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ABSTRACT. - Some aspects of the geometry of jet-bundles, especially
relevant for the formulation of Classical Mechanics, are investigated. The
main result is the construction of a tensor analysis on the first jet extension
of the configuration space-time, based on a suitable linear connection,
determined entirely by the dynamics of the system. The significance of
this "dynamical connection" in the geometrization of Classical Mechanics
is discussed, paying a special attention to two particular aspects, namely
the implementation of the concept of "relative time derivative" in the

Lagrangian framework, and the derivation of the Helmholtz conditions for
the inverse problem of Lagrangian Dynamics.
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18 E. MASSA AND E. PAGANI

Dans cet article on etudie des aspects de la geometric des
espaces des jets qui sont importants pour une formulation geometrique
de la mecanique classique. On construit une « analyse tensorielle » sur la
premiere extension des jets de l’espace-temps des configurations moyennant
une connexion lineaire determinee completement par la dynamique du
systeme. On met en evidence Ie role joue par cette « connexion dynamique »
dans la geometrisation de la mecanique classique ; en particulier on introduit
Ie concept de « derivee temporelle relative » dans Ie contexte lagrangien
et les conditions de Helmholtz pour Ie probleme inverse de la dynamique
lagrangienne.

INTRODUCTION

Jet bundle geometry provides a natural environment for the frame-

independent formulation of Classical Mechanics, especially suited to the
study of systems with a finite number of degrees of freedom.
The idea is to associate to each such system a corresponding configuration

space-time viewed as a fiber bundle over R, with projection
t: R formalizing the concept of absolute time. The first jet-
extension jl is then naturally identified with the "evolution space"
(or "velocity space") of the system ( [ 1 ], [2]).

During the last decade, the theory of jet-bundles, and, in particular,
the knowledge of the properties of the first jet space jl has

been considerably enhanced through the introduction of two important
geometrical objects, namely the fundamental tensor of jl and the
horizontal distribution - often described in the language of the theory of
connections - associated with a given dynamical flow (see, among others
(DL [3], [4]) and references therein).
As a consequence of this fact, the recent literature has witnessed a

renewed interest towards several classical problems, like the study of
dynamical symmetries, also in connection with possible generalizations of
Noether’s theorem ([5]-[9]), the inverse problem of Lagrangian Mechanics
([ 1 ], [ 10]-[ 19]), the theory of singular Lagrangians ([20]-[22]), the dynamics
of non-holonomic systems ([2], [23]), and so on.

In this paper we discuss some aspects of the geometry of 
all more or less directly related to the affine nature of the fibration

l’Institut Henri Poincaré - Physique theorique



19JET BUNDLE GEOMETRY

After a review of the main geometrical ideas involved in the construction
of the fundamental tensor, in Section 1 attention is focussed on a special
subalgebra of the tensor algebra over jl called the virtual algebra,
playing a role quite similar to the algebra of "free tensors" on an affine
space, and endowed with a well defined law of parallel transport along
the fibres.

The analysis includes a description of the basic algebraic and differential
operations induced by the fundamental tensor: among others, we mention
here the fiber differentiation dv, whose action on the Grassmann algebra
9 (j 1 ( V~,+ 1 ) ) preserves the sub algebra 9 ( j 1 ( Vn+ 1 ) ) of virtual differential
forms, satisfies the condition dv . dv = 0, and reflects in a natural way the
affine nature of the fibres of j1(03BDn+1) .

In Section 2 we discuss the construction of a tensor analysis over
j 1 The starting point relies on the introduction of a special
class S of linear connections, such that, for each V E S, the resulting
covariant differentiation preserve all the intrinsic geometric structures of
jl namely the temporal 1-form dt, the fundamental tensor, and the
parallel transport along the fibres. For technical reasons, to be explained in
Section 2.1, the characterization is completed by adding a few additional
restrictions concerning the torsion and curvature tensors.

In this way we end up with a class ?, the elements of which have a clear

dynamical significance, in the sense that for each choice of the dynamical
flow Z, the condition VZ = 0 - i.e. the requirement that the differential
algorithm preserve not only the geometry, but also the dynamics of the
system, as represented by the flow itself - singles out a unique connection
V E ?, thereby called the dynamical connection associated with Z.
. In particular, it is seen that the notion of horizontality induced by the
dynamical connection in jl agrees with the usual one, based on the

distinguished role assigned to the Lie derivative of the fundamental tensor
along Z (see e.g. [ 1 ], [3]).
The physical significance of the dynamical connection is further clarified

in Section 2.3, through a discussion of a possible implementation of the
concept of relative time derivative in a Lagrangian context. The analysis
stems from the fact that every frame of reference ? determines its own

dynamical flow Zy in (see e.g. [2]), and therefore also a

corresponding covariant derivative, induced by the associated dynamical
connection. Among other aspects, the argument illustrates the geometrical
counterpart of Poisson’s formulae in ji 

Finally, in Section 3, the entire mathematical apparatus is applied to
the study of the so called inverse problem of Lagrangian Mechanics [24]

Vol. 61, nO 1-1994.



20 E. MASSA AND E. PAGANI

(in this connection see also ([25], [26]), respectively for the n = 1 and
n = 2 cases). The line of approach relies on an extension of the theory
of generalized potential to virtual forms of arbitary degree. This is seen to
provide a convenient geometrical setting, yielding back, on a unified basis,
the different formulations of Helmholtz’s conditions obtained in Refs. ([1],
[12], [27]).

1. THE VIRTUAL ALGEBRA OVER jl 

1.1. Preliminaries

For future reference, in this Subsection we review some aspects of

jet-bundle theory, especially relevant to the developments of Lagrangian
Mechanics. For a more exhaustive account, the reader is referred to the
current literature (see, among others, Refs. ([2]-[4], [23], [28])).

(i) Let B be a mechanical system, with n degrees of freedom. Keeping
the same notation as in [2], we associate with B an (n -t- 1)-dimensional
differentiable manifold called the configuration space-time, carrying
a natural fibration t: 2014~ IR, identified with the absolute time.

Also, we denote and respectively the vertical
bundle over and the first jet-extension of associated with the

stated fibration.

As it is well known, both spaces and may be

viewed as submanifolds of the tangent space according to the
identifications 

-

Eqs. (l.la, b) exhibit the nature of V and j1(03BDn+1) respectively as
a vector bundle over and as an affine bundle over modelled

on 

Following the standard conventions, given any local coordinate system
t, gB..., qn on we denote by t, q1, ..., qn, q1, ..., qn the

corresponding jet-coordinate system on j1(03BDn+1). In this way, any vertical
- vector v is represented in the form

Annales de l’Institut Henri Poincare - Physique theorique .



21JET BUNDLE GEOMETRY

while the identification between points in jl and vectors in ~+1
is made explicit by the relation

(ii) Let us now stick our attention to the fibered manifold 7r: j 1 ( Vn+ 1 ) -~
Vn+ 1. For each x E Vn+ 1, we denote by x = : 7r-1 ( x ) the fibre over x,
viewed as submanifold of j1 Also, for all z E j1 ( Vn+ 1 ) , we indicate
by (7~).: Tz (~+1)) -~ ( Vn+ 1 ) the differential of the projection
7T at z (the "push-forward" map), and by (7r~* : T~. (z~ (Vn+1 ) -+

Tz (Vn+1 ) ) the corresponding adjoint map ("pull-back"), both extended
- the first to arbitrary contravariant objects, and the second to arbitrary
covariant ones - through the operation of tensor product.

In view of eqs. ( 1.2a, b), each fibre ~x is an affine space, modelled

on Yx (Vn+1 ), the modelling being given by the ordinary vector addition
(~v)-~+v in 
As a result, we have a canonical identification of the tangent space

T(E~) with the cartesian product ~x x Vx (~+1).

