA

with norm ~~~~~Ls = and n denotes the Fourier transform given
formally by

We equip the by

In terms of the homogeneous Sobolev spaces, Xm = L2 n N ~. We
summarize basic properties of 

PROPOSITION 1. - ( 1 ) Hilbert space.

(2) m &#x3E; m’ &#x3E; 0.

(3) Xm = L2 with equivalent norms if 0  m  min (2, n/2).
(4) Lm if 2  m  n/2, n &#x3E; 5.

(5) F-1 (Co (RnB{0})) is dense in Xm for any m &#x3E; 2.

We now state our main results. For t we put (t~ _ ( 1 + t2)1/2.

then constant C such that for E R+ E X4

If 2 ~c - 1  ~  ~, then for any m &#x3E; 8 there is a , constant C such that

for all t E R+ E X.,2

(2) Let 0  03C3 ~  = 1. If 0  03C3  1, then there , is a , constant C such

that for all t E E X4

If 03C3 = 1, then for any m &#x3E; 8 there is a ’ constant C such that for all
t E E X

Remark 1. - In the Coulomb case V M == with A E RB{0} and
rz &#x3E; 3, Cycon [2] proved
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139LOCAL DECAY ESTIMATES FOR SCHRODINGER OPERATORS

In the repulsive case A &#x3E; 0, it has been shown in [5] that for t e R

with |t| I &#x3E; 1

This indicates that the positivity or repulsivity may provide sharper
estimates. But this problem is outside the purpose of this paper.
Remark 2. - In [ 1 ], [ 14] there are related estimates of 03A9f (Ho) in

the short-range case, where H is the ordinary wave operator, H0 = -"2 1 a
and f is a low-energy cut-off function, i.e. f E Coo (R, R) with / = 1 on

oo) and f - 0 on (-00, Ao/2] for some Ao &#x3E; 0.

Remark 3. - Estimates of the form

have been obtained in [3], [8], [10], [ 12] for long-range potentials, where
f is a low-energy cut-off function, B (L~ , is the space of bounded

operators from LQ to and 0  /  r.

Remark 4. - Theorem 2 implies estimates of the form

for any low-energy cut-off function f in the case where 1 / 2  M  1
with Results of this type follow from the
estimate in Remark 3 and the boundedness of 03A9f1 (Ho) in L203C3 for some

low-energy cut-off function f 1 satisfying f = f f 1. For the possibility of
the latter boundedness, see [ 13] .
Some of the results in Theorem 2 are optimal. In fact:

THEOREM 3. - Let 1/2  M  1 and 0  (7  E X4. When
2M - 1  M, assume further that ~ E Xm for some m &#x3E; 8. Then

Remark 5. - It seems that the formula ( 1.6) is new. A weak from of
the lower bound estimates for the Schrodinger evolution group is obtained
in [5], [6].

Under some restrictive assumption and V, one could obtain the
exponential decay results with the norm replaced by the norm with
exponential weights such as exp (-Ix!) or by the norm ~. for
some compact (see [ 19], [20]). But this is outside the purpose
of this paper.
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140 T. OZAWA

The method of proof of Theorems 2 and 3 is roughly illustrated as

follows. By the definition of the modified wave operator ( 1.1 ), the full

dynamics e-ztx nø looks like the Dollard dynamics

in L2 as t -&#x3E; oo. In order to observe the large time behavior of the
full dynamics e-itx nø in a more explicit way, we replace the Dollard

dynamics UD (t) ~ by another comparison dynamics W (t) ø, given by

with appropriate real function S (t, ~). With this form, we have

~(W (t))~(x)~ = and therefore the right behavior of 
in is obtained through

provided that W ( t ) ~ approximates e-itH 01 better than the order 0 
as t -+ oo . For this purpose we prove

and estimate the rate of decay of the integral in ( 1.10) as t 2014~ oo, which

depends on the choice of phase function S and on the vanishing order at
the origin of ø. By a direct calculation, we have

As in the original choice of Dollard, one might take

This choice, however, leads to a rather unsatisfactory result since this

imposes restrictive ~ conditions on the short-range part and ’ implies a weak
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141LOCAL DECAY ESTIMATES FOR SCHRODINGER OPERATORS

decay rate of ( 1.11 ). In other to obtain a better approximation, we take

for 0  2M - 1 with 1/2  ~  1 and 0  Q  /~ = 1. This choice

requires the conditon 03C6 ~ X4 since the short-range part of !V’9p creates
singularity of the form lçl-4. If 2/~ - 1  cr  ~C with 1/2  ~  1
or 7 = /~ = 1, the preceding choice ( 1.12) turns out insufficient since
the long-range part of IV 812 grows like 0 (t2-2E‘) for 1/2  ~c  1 and
like 0 ((log t)2) for u = 1, both of which are larger than the expected
rate 0 To cancel the growth property of the quadratic contribution,
we choose

