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ABSTRACT. - We study the comparison problem for the eigenvalues of
the covariant Laplacian with electric potential acting on the sections of
vector bundle with structure group U (m).

RESUME. 2014 On s’interesse dans cet article a un probleme de comparaison
de valeurs propres pour Ie Laplacien covariant, avec potentiel electrique,
agissant sur les sections d’un fibre vectoriel de groupe structural 
(mEN*).

INTRODUCTION

Let (M, g) be an n-dimensional connected orientable Riemannian man-
ifold with (possibly empty) boundary aM, (E, ( , )) be a Hermitian 
bundle over M with rank m. We denote by A 0 (M, E)=C"(M, E) the set
of Coo sections of E. More generally we denote by the set of the

forms on M and by E) the set of E-valued forms

on M.
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490 O. HEBBAR

As usual, we put

and we introduce on E), E) the inner products [ , ]0’ [ , ]1 1
defined by:

where ( , ), dv denote the natural metric in T* M(8)E induced

by g and the Riemannian volume element, respectively. Let
be a connection on E, compatible with the

Hermitian structure c. [ 13]). The dual operator

of VI eW (M, E) is defined by:

We consider a positive Coo function V on M and we introduce the two
following positive formally self-adjoint elliptic operators Ho, y, Hy defined
by:

In the case the Bochner-Laplace (resp. Laplace) operator
:  (resp. H~) is the Dirichlet realization for M in the completion
L2 (M, E) [resp. L2 (M)] of the pre-Hilbert space

with the usual scalar product). If we denoted by H~ ~, H~ the
unique self-adjoint extension (the closure) [7] of operators Ho, y, Hy in
the space L 2 (M, E) and L2 (M), respectively. The problem we want to
address in this work is, assuming to simplify H~ ~ and H~ with compact
resolvent, is the following:
Under which conditions on E and V do the operators H~~, Hy admit

the same first eigenvalue or more generally the same spectrum.
We shall consider two cases:
Case I. - E = M x em and M satisfies one of the following properties:

(PI) M is compact
(P2) M is the closure of an open set (possibly unbounded) Q of !R" with
regular bounded boundary aQ,
(P3) 
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491BOHM AHARONOV EFFECTS FOR BOUNDED STATES

We assume, in the case when M is not compact, that the electric

potential V verifies:

Case II. - E is not necessarily trivial but M is compact.
It is well known ([ 10], [II], ... ) that if M is compact, the spectra of

and H~ are increasing sequences of positive eigenvalues tending to
+00. When M is not compact, this follows from the condition (0 . 2)

] for H~; and Theorem 2 . 3 of [6], Theorem 1. 2 of[l] ] for the

operator H~~ with E = M x C""). As we shall see, the comparison problem
for the spectra of two such operators is naturally related to the gauge
transformations. In section 2 of this work, we discuss briefly this idea and
we give a characterization for the trivial connections. We present in
section 2 comparison theorems for the case I generalizing results obtained
by Helffer [5], Shigekawa [12] in the scalar case and Manabe-

Shigekawa [10] in the case of systems. We study the case II in section 4
and we give a theorem extending results of Kuwabara [8].

I would like to thank my adviser Bernard Helffer who suggested me
this study.

1. GAUGE TRANSFORMATIONS AND TRIVIAL CONNECTIONS

Let eB = ... , ~) be a local orthonormal frame over an open set B
of M, i. e., for 1 _ i _ m such that is an
orthonormal basis of a fibre Ex for each x E B. Then,

We call the matrix 1-form the connection form of V with

respect to the frame eB. Because V is compatible with the metric ( , )E, co
takes values in the Lie algebra of the unitary group ~(~). Let

E) and ~Bi = t(~1, ... , ~m) be the (local) trivialization of ç with
respect to eB (defined by ~~ B = E~ ~1 eB).

If fB = (/B? ’ ’ ’ ? another orthonormal frame over B and if T = 

is the u (m)-valued function on B such that: /s = ES tsi esB, or in matrix-
notations fB = eB . T, then, the connection form G/ of V and the trivialization
~ of ç with respect to fB are given by:

Transformations of the form ( 1. 2) and ( 1. 3) are called (local ) gauge
transformations. If E is trivializable and if eM, fM are (global) frames of E
over M, then, E), we have (with the notations of (2 . 2) and
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492 O. HEBBAR

where and H~ v=(~+~)*.(~+o))+V01 is the repre-
sentation of with respect to the frame eM. Consequently, in the
case I, is nothing but a Schrodinger operator with magnetic
potential co E A 1 (M, ~~m, J.