DEFINITION 1.1. - For E j1 (Vn+1 ), the tangent space to the

fibre ~~ (z) at z - henceforth denoted by hz (Vn+1 ) ) - is called the
vertical space at z. The map assigning to each z E j1 (~+1) the vertical
space Yz (Vn+1 ) ), subspace of T z called the

vertical distribution over jl (Vn+1). The vector bundle V (j1 (Vn+1)) 1=
(j 1 called the vertical bundle over j1 ( Vn+ 1 ) .

z

In view of the identification Vz ( jl (~+1)) ~ V7r (z) (Vn+1 ), every vertical
vector v at 7r ( z ) determines a corresponding vertical vector v at z, identified
with the tangent vector to the "straight line" ç 2014~ + ç v at the point ç = 0.
The correspondence v ~ v is known as the vertical lift of vectors. In

local coordinates, we have the explicit representation

or, in terms of bases

(iii) The adjoint map (7rz)* * determines a homomorphism 03C3 ~ 6- :==
(~rz ) * * ( ~ ) of the exterior algebra ( Vn+ 1 ) at 7r ( z ) into the exterior
algebra at z. The image space := (~rz ) * * (11.~ (z) (1&#x3E;n+1 ) )
Vol. 61, n° 1-1994.



22 E. MASSA AND E. PAGANI

is called the algebra of semibasic forms at z (see e.g. [29]). In local

coordinates, every r-form  E Sz will be represented in the
form

the presence of the factor r being a pure matter of notational convenience.
From eq. ( 1.4) it is easily seen that the correspondence (7rz)* * maps
11~ (z~ (Vn+~ ) isomorphically onto for all z E 
and all r = 0, ... , n + 1.

This allows to introduce a bilinear pariring ~&#x3E; between vertical vectors
and semibasic 1-forms at z, different from the ordinary one - which, on the
stated objects, would be identically zero - and related to the lifts v 2014~ v,
cr 2014~ (T through the identification

( , ) denoting the ordinary pairing in Vn+1. Notice that, according to

eq. ( 1.5), the functional vanishes identically on V, ( j 1 (Vn+1 ) ) .
(iv) In view of eqs. ( 1.2a, b), each point z E j 1 (Vn+1 ) determines a

corresponding vertical projection Pz on the tangent space (Vn+1 ),
defined by the relation

By duality, this gives rise to a projection Pz on the cotangent space
T~ {z) {1&#x3E;n+1 ) - and, more generally, on the entire exterior algebra

{Vn+1 ) - on the basis of the equation

the symbol J denoting right interior multiplication [30].
From eq. ( 1.6b) it is easily seen that the condition Pz (cr) = 0 is necessary

and sufficient in order for a 1-form 03C3 E T*03C0(z) (03BDn+1) to satisfy (v, cr) = 0
for all vertical vectors v E 

In this respect, the image space of under the map
Pz may therefore be identified with the dual of the vector space

Equivalently, using the isomorphism between 
and Vz(j1(03BDn+1)) given by the vertical lift, as well as the injectivity
of the map (~z ) * *, we may regard the image space (j 1 (~+1)) :=
(7rz)* * P; ( (T~ (z) (Vn+1 ) ) ) as the dual of Vz under the pairing
( 1.5).

Henri Poincaré - Physique theorique



23JET BUNDLE GEOMETRY

DEFINITION 1.2 . - The tensor algebra Dz (jl (Vn+1 ) ) generated by the
spaces Vz (ji and Vz (jl (Vn+1)), regarded as dual to each other
under the pairing (1.5), is called the virtual algebra at z. The totality
D (jl (Vn+1 ) ) o~’ tensor fields T defined on open domains U C jl 
and satisfying T (z) E Dz (jl (Vn+1 ) ) d z E U is called the virtual algebra
over jl (Vn+1 ).

In a similar way one may define the covariant virtual algebra, the

symmetric virtual algebra, the Grassmann virtual algebra, etc.
From a structural viewpoint, the significance of Definition 1.2 lies in the

fact that, for each x E Vn+~, the restriction of the virtual algebra to the
fibre ~x C jl (Vn+1 ) coincides with the tensor algebra of the vector space
Yx (Vn+1 ), i.e. with the "natural" tensor algebra over ~x consistent with
the nature of the latter as an affine space modeiled on Yx (Vn+1 ) . This
provides e.g. a well defined notion of parallel transport of virtual objects
(in particular, of vertical vectors) along the fibres. We shall return on this

point in Section 2.
In local coordinates, given any 03C3 = ao (z) + ai (z ) , eqs.

( 1.2b), ( 1.6b) imply the result

From this it follows easily that the contact 1-forms

form a local basis for the covariant virtual algebra over jl dual

of the under the pairing (1.5). In particular, on

account of the previous discussion, it is also seen that, when restricted to a

single fibre 03A3x, the fields 2014 and the 1-forms a;’ provide an affine basis7~
for the algebra of "free tensors" over in the ordinary sense of the term.

Under a change of jet coordinates, we have the transformation laws

which involve the time variable t only parametrically, thus justifying the
attribute "virtual" assigned to the algebra 

Vol. 61, n° 1-1994.



24 E. MASSA AND E. PAGANI

Remark 1.1. - The homomorphism z ~ : -+ 

may be lifted to an antiderivation (still denoted of the algebra of
semibasic differential forms at z. The argument is entirely straightforward,
and is summarized into the identification

where, for each  E we are denoting by 03C3 the unique
element of defined by the condition =(03C0z)* * (cr). In local
coordinates, we have the explicit representation

i. e. , expressing  in components in the form ( 1.4), and recalling eq. ( 1.7)

(v) Further significant conclusions may be reached by considering
the effect of the projection (1.6a). By composing the latter with the

vertical lift (1.3), we get a homomorphism 7~, sending each vector

( ~1 ) +~t ~r2014 ) into the vertical vector

The correspondence ( 1.11 ) is clearly non-injective, its kernel being
generated by the point z itself, viewed as a vector in 

Further composition of the map ( 1.11 ) with the push-forward (~rz ) * results
in a homomorphism Jz := ~z’ (7fz)* : Tz --+ Tz (vn-~1))~ By
the "quotient law", this identifies a tensor of type (1, 1) at z. By varying
z over jl we end up with a tensor field J E Dl ( jl 
defined uniquely in terms of the intrinsic properties of j1 as the

first jet extension of the fibration R, and therefore endowed with
a universal character (much in the same way as the canonical 1-form
expresses an attribute of every cotangent space).
A detailed account of the role of the tensor J in Lagrangian Mechanics

may be found in ([1], [3]). For a more abstract approach, valid for jet
extensions of fibered manifolds over arbitrary (finite-dimensional) bases,
see e.g. ([4], [31]-[33]). Following [1], we shall call J the fundamental
tensor of jl 

Annales de l’Institut Henri Poincaré - Physique theorique



25JET BUNDLE GEOMETRY

In components, starting with the vector

and recalling eq. ( 1.11 ), as well as the definition ( 1.7), , a straightforward
calculation yields the result

showing that, in any jet-coordinate system, the fundamental tensor has the
canonical representation

In particular, this points out that the tensor J belongs to the virtual algebra

(vi) In the dynamical aspects of the theory, an important role is played
by the so called fiber metric expressing the inertial properties of the system
in study in terms of a smooth, positive definite scalar product ( , ) between
vertical vectors on Vn+1, represented locally through the components

In view of the previous discussion, it is easily seen that the product ( 1.14)
assigns a Euclidean structure to each fibre ~x C j1 E Vn+1,
thus giving rise to a scalar product between vertical vectors on jl 
and to a corresponding isomorphism g : D1 2014~ D1 (jl 
yielding a process of "rasing and lowering the tensor indices) within the
virtual algebra D Recalling eqs. ( 1.3), ( 1.5), ( 1.14), we have
the natural identifications

whence

with ai~ == 8~.
Vol. 61, n° 1-1994.



26 E. MASSA AND E. PAGANI

In particular, by eqs. ( 1.16), the totally covariant expression for the
fundamental tensor J reads

it carries the same information as the fiber metric itself.

As a final remark, we notice that the isomorphism g : VI 2014~

VI (ji based on eq. (1.15b) may also be characterized in terms of
the ordinary pairing ( , ), as the unique map sending each vertical vector
X into a 1-form g (X) satisfying

for all vectors Y on jl The proof follows easily from eq. (1.15b),
and is left to the reader.