As for the decay rate in time of ( 1.11 ), the choice ( 1.13) gives an optimal
result for 2/~ - 1  (]"  /~ but not ~c = 1, still in the latter case
this improves the result with the previous choice ( 1.12) by one logarithmic
power. The restriction m &#x3E; 8 of Xm comes from the second term of the
right hand side of ( 1.13 ) at the cost of better rate of decay in time of ( 1.11 ).

This paper is organized as follows. In Section 2 we collect several

preliminary estimates, including the proof of Proposition 1.1. Section 3 is
devoted to the estimates associated with the comparison dynamics W (t) .
In Section 4 we prove Theorems 2 and 3.

We conclude this introduction by giving notations freely used in this
(~i,..., xn) E V = (9i,..., = 

at = The variables in the Fourier transform are usually denoted by
ç == (~1, . - . , çn) E and the corresponding derivatives might be
denoted simply by ~j when no confusion could arise. The time variable t is
usually taken to be positive and might be omitted in course of calculations.
The norm without subscripts ~ ’ ~ denotes the L2 norm for scalar
C valued functions and for vector ~ ~ valued functions as well. Different

positive constants might be denoted by the same letter C, and if necessary,
by C ( *, ... , * ) in order to indicate the dependence on the quantities in
the parentheses.

Vol. 61, n° 2-1994.
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2. PRELIMINARIES

We first give " preliminary estimates associated with the norm in X~ .

LEMMA 1. - Let m &#x3E; 0 for n &#x3E; 2 and let m E (0, 1) U [2, ~) for n = 1.
Then V I) E L2 for all 03C6 I) E Xm. Moreover,

Proof - By Hardy type inequality [7], for 0  m  n we have

This proves (2.1). Let m &#x3E; 2 and 03C6 E Xm. Since IV112 = (1/2) ð 1112 -
Re(0394), by integration by parts and Holder’s inequality we have for e &#x3E; 0

By the monotone convergence theorem, this implies (2.2).
Q.E.D.

We now prove Proposition 1.

Proof of Proposition 1. - For part ( 1 ), the only nontrivial issue is the

completeness but the proof is standard and straightforward. Details are
omitted. Part (2) follows by Holder’s inequality. Parts (3) and (4) follow
from Hardy type inequality [7] of the form

Annales de l’Institut Henri Poincaré - Physique theorique
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on [1, oo), g - 1 on (201400, 1~, y = 0 on [2, oo). We set 
j &#x3E; 1, where (03BE)=f(j|03BE|2)g(j-1|03BE|2)(03BE). Then 03C8j E co (Rn{0}),

2014~ ~ and 2014~ in L2 as j 2014~ oo. It remains to prove
2014~ ð~ in Lz as j -+ oo. This follows from the fact that lçl-2 ~ E LZ

and E L2 [see (2.2)].
Q.E.D.

We next collect estimates for phase functions and 9~B defined by

LEMMA 2. - ( 1 ) Let 1 /2  M  1 and 0 :::; () :::; M. Let 1 :::; j :::; 3. Then
there is a constant C independent of t and 03BE such that

(2) Let 0  9  M = 1. Let 1  j  3. Then there is a ’ constant C
independent of t and  such that

(3) ~et 0 :::; j :::; 2. Then there is a constant C independent of t and
ç such that

Proof. - By definition and assumption, for 1/2  M  1 we have

Vol. 61, n ° 2-1994.
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where we have made the change of variable r = t-2T2. This proves
(2.5). Similarly, for  = 1

The last integral is estimated by

This proves (2.6). Similar estimates show (2.7).
Q.E.D.

3. ESTIMATES FOR COMPARISON DYNAMICS

In this section we prove several estimates for the comparison dynamics
W (t). Throughout this section we assume t &#x3E; 10 and ø E Co 
for simplicity. We first recall the factorization of the free Schrodinger
evolution i7 (t) = exp (i (t~2) 0) [4], [16]

where

Equivalent definition of W (t) in (1.8) is then given by

where phase function 6’ is defined by
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if 2~c - 1  In the limiting case 2/~ 2014 1 = ~  1, we need both

(3.3) and (3.4) for technical reasons. We now consider

For the first term on the right hand side of (3.5), following [4], we compute

For the second term, we compute

Vol. 61, n° 2-1994.
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By (3.6) and (3.7),

This gives

We estimate the terms on the right hand side of (3.9). We distinguish
four cases.