Properties (2 . 4) and (2 . 2) say that the operators Hw v and 1 are

unitary equivalent if there exists such that on

M. A such form co is called trivial.
Our problem is now to find caracterizations of such forms. Let

~~J. We call o flat if its curvature van-

ishes. It is easy to see that a trivial 1-form 03C9 is flat. Let y:[0, 1] ~ M be
a closed curve in M, y* (00) = Ay, 0) (t) dt be the pull-back of co by y, and
consider the associated system of differential equations:

It is well known (See for example [2]) that a system ( 1. 5) has a unique
solution g in C1 ([0, 1 ], ~ (m)). Let us define the holonomy class ofco with
respect to y by:

U,~ (~) = ~ U ~ ~ (m) such that: U and g ( 1 ) are unitary equivalent}.
For example, we have for a closed 1-form 03C9 in A 1 (M, .A 1, a) :

One can verify [4]) that, if co is flat, then Dy depends only on
the homotopy class of y and that for T E C ~ (M, ~ (m)),
roT = T*. T + T*. dT; we have:

The following theorem is probably elassical (See [4])
THEOREM 1.1. - For (M, The following conditions (i ) and

(ii) are equivalent:
(a) ~ is trivial,
(ii) (a): (0 is flat, (b): Dy (00) = {1m}, for each closed curve y in M.
COROLLARY 1. 2. - If M is simply eonnected. (0 as trivial if and

only if it is 
Let us look at the more general case of connections and consider a

system (Ba:, local trivializations of E, i. e., is an open con-
nected cover of M and is an orthonormal frame over B0153 for each 0152 E I.
For B0152~ = Bcx n 0, functions on B0153p such that

de l’Institut Henri Poincaré Physique théorique



493BOHM AHARONOV EFFECTS FOR BOUNDED STATES

called transition functions. If is the connection form of

V with respect to ea, K is called the curvature form of V with respect
to ea. By (2. 2), we have:

The property ( 1. 9) says that the condition, for each a E I,
depends only on the connection V. Connections which satisfy this condition
are called flats. We say that V is trivial if there exist a system of local
trivializations I of E such that the corresponding transition

functions (resp. connection forms) (resp. are all identity functions
(resp. zero forms). As a necessary condition, E is trivializable and V is
flat. We start from these conditions and we consider the connection form

co of V with respect to a given global frame eM of E. It is clear, by ( 1. 6)
and ( 1. 9), that for a closed curve y in M, the class Uy (00) is independent
of a choice of eM. We define the holonomy class of V with respect to y
by: Uy (V) = Uy «(0). We can then state Theorem 1. 1 as follows:

THEOREM 1.1. - ,Suppose that E is trivializable. Then, the following
conditions are equivalent:

(i) V is trivial,
(ii ) (~).’ V (b): each closed curve y in M.
REMARK 1. 3. - Let V be a flat connection on E (unnecessarily trivializa-

ble). Using the fact that a flat connection is locally trivial, we construct
in [4] a holonomy class U y (V), which coincides in the case of a trivializable
vector bundle E with the class defined above, and such that, if

U (V) = {1m}, then E is trivializable and V is trivial.

2. COMPARISON THEOREMS, CASE I

Through this section, we assume that E = M x Cm and that M satisfies one
of the properties (PI), (P2), (P3) mentioned in Section 1. If A 0 (M, E) is
identified (in a natural way) with Coo (M, then can be regarded
[by (1. 4)] as a Schrodinger operator where OW = d+ ~,
with a (fixed ) magnetic potential o) in A 1 (M, and electric potential
V. Recall that if H~, y is the Friedrichs’ extension [11] associated
to the positive sesquilinear form q03C9, v defined on C~0 (M, em) by:

Vol. 60, n° 4-1994.
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Let ~) be the first eigenvalue H~). As we know
by the Kato’s inequality (given in [6] for the case of systems), we have:

