O. HEBBAR Bohm Aharonov effects for bounded states in the case of systems

Annales de l'I. H. P., section A, tome 60, nº 4 (1994), p. 489-500 http://www.numdam.org/item?id=AIHPA 1994 60 4 489 0>

© Gauthier-Villars, 1994, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Vol. 60, n° 4, 1994, p. 489-500.

Bohm Aharonov effects for bounded states in the case of systems

by

O. HEBBAR

Département de Mathématiques, Université de Nantes, 2, rue de la Houssinière, 44072 Nantes Cedex 03, France; Institut de Mathématiques, Université d'Es-senia, 31100 Algérie

ABSTRACT. – We study the comparison problem for the eigenvalues of the covariant Laplacian with electric potential acting on the sections of vector bundle with structure group $\mathcal{U}(m)$.

RÉSUMÉ. – On s'intéresse dans cet article à un problème de comparaison de valeurs propres pour le Laplacien covariant, avec potentiel électrique, agissant sur les sections d'un fibré vectoriel de groupe structural $\mathscr{U}(m)$ $(m \in \mathbb{N}^*)$.

INTRODUCTION

Let (M, g) be an *n*-dimensional connected orientable Riemannian manifold with (possibly empty) boundary ∂M , (E, (,)) be a Hermitian (\mathbb{C}^{∞}) bundle over M with rank *m*. We denote by $A^{0}(M, E) = \mathbb{C}^{\infty}(M, E)$ the set of \mathbb{C}^{∞} sections of E. More generally we denote by $A^{p}(M)$ the set of the $\mathbb{C}^{\infty} - p$ forms on M and by $A^{p}(M, E)$ the set of E-valued $\mathbb{C}^{\infty} - p$ forms on M.

> Annales de l'Institut Henri Poincaré - Physique théorique - 0246-0211 Vol. 60/94/04/\$4.00/@ Gauthier-Villars

As usual, we put

$$A_0^p(M, E) = \{ \Theta \in A^p(M, E) : \operatorname{supp} \Theta \subset \operatorname{int} (M) = M \setminus \partial M \}$$

and we introduce on $A_0^0(M, E)$, $A_0^1(M, E)$ the inner products $[,]_0, [,]_1$ defined by:

$$[\xi, \xi']_0 = \int_{\mathcal{M}} (\xi, \xi')(x) dv, \quad \text{for} \quad \xi, \xi' \in \mathcal{A}^0_0(\mathcal{M}, \mathcal{E}),$$
$$[\Theta, \Theta']_1 = \int_{\mathcal{M}} \langle \Theta, \Theta' \rangle(x) dv, \quad \text{for} \quad \Theta, \Theta' \in \mathcal{A}^1_0(\mathcal{M}, \mathcal{E}).$$

where \langle , \rangle , dv denote the natural metric in T*M \otimes E induced by g and the Riemannian volume element, respectively. Let $\nabla : C^{\infty}(M, E) \rightarrow A^{1}(M, E)$ be a connection on E, compatible with the Hermitian structure (cf. [13]). The dual operator

$$\nabla^*$$
: $A_0^1(M, E) \rightarrow C_0^\infty(M, E)$

of $\nabla_{|C_{0}^{\infty}}(M, E)$ is defined by:

$$\forall \Theta \in A_0^1(M, E), \quad [\nabla^* \Theta, \xi]_0 = [\Theta, \nabla \xi]_1 \forall \xi \in C_0^\infty(M, E). \quad (0.1)$$