1.2. Fiber differentiation

To complete our preliminary scheme, we shall now outline the
construction of two important operations on the tensor algebra

00

D (ji (03BDn+1)) = (B Ds (03BDn+1)), namely the verticalizer, and the fiber

differentiation. Both stem from the fact that, according to the quotient law,
given any differentiable manifold M, the module Di (M) of tensor fields
of type ( 1, 1 ) over M may be identified with the space of F-linear maps
D1 (M) 2014~ D1 (M). This assigns a semig-group structure to Di (M), based
on the composition law (T . W) (X) := T (W (X)) VT, W E Di (M),
X E D1 (M), expressed in component as

In addition to this, every F-linear map W : D 1 (M) ~ D 1 (M) admits
an obvious extension to a derivation ~W of the tensor algebra P(M),
commuting with contractions, preserving type of tensors, and vanishing on
functions [34]. As a fairly obvious example, one may consider e.g. the
derivation 03C6id associated with the identity operator, whose action on an
arbitrary tensor field u E Ds (M) is easily recognized to be

A simple check shows that the correspondence W 2014~ /&#x3E;w preserves the
commutation relations:

Annales de l’Institut Henri Poincare - Physique theorique



27JET BUNDLE GEOMETRY

and satisfies the identity

Coming back to the space jl the presence of the fundamental

tensor J E Di gives rise to a distinguished derivation
-’ (~+1)). henceforth denoted by v, and called

the verticalizer.

In view of the eq. (1.13), the action of the latter is completely
characterized by the relations

X E 7/ E together
with v (t (g) w) = v (t) (g) w + t ~ v (w) Vt, w E D 

Let us now consider in particular the Grassman algebra ~ (jl (Vn+1)). A
straightforward argument then shows that, if A denotes any derivation of
even degree on D (jl (Vn+1))&#x3E; both operations dt /B A and (d ’ A - A - d)
have the nature of antiderivations of G (jl 

DEFINITION 1.3. - The antiderivation defined by the
formula , , , , " _ , " ^"

denoting the derivation (1.18)), is called the fiber differentiation over

On account of eqs. ( 1.20), ( 1.21 ), by direct computation we get the
relation

as well as the anticommutation rule

Eqs. ( 1.22a, b) allow to evaluate the fiber differential of an arbitrary r-form.
In particular, they imply the relations

as well as the results

Vol. 61, n° 1-1994.
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In addition to these, the main property of the operator ( 1.21 ) is stated by
the following j

THEOREM 1.1. - The fiber differential satisfies the ’ identity

Proof - An easy check shows that the product dv is a derivation of
the algebra ~ (~+1)); in order to prove the stated result, it is therefore
sufficient to verify that dv vanishes on functions, as well as on exact
differentials. An indeed, by eqs. ( 1.22a, b), ( 1.23), we have

D

As a concluding remark we observe that, when restricted to the

virtual Grassmann algebra 9 the fiber

differentiation dv has exactly the same formal properties as the usual

exterior differentiation. More precisely, on the basis of eqs. ( 1.22a), ( 1.23),
recalling the discussion in Section 1.1, it is easily seen that the operation
dv acts separately on each fibre 03A3x = ( x ) of j1(03BDn+1), giving rise to
an antiderivation of the Grassmann algebra ~ (E.c) identical to the exterior
differentiation, and consistent with the identification of the as a set of

affine coordinates on and of the as their "differentials".

Remark 1.2 . - The fiber differentiation ( 1.21 ) is not the only
antiderivation of G(j1(03BDn+1)) satisfying the conditions ( 1.22a), ( 1.23),
( 1.24) [i. e. , giving rise to a "natural" action on the fibres of j1(03BDn+1)].
Further comments to this point, centered on the definition of a "covariant"
counterpart of eq. ( 1.21 ), will be presented in Section 2.

2. THE DYNAMICAL CONNECTION

2.1. Linear connections on j1(03BDn+1)

As it is well known, the geometric formulation of Dynamics in the
manifold jl relies on the introduction of the concept of dynamical
flow (or semi-spray, as it is also called by some Authors). Once again,
for a discussion of this approach, we refer to the current literature (see

l’Institut Henri Poincaré - Physique theorique



29JET BUNDLE GEOMETRY

among others, [1]-[3]). For the present purposes, it is sufficient to recall
that a dynamical flow on jl is a vector field Z E D1 (jl 
satisfying the condition

the element z ~ ~ ~z~ at the r.h.s. being viewed as a vector on 
In jet-coordinates, the requirement (2.1) gives rise to the representation

with Zi = Zi (t, q, q) . Any integral curve of a field of the form (2.2) is
automatically the jet-extension of a section ~y : R ~ Vn+1. In this respect,
the concept of dynamical flow is directly involved in the study of the
problem or, more generally, in the representation of a system of
ordinary second order differential equations in normal form.

By eq. (2.2) it is easily seen that the difference between two dynamical
flows is a vertical vector field over jl 

Closely related with the concept of dynamical flow is the identification
of a distinguished class of linear connection on jl whose

importance will be better appreciated in the subsequent development of
the theory.
To start with, we observe that, given any vertical vector field V =

~ 
y~ 

E (~+1)), eq. ( 1.7) and the definition ( 1.20) of the

verticalizer v yield the identity

VY E VI (jl (V~+1)). In particular, this gives

for any choice of the dynamical flow Z and of the vector field
X E VI 

In addition to this, another useful observation, already pointed out in
Section 1 is that, due to the affine nature of the fibration 7r: (14+i) 2014~

each fibre ~x = 7r-1 (x), x E Vn+1 is naturally endowed with a law
of parallel transport, based on the fact that all vertical spaces T~z ( jl 
z E 7r-1 (x) are isomorphic - through the vertical lift (1.3a) - to one and
the same "modelling" vector space Vx 

Vol. 61, n° 1-1994.



30 E. MASSA AND E. PAGANI

From this viewpoint, the class of vector fields "constant" along the fibres
is clearly identical to the totality of vertical fields of the form

i.e., to the totality of vector fields arising as vertical lifts of vertical vectors
on 

With this in mind, the principle we shall adopt in order to single out a
distinguished class S of linear connections on j1 (Vn+1 ) is the requirement
that the covariant derivative associated with any V E s preserve the

geometric structures already present in ~1(~+1). namely the 1-form dt,
the fundamental tensor J, and the parallel transport along the fibres.

All this is summarized into the conditions

for any X E (~+1)), and

for any vertical vector field V E VI (jl and any vertical lift U

of the form (2.4).
In jet coordinates, the requirement (2.5b) is mathematically equivalent

to the n2 conditions

which are intrinsically significant on their own, due to their invariance
under coordinate transformations. In a similar way, eqs. (2.5a) may be
cast in the form

implying e.g. the verticality of Vx Z for any X E VI ( jl and any

dynamical flow Z, as well as the verticality of V for any X and any
vertical vector field V.

In particular, denoting by T the torsion tensor field associated with V,
by eqs. (2.3b), (2.7) we derive the identities

Annales de l’Institut Henri Poincaré - Physique - theorique -



31JET BUNDLE GEOMETRY

valid for arbitrary choice of the dynamical flow Z and for all X E
VI (jl 
THEOREM 2.1. - Let ~ be a connection in the class S, T the associated

torsion tensor field, and Z an arbitrary dynamical flow on jl (Vn+1).
Define two .~’-linear maps PH : VI (jl ~ D1 (jl (Vn+i)),
Q: VI (jl -’ D1 (jl on the basis of the equations

‘dX E Dl (jl (Vn+1)). Then
(i) the definition (2.9a, b) is independent of the choice of the flow Z.

(ii) both operators (2.9a, b) are projection operators. For any point
z E jl (Vn+1), the image spaces Hz := PH (Tz (jl (Vn+1))) and Qz :_

(jl (03BDn+1))) are complementary to each other in Tz (jl (03BDn+1)), in
the sense clarified by the relations

Proof. - For each pair of dynamical flows Z, Z’, consider the vertical
vector V = Z - Z’. A simple calculation then yields the relation

the last step depending on eq. (2.6), and

as a consequence of eqs. (2.3a), (2.6), (2.7). This proves assertion (i).
Also, by eqs. (2.8a), (2.9a, b) it is easily seen that PH and Q satisfy

the idempotence relations

as well as the identity

VX E From these we conclude that ~H and S are

projection operators, and that their image spaces satisfy the first of eqs.
(2.10).