Let uo be the first eigenfunction of H~ attached to ~. We know that
uo can be chosen such that u0&#x3E;0 on int (M) Using elemen-
tary computations and the fact that (0 is skew Hermitian, we get the
following lemma (due essentially to Lavine-O’Caroll [9]):

The first consequence is of course that we get, as in [5], another proof
of (2 .1 ). Suppose now that À:: = À~ and consider a normalized eigenfunc-
tion Uoo of attached to ~. We deduce from Lemma 2.1 and using a
minimizing sequence tending to Uoo in L2 (M, that:

Consequently,

That is to say,

Now, let 03BBM03C9, 1, 03BBM03C9, 2, ... , 03BBM03C9, k (k  m) be the k-first eigenvalues of HM v.
Then, we have .

PROPOSITION 2 . 2. - If À::, 1= À~, 2 = ... _ À~, k = À~. Then, there exists
cpl, cp2, ... , cpk in Coo (M, em) such that, for each x EM, (cpq (x))q form an
orthonormal system of em with:

Let be a system of k normalized eigenfunctions
attached to ~, and define on int (M). It is clear that

satisfies (2 . 4) on int (M). On the other hand, using maximum
principle (Lemma 3 . 4 in [3] applied V and - uo), we get that:

where " N : aM  fR" is the outward normal vector field to aM (note that
aM is a regular bounded o set). Then, let us define " for x0~~M and o
1 _q__k, by:

de l’Institut Henri Poincaré - Physique theorique



495BOHM AHARONOV EFFECTS FOR BOUNDED STATES

In order to show that cpq verifies (2 . 4) on aM, it is sufficient to consider
the case M = Q. Let be a neighbourhood of aQ and 03A6 in Coo (1/’) such
that :

Then, the field N defined on ~ by: is 

and extend N on Q. Let A=(Ai, A2, such that:

on Q, 1 _ q _ k, and By a simple computation, we
see that, on a suitable neighbourhood of ~ we have:

In particular,

Now, we show the second part of this proposition. Let us remark that
as a consequence of the Cauchy uniqueness theorem for linear systems of
differential equations, we have:

LEMMA 2.3. - If xoEM, and such

that: on M.

By this lemma, we obtain easily that, for xEM, the are linearly
independent in Let us verify that, for x EM and 1~, q ~ k,

(where õ: is the Kronecker delta).
By differentiation of the application [which is in

Coo (M, and using the fact that (0 is skew Hermitian, we obtain:

Here it is understood that the inner products on the right are defined
by the requirement that: ( 0, cp (M), for

Then, Sq is equal to a constant cq on M (note here that M is connected)
and finally

Let us translate this result on the curvature of co. By differentiation of

(2.4), we obtain:

Vol. 60, n° 4-1994.
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Let us define the kernel of K «(0) as the subset of the trivial bundle

is the natural basis of TxM. Note here that 
defined in this way is independent of a choice of a basis in T x M. Moreover,
it is invariant under global gauge transformations. Suppose that

03BBM03C9, 1=03BBM03C9, 2=...=03BBM03C9, k=03BBM0, and consider k-functions (03C6q)q satisfing the
above proposition. Let Jf be the trivial subbundle of M x em generated
by and the orthogonal fiber subbundle to Jf. Condition (2.5)
says that ker contains Jf. More precisely, we have:

LEMMA 2 . 4. - Assume that 03BBM03C9, 1= 03BBM03C9, 2= .. = 03BBM03C9,k= 03BBM0. Then, the follow-
ing equivalent conditions aYe satisfied:

(i ): V 00 restricted to A 0 (M, takes values in A (M, 
(ii): V 00 restricted to A 0 (M, takes values in A1 (M, 
In other words, the restriction of V 00 to A 0 (M, define a connection

Proof . - The equivalence between (i ) and (ii ) results from the following
relation:

Let us prove (i ). Consider f=03A3q ( f, cpq E A 0 (M, ff) and using (2 . 4),
we obtain:

Let us give the main theorem of this section.