We consider a positive C^{∞} function V on M and we introduce the two following positive formally self-adjoint elliptic operators $H_{\nabla, v}$, H_v defined by:

$$Dom(H_{\nabla, V}) = C_0^{\infty}(M, E), \qquad H_{\nabla, V} = \nabla^* \cdot \nabla + V,$$

$$Dom(H_V) = C_0^{\infty}(M), \qquad H_V = d^* \cdot d + V.$$

In the case $\partial M \neq \emptyset$, the Bochner-Laplace (resp. Laplace) operator $H^{M, E}_{\nabla, V}$ (resp. H^{M}_{V}) is the Dirichlet realization for M in the completion $L^{2}(M, E)$ [resp. $L^{2}(M)$] of the pre-Hilbert space

$$(A_0^0(M, E), [,]_0)$$
 (resp. $C_0^{\infty}(M)$)

with the usual scalar product). If $\partial M = \emptyset$, we denoted by $H_{\nabla, V}^{M, E}$, H_{V}^{M} the unique self-adjoint extension (the closure) [7] of operators $H_{\nabla, V}$, H_{V} in the space $L^{2}(M, E)$ and $L^{2}(M)$, respectively. The problem we want to address in this work is, assuming to simplify $H_{\nabla, V}^{M, E}$ and H_{V}^{M} with compact resolvent, is the following:

Under which conditions on E and ∇ do the operators $H^{M, E}_{\nabla, V}$, H^{M}_{V} admit the same first eigenvalue or more generally the same spectrum.

We shall consider two cases:

Case I. $- E = M \times \mathbb{C}^m$ and M satisfies one of the following properties:

(P1) M is compact

(P2) M is the closure of an open set (possibly unbounded) Q of \mathbb{R}^n with regular bounded boundary ∂Q ,

(P3) $M = \mathbb{R}^n$.

We assume, in the case when M is not compact, that the electric potential V verifies:

$$V(x) \rightarrow +\infty$$
 as $|x| \rightarrow +\infty$. (0.2)

Case II. - E is not necessarily trivial but M is compact.

It is well known ([10], [11], ...) that if M is compact, the spectra of $H_{\nabla, V}^{M, E}$ and H_{∇}^{M} are increasing sequences of positive eigenvalues tending to $+\infty$. When M is not compact, this follows from the condition (0.2) (See [11] for $H_{\nabla, V}^{M}$ and Theorem 2.3 of [6], Theorem 1.2 of [1] for the operator $H_{\nabla, V}^{M, E}$ with $E = M \times \mathbb{C}^{m}$). As we shall see, the comparison problem for the spectra of two such operators is naturally related to the gauge transformations. In section 2 of this work, we discuss briefly this idea and we give a characterization for the trivial connections. We present in section 2 comparison theorems for the case I generalizing results obtained by Helffer [5], Shigekawa [12] in the scalar case and Manabe-Shigekawa [10] in the case of systems. We study the case II in section 4 and we give a theorem extending results of Kuwabara [8].

I would like to thank my adviser Bernard Helffer who suggested me this study.

1. GAUGE TRANSFORMATIONS AND TRIVIAL CONNECTIONS

Let $e_{\mathbf{B}} = (e_{\mathbf{B}}^1, \ldots, e_{\mathbf{B}}^m)$ be a local orthonormal frame over an open set **B** of **M**, *i.e.*, $e^i \in \mathbb{C}^{\infty}(\mathbf{B}, \mathbf{E}_{|\mathbf{B}})$ for $1 \leq i \leq m$ such that $(e_{\mathbf{B}}^i(x))_{1 \leq i \leq m}$ is an orthonormal basis of a fibre \mathbf{E}_x for each $x \in \mathbf{B}$. Then,

$$\nabla e_{\mathbf{B}}^{i} = \Sigma_{s} \omega_{si} \otimes e^{s}$$
, where $\omega_{si} \in \mathbf{A}^{1}(\mathbf{B})$ for $1 \leq i, s \leq m$. (1.1)

We call the matrix 1-form $\omega = [\omega_{is}]_{i,s}$ the connection form of ∇ with respect to the frame $e_{\mathbf{B}}$. Because ∇ is compatible with the metric $(,)_{\mathbf{E}}, \omega$ takes values in the Lie algebra $\mathcal{M}_{m,a}$ of the unitary group $\mathcal{U}(m)$. Let $\xi \in \Lambda^0(\mathbf{M}, \mathbf{E})$ and $\xi_{\mathbf{B}_i} = {}^t(\xi_1, \ldots, \xi_m)$ be the (local) trivialization of ξ with respect to $e_{\mathbf{B}}$ (defined by $\xi_{|\mathbf{B}} = \sum_i \xi_i e_{\mathbf{B}}^i$).