Vol. 61, n° 1-1994.
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Finally, by the definition (2.9b) itself, it follows at once that, at each

points the image space Caz coincides with the

(n + 1)-dimensional subspace of Tz (jl generated by the totality
of vertical vectors and of dynamical flows, all evaluated at z.
At the same time, the image space Hz has dimension not lower than

n, since, for instance, , the vectors PH(~ ~qi ), i = 1,.... , n are linearly

independent, as a consequence of the linear independence of the vectors

2014~, 
i = 1,..., n, and of the identity

following from eqs. (2.8a), (2.9a). The second relation (2.10) then follows
by a dimensionality argument. 0

DEFINITION 2.1. - The operator ~H will be called the horizontal
projection associated with the connection B7. The image space Hz =
~rH (Tz (jl (vn+1 ) ) ) at each point z E jl (hn+1 ) will be called the
horizontal subspace at z. The correspondence z --+ Hz will be called the
horizontal distribution determined by ~ on jl (1&#x3E;n+1 ).
As pointed out in the proof of Theorem 2.1, a (local) basis for the

horizontal distribution is provided by the vector fields

In this sense, the horizontal distribution may be viewed as the image of the
vertical distribution under the map T(Z, ’) [whose action
on the vertical subspace is indeed independent of Z, as a consequence
of eq. (2.6)].

By eqs. (2.8b), (2.12), (2.13), recalling the definition of the verticalizer
v, we get the relations
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Together with the results pointed out in the proof of Theorem 2.1, these
allow to draw the following conclusions:

~) for any choice of the dynamical flow Z, the vector fields

{ z, cL 20142014, i = 1, ... , n} form a (local) basis for the contravariant tensor
algebra over jl The corresponding dual basis includes the temporal
1-form cM, the contact 1-forms ú.;Í, and ?~ further 1-forms

with

Under coordinate transformations, in addition to eqs. ( 1.8) we have the
transformation law

whence also, by duality

b) in terms of the basis described in a), the projection ~H is given by
the formula

In a similar way, on account of the verticality of Z, one has the identity

which, together with eqs. (2.9b), (2.15), provides the representation

All conclusions reached so far hold identically for any connection
V E S, as a consequence of the assumptions (2.5a, b). The resulting
characterization of all class S is still quite general, and leaves room
for further specializations. We now take advantage of this, and restrict
the choice of the connection V, by adding three further requirements,
namely:

(i) the operators PH and 6 form a complete set of complementary
projections, in the sense that the kernel of each one coincides with the
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range of the other, or, what is the same, that their sum coincides with the
identity operator. In view of eqs. (2.18a, b), this amounts to requiring

Taking the condition into account, eq. (2.19a) may be written
in the equivalent form

(ii) the covariant derivative associated with V commutes with the
horizontal projection PH (and thus, as a consequence of (i), also with

S). In formulae

or, more specifically, in terms of the basis {Z, i, ~ ~qi, z = 1,..., n}
introduced above

(iii) the curvature tensor R associated with the connection V satisfies

for any pair of dynamical flows Z 1, Z2.
In terms of bases, taking eq. (2.6) into account, and expressing each

Zi, (i = 1, 2) as Z + Vi, Vi E D1 ( jl (Vn+1 )), eq. (2.21a) is summarized
into the conditions

As far as the meaning of the stated conditions is concerned, one may
notice that the first two provide a "natural" strengthening of the properties of
~H and Q proved in Theorem 2.1; the requirement (iii), on the contrary, is
more technical, even if intuitively appealing: in a sense, the ansatz (2.21 a)
may be thought of as the simplest conjecture concerning the quantity
R ( Z 1, Z2 ), much in the same way as the requirement of vanishing torsion
singles out the Levi-Civita connection as the "simplest" metric connection
in a Riemannian manifold.

The role of the previous conditions is clarified by the following
THEOREM 2.2. - Let S C s denote the totality of connections ~ E s

satisfying the requirements (i), (ii), above. Also, let Z denote any given
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dynamical flow over j1 (Vn+1). Then, each ~ E s is completely determined
by the knowledge of the covariant derivatives B7 Z’ Z for all dynamical flows
Z’.

Proof. - In (local) jet coordinates once the dynamical flow Z has been
chosen, the knowledge of Z for all possible flows Z’ relies on the
assignment of the (n -f- 1) vertical vectors

From these, in order to characterize the connection V uniquely, we have
to evaluate:

- the explicit representation of the horizontal vector fields a2 ;

- the connection coefficients of V in the basis Z, 2014 .

To this end, we observe that, in view of eq. (2.13), the requirement
(2.19b) gives rise to the identification

Comparison with the definition (2.16) of the coefficients provides the
relations

which, inserted once again in eq. (2.23), yield

with

Also, by eqs. (2.24), (2.25), eq. (2.23) may be written in the equivalent form

Notice that, in view of eq. (2.19b), eq. (2.25) determines not only the
horizontal vectors ~2 - through eq. (2.24) - but also the connection

coefficients involved in the description of ~z ~ ~qi.
Vol. 61, n° 1-1994.
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From the first of eqs. (2.7), taking eq. (2.14a) and the definition ( 1.20)
of the verticalizer v into account, we derive the further identity

Together with the requirement (2.20b), this provides the relation

thus reducing the evaluation of the quantities B7 x 8i to the knowledge of

Finally, by the requirement (2.21b), taking eq. (2.26) into account, we
obtain the relations

The previous results provide a representation of the whole set of

connection coefficients of V in the basis {Z, cL ~ ~qi}. The situation
is summarized into the following table

completed by eqs. (2.22), and by the relation

with

and with ij defined by eq. (2.25).
This proves that, once the dynamical flow Z has been (arbitrarily) fixed,

the assignment of the quantities (2.22), together with the requirement
V E S, determines the connection V uniquely.
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Conversely, for any given set of quantities (2.22), if we use eqs. (2.24),
(2.25), (2.29a, b, c), (2.30a, b) in order to define a lienar connection over

jl a straightforward check shows that V meets all the requirements
involved in the definition of the class S. D

2.2. The dynamical connection

In the analysis developed so far, the concept of dynamical fiow plays
a minor role, its introduction being involved in the representation of
an arbitrary connection V E s in a suitable basis, but not in the

intrinsic characterization of ~ as a geometrical object. At the same time,
however, Theorem 2.2 suggests a natural link between dynamical flows and
connections, as pointed out by the following

COROLLARY 2.1. - For a given dynamical flow Z over jl there

exists a unique connection ~ E s satisfying the condition

The proof follows at once from Theorem 2.2, by identifying V with the
unique connection in the class S corresponding to the ansatz A = Bi = 0
(~ B7 z Z = Z = 0), and observing that, as a consequence of
eqs. (2.30a, b), this implies also Z = 0 and, therefore, the validity
of eq. (2.31).

DEFINITION 2.2. - The connection ~ E s determined by the ansatz (2.31 )
will be called the dynamical connection associated with the flow Z.
The importance of Definition 2.2 lies on the fact that, in Dynamics,

the relevant geometric object is not the jet bundle jl alone, but,
rather, the pair Z ) formed by j1(03BDn+1), and by a distinguished
dynamical flow Z over 

In this respect, the dynamical connection associated with Z may be
interpreted as the unique linear connection over jl preserving all
the geometrical structures of the pair Z ) , including the flow
Z itself. Once again, the situation resembles very closely what happens
in Riemannian Geometry, when, starting with a differentiable manifold
M, endowed with a fundamental form 03A6 = gij dxi ® one singles
out the Levi-Civita connection V over (M, I»: pursuing this analogy,
the requirement (2.31 ) is now the equivalent of the metricity condition
B7 I&#x3E; = 0, while the condition V E s is the counterpart of the requirement
of vanishing torsion, in the sense already pointed out in Section 2.1.
The significance of the dynamical connection is further clarified by obser-

ving that the assignment of a dynamical flow Z determines a corresponding
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longitudinal projection Pz : according
to the formula 

For any V E s, taking eq. (2.9b) into account, it is easily seen that the
difference

identifies a projection operator Pv : VI (’i (V~+1)) -&#x3E; VI (jl 
depending explicitly on Z, and sending each tangent space Tz (jl 
z E jl onto the vertical subspace Vz

In this way, recalling also the definition (2.9a) of PH, we end up with
a complete set of projections PH, PV, acting on each tangent space

(~+1)), and canonically related to the direct sum decomposition

in which vz is a shorthand for Yz ( jl (~+1)). while L(Zz) denotes the
1-dimensional subspace generated by Z.
The previous conclusion holds true as a consequence of the results

established in Section 2.1, no matter how we chose the connection V E S..
A simple check, however, shows that a necessary and sufficient condition
in order for the covariant derivative induced by ~ to preserve the

decomposition (2.34) [i. e., to commute separately with each of the projection
operators (2.32), (2.33), and not merely with their sum], is that V coincide
with the dynamical connection associated with Z. The proof is entirely
straightforward, and is left to the reader.