THEOREM 2. 5. - The following three conditions are equivalent:

(ii ) contains a trivial sub bundle Jf of M x em of rang k, such
that :

The assertion (i ) ~ (ii ) is an easy consequence of

Proposition 2 . 3, Lemma 2 . 4 and Theorem 1.1’. Let us prove (ii)=&#x3E;(iii),
which is the non trivial part of the statements. Consider a frame ~=(~ ) ,

Annales de l’Institut Henri Poincaré - Physique theorique
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eq~C~ (M, em) for 1 ~q~k, of f over M. Using (a), we can write:

This means that the 1-form is the con-
nection form of ~w, ~. with respect to C. Now, conditions (b) and (c) say
that ~~, ~ is trivial:

Using elementary computations, we see that if [resp. (8~)J is the
canonical basis of k (resp. em) and 03B4l)]1~i~k, 1~l~m, then

for 

Consequently,

where X k is the set of m 
x k-matrix.

Let À E Sp (H~), u an associated eigenfunction of HM, and set:

Then, are independent in L2 (M, em) and we have for 1 ~~A;:

using (2 . 7). This means that À is also an eigenvalue of with multiplic-
ity greater or equal to k.
As a consequence, we have:

THEOREM 2 . 6. - The following three conditions are equivalent:
(1 ) 03BBM03C9, 1 = 03BBM03C9, 2 =...= 03BBM03C9, m =03BBM0,

(ii ) and H~01 are unitary equivalent,
(iii) (a): K(co)=0, (b): for each closed curve y in M.

3. COMPARISON THEOREMS, CASE II

We look here at the case II and we fix a finite system of local trivializ-
ations I of E, with Bcx connected for each a E I. Let 03C903B1 be the
connection form of V with respect to and u0(resp. 03BBM0) the first
eigenfunction (resp. eigenvalue of H~ as in Lemma 2.1.

Let us first remark that, using a partition of unity subordinate to the
covering {B03B1}03B1, we can formulate (see [4] for the detail of the proof) this
lemma in this case as follow:

Vol. 60, n° 4-1994.
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As a consequence of this lemma and the min-max principle [ 11 ], we
have:

In order to formulate Proposition 2.1 in this case, we can get using
local trivializations the following lemma:

Now, let us denote by À~:~, ~’~, ..., À~:  the k-first eigenvalues of
77~, and recall that V is supposed compatible with the Hermitian struc-
ture of E. Namely,

Then, using (3 .1 ) and Lemma 3 . 2, we can obtain in the same way as
in Proposition 3 . 2 the:

PROPOSITION 3 . 3 . - ~~=~= ... =~=~ then, there exists
k-sections (çs) of E over M such is an orthonormal system
of Ex for each x E M, and that:

COROLLARY 3 . 4. - Under conditions: ~,o; i = ~,o; 2 = . - . _ ~,o; k = ~,o, we
have:

(i ) (Whitney sum), where f is a trivializable subbundle
of E with rank k,

(ii) where ~ is a flat connection on  such that:

Uy ~~) = {1~ }~ for each closed curve y in M.
Let us give the main theorem of this section.

THEOREM 3 . 5. - The three following conditions are equivalent:
(1 ) ~V,1’’~V,2~’’’"~V,~’*~0?
(ii) 

(iii ) (a): E is trivializable, (b): the curvature of V vanishes, (c):
Uy (V) = {1~}, for each closed curve y in M.

The implication (ii)=&#x3E;(i) is trivial.
The assertion (i ) ==&#x3E; (iii ) follows directly from Corollary 3 . 4.
Let us prove (iii ) =&#x3E; (ii ). We start from (iii ) (a) and we consider a family

of applications (i. e., a trivialization of E) such that:

Let be the local trivializations of a section ç in the system 
By (3 . 3), we have

Annales de l’Institut Henri Poincaré - Physique theorique
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Then for each ç E Al (M, E), define F03B6 E Coo (M, C’") by: F ç B03B1 = r*03B1.03BE03B1 for
ael. It is easy to see that the application T defined by: T (~) = F~ is one
to one.

Moreover,

On the other hand, if is the connection form of V ’

[which is trivial by the conditions (b), (c)] with respect to the frame defined o

and if is the Schrodinger operator with magnetic potential co.

Then, by a direct computation (and using the min-max principle for the
hereunder (C. 3) property) we obtain the following properties:

Now, the condition (ii) results from (C. 3) and Theorem 2 . 6, respec-
tively.
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