If $f_{\mathbf{B}} = (f_{\mathbf{B}}^1, \ldots, f_{\mathbf{B}}^m)$ is another orthonormal frame over **B** and if $\mathbf{T} = [t_{il}]$ is the $\mathscr{U}(m)$ -valued function on **B** such that: $f_{\mathbf{B}}^i = \sum_s t_{si} e_{\mathbf{B}}^s$, or in matrixnotations $f_{\mathbf{B}} = e_{\mathbf{B}}$. T, then, the connection form ω' of ∇ and the trivialization $\xi_{\mathbf{B}}^i$ of ξ with respect to $f_{\mathbf{B}}$ are given by:

$$\omega' = \mathrm{T}^* \,\omega \,\mathrm{T} + \mathrm{T}^* \,d\mathrm{T}, \qquad (1.2)$$

$$\xi_{\mathbf{B}}' = \mathbf{T}^* \,\xi_{\mathbf{B}}.\tag{1.3}$$

Transformations of the form (1.2) and (1.3) are called (local) gauge transformations. If E is trivializable and if e_M , f_M are (global) frames of E over M, then, for $\xi \in A_0^0(M, E)$, we have (with the notations of (2.2) and

(2.3)):

$$H_{\omega, v}(\xi_{M}) = (T \cdot H_{\omega', v} \cdot T^{*})(\xi'_{M}), \qquad (1.4)$$

where $T \in C^{\infty}(M, \mathscr{U}(m))$ and $H_{\omega, V} = (d+\omega)^* \cdot (d+\omega) + V \otimes 1$ is the representation of $H_{\nabla, V}$ with respect to the frame e_M . Consequently, in the **case I**, $H^{M, E}_{\nabla, V}$ is nothing but a Schrödinger operator $H^{M}_{\omega, V}$ with magnetic potential $\omega \in A^1(M, \mathscr{M}_{m, a})$.

Properties (2.4) and (2.2) say that the operators $H^{M}_{\omega, v}$ and $H^{M}_{v} \otimes 1$ are unitary equivalent if there exists $S \in C^{\infty}(M, \mathcal{U}(m))$ such that $dS = \omega . S$ on M. A such form ω is called trivial.

Our problem is now to find caracterizations of such forms. Let $\omega \in A^1(M, \mathcal{M}_{m,a})$. We call ω flat if its curvature $K(\omega) = d\omega + \omega \Lambda \omega$ vanishes. It is easy to see that a trivial 1-form ω is flat. Let $\gamma:[0, 1] \to M$ be a closed curve in $M, \gamma^*(\omega) = A_{\gamma,\omega}(t) dt$ be the pull-back of ω by γ , and consider the associated system of differential equations:

$$\psi' = \psi \cdot \mathbf{A}_{\gamma, \omega}, \qquad \Psi(0) = \mathbf{I}_m. \tag{1.5}$$

It is well known (See for example [2]) that a system (1.5) has a unique solution g in C¹ ([0, 1], $\mathcal{U}(m)$). Let us define the holonomy class of ω with respect to γ by:

 $U_{\gamma}(\omega) = \{ U \in \mathcal{U}(m) \text{ such that: } U \text{ and } g(1) \text{ are unitary equivalent } \}.$

For example, we have for a closed 1-form ω in A¹(M, $\mathcal{M}_{1,a}$):

$$\mathbf{U}_{\gamma}(\boldsymbol{\omega}) = \bigg\{ \exp\bigg(\int_{\gamma} \boldsymbol{\omega}\bigg) \bigg\}.$$

One can verify (See [4]) that, if ω is flat, then $U_{\gamma}(\omega)$ depends only on the homotopy class of γ and that for $T \in C^{1}(M, \mathcal{U}(m))$, $\omega_{T} = T^{*} \cdot \omega \cdot T + T^{*} \cdot dT$; we have:

$$K(\omega_{T}) = T^{*} \cdot K(\omega) \cdot T = 0, \qquad (1.6)$$

$$U_{\gamma}(\omega_{T}) = U_{\gamma}(\omega). \qquad (1.7)$$

The following theorem is probably classical (See [4])

THEOREM 1.1. – For $\omega \in A^1(M, \mathcal{M}_{m,a})$. The following conditions (i) and (ii) are equivalent:

(a) ω is trivial,

(ii) (a): ω is flat, (b): $U_{\gamma}(\omega) = \{I_m\}$, for each closed curve γ in M.