On the basis of the previous discussion, we may assign a precise
geometrical meaning to the notion of horizontal distribution [or, what
is the same, to the decomposition of each tangent space into the direct
sum (2.34)] determined by a given dynamical flow Z, the definition relying
on the projection operators induced by Z, either directly, or through the
associated dynamical connection 1.
The following statement relates the present approach to a classical result

obtained by Crampin [1] (in this respect, see also ([3], [35], [36]), mainly

1 A closer analysis shows that, in the construction of the projection operators, one of the
assumptions used in the definition of the class S - namely, the requirement (2.2 la) - is not
explicitly involved. This fact may be used in order to generalize the present approach, e.g. by
reducing (or modifying, or eliminating) the restrictions on the curvature tensor of V. It goes
without saying that any such modifications would be reflected in the connection coefficients
involved in the evaluation of the derivatives 
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in connection with a different type of approach to the theory of connections
on jl 

THEOREM 2. 3. - Given a dynamical flow Z over j1 let

J := £zJ E Dl (jl denote the Lie derivative along Z of the
fundamental tensor ( 1.13). Then, the direct sum decompposition (2.34)
induced by Z reflects the spectral structure of J - viewed as an .~’-linear
map on VI (jl (V~+1)) - in the sense that at each point z E jl the

subspaces Hz, Yz and L (Zz) coincide with the eigenspaces of the operator
Jz : Tz ( j 1 ---+ Tz ( j 1 (Vn+1 ) ) corresponding to the eigenvalues
-1,1 and 0 respectively.

Proof - In terms of the projection operators Pv, Pz involved in
the splitting (2.34), the proof of the stated result relies on checking the
relation (to be understood in the operatorial sense)

And indeed, by direct computation, recalling eqs. ( 1.13), (2.15), (2.18a, b)
(2.19a), (2.26), (2.33), as well as the assumption 0, we get the
identifications

whence the result. D

Remark 2.1. - For convenience of the reader, we collect here the main
bulk of formulae pertaining to the dynamical connection V, and to the

natural basis Z, i, ~ ~qi} associated with a given dynamical flow Z. All
expressions are special cases of previous results, or follow from these by
direct computations:
- explicit representation of the vectors of the 1-forms vi, and of the

connection coefficients:
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with

a
- structure equation for the basis Z, a2, 

~qi}
:

and similarly

with

From eqs. (2.41)2014(2.43) one gets the auxiliary relations

as well as the identities
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Remark 2. 2. - By means of the dynamical connection V, it is possible
to define two "covariant" antiderivations, Dv and Dh of the Grassmann

algebra ~ (jl (~+1)), henceforth called the vertical differentiation and the
horizontal differentiation, described explicitly by the relations

E 9 (jl (V~+1 ) ) . An easy check shows that both operations (2.46a, b)
have indeed the nature of antiderivations, and that, although defined in
terms of bases, they have an invariant behaviour under jet-coordinate
transformations, so that, as geometrical objects, they depend only on the
connection V (and, through V, on the dynamical flow Z).

By the definitions (2.46a, b), using eqs. (2.39a, b, c), we get the relations:

From these, one can easily see that the vertical differentiation Dv satisfies
the identity

and that the restriction of Dv to the virtual Grassmann algebra ~ ( j 1 
has the same effect as the fiber derivative dv introduced in Section 1.

For later use, we also observe that the antiderivations Dv, Dh and the
derivation ~z are related b the identity

Indeed, since both sides of eq. (2.49) have the nature of antiderivations,
it is sufficient to compare their action on functions and on 1-forms. The

explicit calculations are left to the reader.

By eqs. (2.48), (2.49) we get the further identity

In a similar way, we may evaluate the antiderivation 

Recalling eqs. (2.41b), (2.46b), as well as the definition of the curvature
tensor, a straightforward computation yields the result
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where, by comparison with eqs. (2.39), (2.41b), (2.43b), (2.45b), R (Z, 8i
is given by the relation

[so that, strictly speaking, the term R ( Z, 9,) in eq. (2.51 a) denotes the
derivation associated with the tensor (2.5 Ib) through the algorithm indicated
in Section 1.2].

Remark 2. 3. - The difference is a derivation of the tensor algebra
D (jl (~+1)). which commutes with contractions, vanishes on functions,
and preserves types of tensors. Therefore, it admits the representation

in terms of a suitable tensor field W E vi (see Section 1.2).
A straightforward calculation provides the identification

2.3. The time derivative

A deeper insight into the role of the dynamical connection may be gained
by analysing how the concept of relative time derivative (i. e. of time-
derivative with respect to a given frame of reference) may be implemented
in the Lagrangian framework. For simplicity, we shall restrict our attention
to discrete mechanical systems, formed by N material points Pi,..., P N ,
with masses m 1, ... , mN. In this connection, we recall the following
preliminary concepts [2] :

(i) every frame of reference ~ determines a corresponding relativization
process, summarized into a set of applications

assigning to each admissible configuration of the system, at any instant

t, the positions of the points Pi,..., P N in the Euclidean 3-spaces E3
associated with ~.
The first jet-extension of the maps (2.54) provides a further set of

applications
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expressing the velocities of the points of the system in the frame of

reference ~.
In jet-coordinates, we have the explicit representation

Moreover, by the Absolute Space Axiom, the representation ( 1.14) of the
components of the fiber metric may be written in the equivalent form2014

for each choice of the frame of reference ~, the dot denoting ordinary
scalar product in the associated 3-space ~3.

(ii) every vertical vector X = X~ 2014~ E D1 (W determines an

N-tuple of maps Ui : j1 --+ T (~3), i = 1, ... , N, i.e. an N-tuple
u2 (t, q, q) of vector valued functions over jl through the definition 2 -

Conversely, every N-tuple of vectors u2 (t, q, q) E T(£3), associated
with the points Pi, and depending on the kinetic state of the system,

determines a corresponding vertical vector Y = Yr ~ ~qr according to the
identification

g denoting the process of lowering the indices within the virtual algebra
given by eq. ( 1.16).

2 This correspondence may be extended to the vertical vectors over Vn+ 1, through a
preliminary use of the vertical lift ( 1.3).
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As it was to be expected, by applying the process (2.58b) to the family
of vectors Ui described by eq. (2.58a), on account of eq. (2.57) one gets
the identification

This points out the injectivity of the correspondence X 2014~ (ui,..., uN )
described by eq. (2.58a), as well as the surjectivity of the correspondence
(2.58b). Further details on this subject may be found in [2].

After these preliminaries, let us now turn our attention to an arbitrary
world-line in j1 i.e. to a curve  obtained as jet extension of a
section 03B3 : R ~ 03BDn+1, and thus representing an admissible evolution
of the system.

For each vertical vector field X = defined in a neighbourhood9~
we indicate by : R ---+ T the restriction of X to

the curve i.
On the basis of the previous discussion, a reasonable definition of time-

derivative of X along  relative to the frame of reference  is then provided
by the identification

in which the vectors Ui = Ui (t) are determined by through eq. (2.58a),

while 2014 denotes the time-derivative in the usual sense.
The operation (2.59) has the nature of a directional derivative: it seems

therefore natural to look for a geometric counterpart of the latter in terms
of a suitable linear connection, induced by the choice of the frame of
reference.