By Lemma 2,

Collecting (3.9)-(3.13) and using Lemma 1, we obtain

Annales de Henri Poincaré - Physique theorique
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(ii) When 1/2  ~c  1 and 2~c - 1  7  ~c, we have by (3.4) that

where ~2 S denotes the Hessian matrix. In the first norm on the right hand
side of (3.9), the contribution of the slowest component (1/2) t-21V 
is cancelled by the first term on the right hand side of (3.16) multiplied
by (1/2) t-2. Instead, the third term on the right hand side of (3.16)
gives the strongest singularity at the origin, which should be minimized
by choosing ? = 1/2 + e/4 with 0  e  4 (w - 1/2) in Lemma 2. The
restriction 03B8 &#x3E; 1/2 ensures the integrability of the associated time integral.
The contribution of the thrid term is therefore estimated by

This requires assumption ~ E Xm of the theorems.
Note that we may assume that 8  m  10 without loss of generality.
Other terms on the right hand side of (3.9) with (3.4) are estimated similarly
except for the norm involving ~~, where an additional use of (2.2) with
m = 8 + c is needed. We have thus proved that for all m &#x3E; 8

(iii) When 07~=l,we estimate (3.9) by using (2.6) in a way
similar to the case (i) to obtain

where the slowest contribution proportional to t-2 (log t)2 is given by
6’p~~ ( from the right hand side of (3.9).

(iv) = 1, we estimate (3.9) by using (2.6) in the same
way as in the case (ii) with some necessary modifications. For instance,
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we replace (3.17) by

by using Lemma 2 with 9 = 1/2 + s/4 for 0  ~  2. With m &#x3E; 8,
we finally obtain

where the slowest contribution proportional to t-2 log t is given by the
terms linear in ,5‘ from the right hand side of (3.9).

4. PROOF OF THEOREMS 2 AND 3

In this section we prove Theorems 2 and 3. Let ø E Co (R"B{0}). By
Cook’ s argument, we have for t &#x3E; s &#x3E; 10,

By (3.14), (3.18), (3.19), (3.20) and (4.1), () ~ converges strongly
to a limit ~ E L2 as t 2014~ oo and

where

Annales de l’Institut Henri Poincaré - Physique theorique
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By ( 3.2 ) and Lemma 2 with 8 = J.L &#x3E; !,

By Lemma 2 with 8 == M and the dominated convergence theorem with

From (4.2), (4.3), (4.4) we obtain

This proves ~ = and (4.2) implies

By part (5) of Proposition 1 and the boundedness uniform in time of

and W (t), (4.6) still holds for all 03C6 E On the other

hand, (3 .1 ) shows

Combining (4.6) and (4.7), we obtain Theorem 2 for t &#x3E; 10, where we have

chosen cr)) = 4) in the limiting case 03C3 == 2tc-1  1.

This completes the proof of Theorem 2 since is estimated 

in the norm of By (4.7) and the dominated convergence theorem,

Vol. 61, n° 2-1994.
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Theorem 3 follows from (4.8) and (4.6), where we have chosen

(t), r)) = m) in the limiting case 03C3 == 2M - 1  1

since tc &#x3E; 7 = 2M - 1.

Q.E.D.

Concluding Remarks. - ( 1 ) The results in this paper concern the

time-decay estimates for e -itH H rather than itself. Accordingly,
if one looks at the behavior of then there arises the problem
of characterizing the corresponding space 03A9Xm of initial states. If

o is complete (the difficulty could come from the singular part Y3),
then the relation == Ec (H) and an operational calculus yield

= where denotes the projection
onto the continuous spectral subspace for H. Given the completeness of
H, the only thing one should obtain is the mapping property of 03A9 in the

weighted space L2 and the best thing one could hope is that

To prove the formula above, the methods in [ 1 ], [ 13], [ 14] seem useful
although the author does not have a definite answer.

(2) The results in this paper break down for potentials with slower decay
i.e. M  1 /2. This is natural since the existence of wave operators of Dollard
type breaks down in the same range. In order to include the case   1/2,
one needs to refine the phase function S by further iteration with optimal
decay rate preserved. This gives higher singularity at the origin in the

momentum space. We could give a full description on this subject but the
whole procedure is somewhat involved and therefore the details are omitted.
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