This viewpoint fits quite nicely into the framework developed in
Section 2.2, the link being provided by the fact that every frame of reference
J determines its own dynamical flow Zð over jl completely
characterized by the conditions
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in which xi (t, q) and Vi (t, q, q) are the functions involved in the
relativization process (2.56). Further details on this point may be found
in [2] 3

In coordinates, making use of the representation ,

and recalling the well known identities ~xi ~qk = 20142014, Z = 20142014, as
well as the expression (2.57) for the fiber metric, by eq. (2.60) we obtain
an explicit characterization of the components Z~ as solutions of the linear
algebraic system 4

We can now state

PROPOSITION 2.1. - The time derivative relative to the frame of reference F
along a world-line i coincides with the absolute derivative along i induced
by the dynamical connection ~ associated with the flow Z~.

Proof - By eq. (2.56), we have the identity

whence also, taking eq. (2.61 ) into account, and recalling the expression
(2.40) for the connection coefficients TS ~

3 Dynamically, eqs. (2.60) characterize the integral curves of Z~ as representing a special
class of motions in which the relative accelerations of the points of the system in the frame of
reference F are entirely due to the presence of the constraints - i.e. to the reactive forces -
without the intervention of active forces of whatsoever type.

1 
N

4 It goes without saying that, denoting by T (t, q, q) = ! miv2i the kinetic energy of2 
z==l

the system in the frame of reference ~, eq. (2.60) may be written in the more familiar form

as efficient as eq. (2.61) in order to evaluate the components Z~ .
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With this in mind, denoting --+ jl an arbitrary world-line
in jl and by X = X’ 20142014 a vertical vector field defined in a

dg~
neighbourhood of , by eqs. (2.58a), (2.59), (2.62) we obtain the result

which agrees with the expression of the absolute derivative of X along 
determined by the connection V. D

Remark 2.3. - In view of eq. (2.63), the representation of the operator

( is completely determined by the knowledge of the coefficients sk,

and therefore involves only a part of the information stored in the dynamical
flow Z~. From a physical viewpoint, this is exactly what one would expect
on the basis of the fact that, according to Poisson’s formulae, the equality
between time derivatives relative to different frames of reference ~, 3~ does
not require the vanishing of the mutual acceleration - i. e. the identification
of the associated dynamical flows Z~, Z~ - but only the absence of a
relative angular velocity.
To put this statement on quantitative grounds, we stick to eq. (2.62), as

well as to the analogous one

written with respect to a second frame of reference 3~.

Denoting by 0 a point at rest in ~’, and resorting to the standard

techniques of Relative Kinematics - in particular, to the Axiom of
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Absolute Space, providing an identification, at any instant t, of the 3-

spaces E3 and ~’3 associated with the given frames - we have the familiar
relations 5

whence also, applying eqs. (2.62), (2.64), and recalling that xo. x~ and cv
are all independent of the variables qi,

The virtual 2-form

will be called the angular velocity tensor of the frame ~ with respect to ~’ .
In terms of Z~, Z~~, introducing the vertical field V = Z~~ - Z~, and

recalling eqs. (2.62), (2.64), (2.65), (2.66), we obtain the representation

In a similar way, by eqs. (2.63), (2.65), (2.66), we get the analogue of
the Poisson formulae in 71 :

the notation Ex denoting the interior product in the virtual Grassmann
algebra, evaluated with respect to the pairing ( 1.5).

5 To avoid notational ambiguities, we are denoting by x the ordinary cross product in E3.
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3. APPLICATIONS

3.1. Generalized potential

In this Section we discuss a few applications of the concepts introduced
so far. These include an introductory review of the concept of generalized
potential, as well as a geometrical approach to the so called inverse problem
of Lagrangian Dynamics, along the lines of Camprin, Prince and Thompson
[ 1 ], Sarlet [ 12] and Henneaux [ 14], [27]. For a further reading on this
subject, see also ([3], [10], [ 11 ], [ 13], [37]).
To start with we consider the relation between semi-basic and virtual

differential forms over jl provided by the antiderivation ( 1.9),
focussing now our attention on the case of fields of r-forms a- obtained
as pull-back of fields over namely  = 7r* E Gr(03BDn+1). We

will denote by !7 the virtual ( r - 1 ) -form related to
a- by the condition

mathematically equivalent to 6

for any choice of the dynamical flow Z over )1 (V",+1). Using the notation

(see eq. ( 1.4)), and taking eq. ( 1.10) into account, we have the explicit
representation

Conversely, by eq. (3.3), recalling eqs. ( 1.7), ( 1.22a), ( 1.23), we get the
inversion formula

showing that, for any r &#x3E; 0, the correspondence ~T (Vn+1 ) -
(j1 given by eq. (3.1a), is injective.

THEOREM 3. 1. - A necessary and sufficient condition in order for a virtual
(r - 1) farm U = Ui2...irwi2 ^ ... n wir (r &#x3E; 1) over j1 (Vn+l) to admit
the representation (3.1b) in terms o, f’ an r-form 03C3 E is that the

6 For simplicity, in what follows, we shall identify each differential form over 03BDn+i with
the corresponding pull-back on j1 (Vn.~1 ), thus dropping any notational difference between ~
and ~.
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indexed set ofpartial derivatives ~Ui2...ir ~qi1 be antisymmetric with respect to
the whole set of indices i1,..., ir .

Proof - The necessity of the condition follows easily from eq. (3.3).
As for sufficiency, we observe that, as a consequence of the antisymmetry
requirement, the components Ui2._,ir satisfy the relations

L~., they depend linearly on s, thus admitting a (unique)
representation of the form

with and depending only on t, q 1, ..., qn. The conclusion
then follows once again from eq. (3.3). D

Remark 3.1. - When r == 1, in place of Theorem 3.1 we have the simpler
criterion: a function f (V~+1 ) ) admits the representation f = ZJ cr,
r E (V~+1) if and only if f depends at most linearly on the qi’s. The
proof is self-evident, and is left to the reader.

Let us now examine the interplay between eq. (3.1b) and the operation of
exterior differentiation in G (03BDn+1). To this end, for each a- E (03BDn+1),
we consider both virtual forms U = Z J or, and Q = Z J In view of the

inversion formula (3.4), we have then the relation

independently of the choice of the dynamical flow Z. In local jet-
coordinates, setting U = A ... n wir, this gives rise to the

explicit representation

For r = 1 the latter yields back - up to a sign - the usual relation between
generalized potential and Lagrangian components of the active forces. In
view of this fact, for each r &#x3E; 1, the (r - 1)-form U = Z J o- will be called
a generalized potential for the r-form Q = ZJ dr.
A deeper insight into the role of eq. (3.5) is gained by adopting a slightly

different viewpoint. To this end, to each dynamical flow Z over )1 (~+1),
Vol. 61, n° 1-1994.
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we associate an operator ~z : C (jl --~ ~ on the basis
of the relation

In view of the previous discussion, we have the commutative diagram

In particular, the relation 3.5 may be written more synthetically as

In addition to these fairly obvious remarks, the importance of the
definition (3.7) lies in the fact that, through the latter, the operation at
the r.h.s of eq. (3.5) is no longer restricted to differential forms of the
special type (3.1b), but is extended (in a Z-dependent way) to the entire
Grassmann algebra over j1 (Vn+1). As an illustration of the usefulness of
this viewpoint, we state

THEOREM 3. 2. - Let Q be a virtual r-form (r &#x3E; 0) over jl Then:

(i) a necessary condition for Q to "be a potential", i.e. to admit the

representation Q = ZJ cv, c,v E 7r* (1&#x3E;n+1)) is that the (r -f- 1) form
03B4ZQ be independent of the choice of the dynamical flow Z. A sufficient
condition to Q for be a potential is that 03B4ZQ be a virtual form f’or at least
one choice of Z.

(ii) a necessary condition for Q to admit the representation (3.9) in terms
of a generalized potential U is the validity of the relation

A sufficient condition for the representation (3.9) to hold is that the equation
= 0 be satisfied for at least one choice of the flow Z.

Proof - As pointed out at the beginning of this Subsection (see
the comment following eq. (3.1b), if the representation Q - Z J úJ,
cv E 1r* holds, it holds independently of the choice of
the flow Z. Taking the commutativity of the diagram (3.8) into account
if follows easily that, under the stated assumption, SZ f~ = Z J dcv too is
independent of Z.

Annales de l’Institut Henri Poincare - Physique theorique



51JET BUNDLE GEOMETRY

Conversely, assume that, for a given dynamical flow Z, the (r + 1)-form
03B4ZQ belong to the virtual Grassmann algebra 9 (jl (03BDn+1)). In view of
eq. (3.7), this is mathematically equivalent to the n independent relations

i. e., by explicit computation

Therefore, under the stated assumption, , the indexed famil y ~Qi1...ir ~qh is

antisymmetric with respect to the whole set of indices h, z 1, ... , ir. The
existence of a representation of the form Q = ZJ ~, (j ~ Tr*~-~ (1&#x3E;n+1 ) is
then a consequence of Theorem 3.1. This proves statement (i).
To verify statement (ii), consider first the case when Q admits a potential

!7 = ZJ 7; by definition, this implies Q = ZJ whence, by
comparison with the inversion formula (3.4)

This establishes the first part of (ii). Conversely, assume that, for a given
dynamical flow Z, the condition 03B4ZQ = 0 holds true. Then, taking statement
(i) into account, we see that Q admits the representation Q = Z J (j, with
w E subject to the condition ZJ = !)z0 = 0. By the

injectivity of the map --+ ~T ( jl described by
eq. (3.1b), this implies dw = 0, whence, locally, w = To sum up, under

the stated assumption, Q may be expressed as Q = ZJ E 7r*~(V~+i),
i.e. Q = with U = ZJ or. D

Remark 3.2. - Exactly as it happened for Theorem 3.1, Theorem 3.2
too breaks down when r = 0. In this case, writing F in place of Q,
eq. (3.7) gives

From this we can draw, among others, the following conclusions:

(i) bZF is always a virtual 1-form for any choice of the dynamical flow
Z, and of the differentiable function F E J~ (jl (V~+1)). A necessary and
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sufficient condition in order for F to admit the representation F = Z J cv,
w E is that be independent of the choice of Z.

(ii) in a similar way, a necessary and sufficient condition for F to admit
the local representation is that the
relation = 0 holds for all possible choices of the dynamical flow Z.
On the contrary, the validity of = 0 for a single dynamical flow Z, has
now an entirely different meaning, and has to be regarded as a statement on
Z, expressed in the form of a linear algebraic system for the components
Zi ("Lagrange’s equations"), rather than as an effective condition on the
function F, apart for the requirement of algebraic compatiblity of the
system itself.

3.2. Helmholtz’s conditions

The results stated in Theorem 3.2 play an important role in the so called
inverse problem of Lagrangian Mechanics, i.e. in the identification of a
suitable set of necessary and sufficient conditions to be satisfied in order
for a given dynamical flow Z to be derivable - locally - from a non-singular
Lagrangian L, through the Lagrange equations 7

In view of eqs. (3.7), (3.10), eq. (3 .11 ) may be written in the equivalent
form

with

expressing the Poincaré-Cartan 2 form of Z.
In comparison with the usual way of looking at Lagrange’s equations, the

"inverse" nature of the problem formulated above is clear: the dynamical
fiow Z is now regarded as given, and the emphasis is on the integrability
of eqs. (3.11 ), viewed as a system of partial differential equations for the
unknown L. When the system is integrable - or, more precisely, when a
solution L exists within the class of non-singular functions over jl 
- Z itself is called a Lagrangian flow.

7 Here and in the following, the "non-singularity" of a function f E will be

identified with the non singularity of the corresponding Hessian matrix a2 . f II.
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A significant insight into the nature of the inverse problem is achieved
by replacing eq. (3 .11 ) with the iterated one

Sure enough, every solution L of eq. (3.11) is also a solution of eq. (3.14).
Conversely, a straightforward application of Theorem 3.2 points out the
following basic facts:

(i) any function U (t, q, q) depending at most linearly on the q’s - 
any "potential" U = ZJ E 7r* (91 (~+1)) - is automatically a solution
of eq. (3.14). We shall call this a trivial solution.

(ii) to each solution L* (t, q, q) of eq. (3.14) one can always associate
- locally - a trivial solution U (t, q, q) in such a way that the sum

L = L* +7 satisfies eq. (3.11 ).
Statement (i) is a straightforward consequence of the commutativity of the

diagram(3.8) == 0).
The proof of statement (ii) is similar: the relation = 0

is in fact sufficient in order for the 1-form to admit, locally, a
generalized potential U, i.e. to satisfy (or, what is the
same, ðz (L* + U) = 0), with U depending at most linearly on the q’s g.
We have thus proved

COROLLARY 3.1. - A necessary and sufficient condition in order that a
given dynamical flow Z be a Lagrangian one is that eq. (3.14) admits at
least one solution within the class over j1 (Vn+1 ) .

Remark 3.3. - If we regard two solutions L, L’ of eq. (3.14) as

equivalent whenever they differ by a trivial solution, each equivalence
class of solutions identifies a possible Lagrangian L for the flow Z, up to
a gauge transformation L 2014~ L + Z ( f ), f E 7r* (V~,+1 ) ) . The number
of "inequivalent" (i.e., non gauge-related) Lagrangians associated with Z
is therefore identical to the number of equivalence classes under the stated
relation. In this connection, see e.g. ([14], [38]).

Remark 3.4. - The content of Corollary 3.1 may be extended to the
context of singular Lagrangians, by replacing the requirement of non-
singularity with the weaker one of non-triviality, understood in the technical
sense indicated above.

8 In view of the discussion in Remark 3.2, it is easily seen that the previous argument
determines the potential U - and, therefore, also the Lagrangian L - only up to arbitrary
transformations of the form U --i U + Z ( f ), f E 7r* (.~ 
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We shall now discuss the integrability conditions for eq. (3.14). To
achieve this goal, once the dynamical flow Z has been given, we have
at our disposal the entire machinery described in Section 2 (dynamical
connection, natural bases, etc.). Within this context, we observe that, for
any function F E (~+1)), eq. (3.10), together with the commutation
relations (2.41b) and the characterization (2.38) of the field 9,, provides
the representation

whence also

On the other hand, by eqs. ( 1.22b), ( 1.24), (2.45a), we have the identities

Eq. (3.15) may therefore be written in the form

Together with eq. (3.7), this provides the representation

valid for any function F E .~ (j1 (vn+1~~,
Eq. (3.17) implies the following statement, rephrasing, with a few minor

differences, an analogous result proved in [ 1 ) .

THEOREM 3. 3. - A necessary and sufficient condition in order for eq. (3.14)
to admit a solution in the class of’ non-singular functions over j1 (03BDn+1) is
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the existence of a 2-form [2 E ~2 (jl (1&#x3E;n+1 ) ), of maximal rank, satisfying
the relations

Every 2 form H with the stated properties is automatically a Poincaré-
Cartan 2 form for the flow Z.

Proof - The necessity of the condition is clear. Indeed, if F denotes

an arbitrary, non singular solution of eq. (3.14), taking eqs. ( 1.18), ( 1.20),
( 1.21 ), (3.13) into account, it is easily seen that the 2-form

satisfies the relation

Conversely, suppose that a 2-form H of maximal rank exists, satisfying
the whole set of requirements (3.18a, b). By eqs. (3.18a), recalling the
definition of the verticalizer v in terms of the fundamental tensor, as well

as the identification J = £z J, we get the relations

Making use of the representation (2.36) for the tensor J in the natural basis
associated with the dynamical flow Z, it is easily seen that the most general
2-form of maximal rank satisfying the conditions (3.20) is necessarily of
the form

with ai~ = a~ 2, and det 0. From this we get also

Therefore the condition v (dH) = 0 is mathematically equivalent to

~aij/~qk = to the existence of a representation of the form

ai~ = Together with the symmetry property ai~ = this implies
also f i = whence 
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Collecting all previous results, and recalling eq. (3.17), we conclude that
any 2-form of maximal rank satisfying eqs. (3.18a, b) is necessarily of the
form (3.19), with F non-singular, and subject to the single condition

This establishes the sufficiency part of the Theorem. Finally, let us check
that, under the stated assumptions, Q is a Poincare-Cartan 2-form for the
dynamical flow Z. To this end, recalling the discussion at the beginning
of this Subsection, we observe that, whenever H admits the representation
(3.19) in terms of a non-singular solution of the equation 8z 0, it
admits also the representation

with L satisfying the stronger condition = 0, i. e., playing the role
of a Lagrangian for Z in the sense of eq. (3.11 ). The required conclusion
then follows from the identity (3.16), which, together with the stated
characterization of L, implies the relation

identical to the definition (3.13) of the Poincare Cartan 2-form of Z. D

In view of the stated result, the inverse problem is now reduced to a
discussion of the solvability of eqs. (3.18a, b) within the class of exterior
2-forms of maximal rank.

The analysis is simplified by the fact, already pointed out in the proof of
Theorem 3.3, that the most general 2-form consistent with the requirements
(3.18a) is necessarily of the type

More precisely, taking eqs. ( 1.20), (2.52) into account, it may be seen that,
within the class of differential forms admitting the local representation
(3.23), eqs. (3.18a) are reflected into the pair of conditions

W denoting the tensor field (2.53). Indeed, by direct computation, starting
with eq. (3.23), we have
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This fact, together with the identification (2.52), shows that the condition
= 0, alone, is equivalent to the pair of relations (3.24), while the

request v (H) = 0 - which, in the present case, reduces to the symmetry
condition ai~ = follows identically from these.

In a similar way, recalling the definitions (2.46a, b) of the covariant
differentials, as well as eqs. (2.47a), (3.21 ), it is easily seen that, within the
class of differential forms of the type (3.23), eq. (3.18b) may be written
more simply as

A better insight into the nature of eqs. (3.24) is gained by introducing
the iterative notation

and observing that in view of the algorithm pointed out in Section 1.2, this
gives rise to the following relations (to be understood in the operatorial
sense) :

By comparison with eqs. (3.24), we have then the inductive scheme

mathematically equivalent to

Therefore, any 2-form H satisfying the system (3.24) will automatically
satisfy the entire algebraic system (3.28).
To formalize this fact, we denote by T  )1 (Vn+1) the vector bundle

formed by the totality of 2-forms (~+1) admitting the

representation ai~ (vi)z /B Also, at each z E jl (Vn+1) we
denote by C Tz the simultaneous kernel of the family of operators
~~yV~k~ , 1~ = 0,1,...} in 7~.
A dynamical flow will be said to be non-singular on an open domain

U C jl (Vn+1) if and only if the set 1C (!7) := U 1Cz may be given the
zEU

structure of a vector bundle over U, i. e. , roughly speaking, if and only if
the dimension of the subspaces C Tz is constant on U.

In general, requiring Z to be non singular over the whole of j1 ( Vn + 1 )
may turn out to be too restrictive. In most cases of real physical interest,
however, Z happens to be non singular "almost everywhere", i.e. up to a

subset nowhere dense in )1 (Vn+1 ).
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In any case, if Z is non-singular on U, the totality of sections C/ 2014~ J’C (U)
is a module - henceforth denoted by x ( U ) - over the ring ~" (!7).
An important feature of ~(!7) is its closure under the operator Vz.

Indeed, by the very definition of the dynamical connection, the module
of section 0 : !7 2014~ T is closed under Vz. In particular, if H belongs
to the submodule x (!7), we have also ~w~k&#x3E; (2) = 0 = 0,1,..., 
by eq. (3.27)

so that, by definition, is still an element of x (!7).
Following Sarlet [ 12] and Henneaux ([ 14), [27]), we now take advantage

of the fact that, once the 2-form n is specified on an initial hypersurface
io : jl identified with (an open subset of) the slice t = to,
the equation = 0 determines H uniquely in a neighbourhood of ~o
(namely, in the "world-tube" obtained as image space of (2014c, e) x ~o
under the local 1-parameter group of diffeomorphisms generated by Z).
Therefore, locally, the study of the solvability of the system (3.18a, b) in
jl may be "pulled-back" to the hypersurface ~o, and reduced to
the identification of a suitable set of necessary and sufficient conditions to
be imposed on the 2-form OlEo E 92 ( ~o ), in order that the subsequent
solution of the Cauchy problem

satisfy the whole set of equations (3.18a, b).
As a preliminary step in this analysis, we observe two basic facts:

(i) all the operators ~W ~ k~ , l~ = 0,1, ..., as well as the covariant

differentials Dv, Dh defined in Section 2 have the nature of "internal

operators" in in the sense that their action on an arbitrary 2-form H at
a point z E Eo depends uniquely on the values of H on 2;0;

(ii) in addition to eqs. (3.25a, b), (3.26), the system (3.18a, b) implies also

In view of assertions (i), (ii) above, we obtain the following set of

necessary conditions, satisfied by the initial value any solution H

of the system (3.18a, b):
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[equivalent to (OlEo) = 0 b k = 0,1,..., with OlEo of the form
(3.23)], and

Conversely we have the following.

THEOREM 3. 4. - Let the dynamical flow Z be non singular on the open
world-tube U generated by an initial slice Eo. Then, for each choice of
the 2-form 03A9|03A30 eonsistent with the requirements (3.31 a, b), the solution
° of the Cauchy problem (3.29) satisfies the whole system (3.18a, b) in a

neighbourhood of Eo.

Proof - Let r denote the dimension of the fibres of the vector bundle
l~C (U) described above. If r = 0, there is nothing to prove, since the only
2-form satisfying the whole set of conditions (3.31 a) is then 03A9|03A30 = 0.

If r &#x3E; 0, for each 03B6 E Eo we can find an open neighbourhood V  03B6,
and r sections o-(a} : V -~ lC (V ) such that

(i) V is a world tube, generated by dragging the intersection V n Eo
along the integral curves of Z;

(ii) the 2-forms a = l, ... , r form a basis for J’Cz, V z E V .

In view of (ii), every section f2 E x (V) may be expressed locally as

Noting further that, as pointed out in the previous discussion, the fields
B7z are still in the class x (V), we have a representation of the form

whence, going back to eq. (3.32)

From this it follows at once that, for each choice of the initial values

i. e. , for each choice of OlEo consistent with the requirement (3 . 31 a)
- there exists a unique solution H E x (V) of the Cauchy problem (3.29),
defined in a neighbourhood of V n Eo. By the very definition of the class
x (V), the 2-form H satisfies

Therefore, all is left to prove is that, if 03A9|03A30 is subject to the further

requirements (3.31b), the 2-form 0 satisfies D~, H = 0. To this end, recalling

Vol. 61, n° 1-1994.



60 E. MASSA AND E. PAGANI

the definition of the covariant differentials, we observe that the validity of
H = 0 implies

Moreover, in view of eqs. (2.51 a, b), (2.53), (3.25a, b), (3.29), (3.33), a
straightforward but tedious calculation yields the representation

with

By comparison of the latter with eqs. (3.34a, b), we conclude that, as
a consequence of eqs. (3.29), (3.31a, b), the 3-form Dv (H) satisfies the
linear homogeneous differential equation

with initial data

By Cauchy theorem for ordinary differential equations this implies
Dv (0) - 0 in a neighbourhood D

The previous arguments yield back - again with some minor differences
- a classical result on the inverse problem, already pointed out in

([12], [14], [27]), namely:

PROPOSITION 3. l. - Let Z be a given dynamical flow. Then, if Z is non
singular on an open world-tube U, a necessary and sufficient condition in
order for Z to be locally derivable for a Lagrangian L in a neighbourhood
of the slice Eo is the existence of at least one non singular matrix
ai~ = ai~ (to, q, q) satisfying the requirements
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with the quantities defined inductively in terms of the tensor (2.43a)
by

The proof is easily obtained by expressing in components the results
stated in Theorem 3.4, making use of the representation (2.53) for the
tensor W.
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