COROLLARY 1.2. – If M is simply connected. Then, ω is trivial if and only if it is flat.

Let us look at the more general case of connections and consider a system $(\mathbf{B}_{\alpha}, e_{\alpha})_{\alpha \in I}$ of local trivializations of E, *i.e.*, $(\mathbf{B}_{\alpha})_{\alpha}$ is an open connected cover of M and e_{α} is an orthonormal frame over \mathbf{B}_{α} for each $\alpha \in I$. For $\mathbf{B}_{\alpha\beta} = \mathbf{B}_{\alpha} \cap \mathbf{B}_{\beta} \neq \emptyset$, the $\mathscr{U}(m)$ -valued functions $g_{\alpha\beta}$ on $\mathbf{B}_{\alpha\beta}$ such that $e_{\beta} = e_{\alpha}g_{\alpha\beta}$ are called transition functions. If ω_{α} is the connection form of ∇ with respect to e_{α} , K (ω_{α}) is called the curvature form of ∇ with respect to e_{α} . By (2.2), we have:

$$\omega_{\beta} = g^{*}_{\alpha\beta} \cdot \omega_{\alpha} \cdot g_{\alpha\beta} + g^{*}_{\alpha\beta} \cdot dg_{\alpha\beta}, \qquad (1.8)$$

$$\mathbf{K}(\boldsymbol{\omega}_{\boldsymbol{\beta}}) = g_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{*} \cdot \mathbf{K}(\boldsymbol{\omega}_{\boldsymbol{\alpha}}) \cdot g_{\boldsymbol{\alpha}\boldsymbol{\beta}} \quad \text{on } \mathbf{B}_{\boldsymbol{\alpha}\boldsymbol{\beta}}. \tag{1.9}$$

The property (1.9) says that the condition, $K(\omega_{\alpha})=0$ for each $\alpha \in I$, depends only on the connection ∇ . Connections which satisfy this condition are called flats. We say that ∇ is trivial if there exist a system of local trivializations $(B_{\alpha}, f_{\alpha})_{\alpha \in I}$ of E such that the corresponding transition functions (resp. connection forms) $g'_{\alpha\beta}(\operatorname{resp.} \omega'_{\alpha})$ are all identity functions (resp. zero forms). As a necessary condition, E is trivializable and ∇ is flat. We start from these conditions and we consider the connection form ω of ∇ with respect to a given global frame e_{M} of E. It is clear, by (1.6) and (1.9), that for a closed curve γ in M, the class $U_{\gamma}(\omega)$ is independent of a choice of e_{M} . We define the holonomy class of ∇ with respect to γ by: $U_{\alpha}(\nabla) = U_{\alpha}(\omega)$. We can then state Theorem 1.1 as follows:

THEOREM 1.1. – Suppose that E is trivializable. Then, the following conditions are equivalent:

(i) ∇ is trivial,

(ii) (a): ∇ is flat, (b): $U_{\gamma}(\nabla) = \{I_m\}$, for each closed curve γ in M.

REMARK 1.3. – Let ∇ be a flat connection on E (unnecessarily trivializable). Using the fact that a flat connection is locally trivial, we construct in [4] a holonomy class $U_{\gamma}(\nabla)$, which coincides in the case of a trivializable vector bundle E with the class defined above, and such that, if $U_{\gamma}(\nabla) = \{I_m\}$, then E is trivializable and ∇ is trivial.

2. COMPARISON THEOREMS, CASE I

Through this section, we assume that $E = M \times \mathbb{C}^m$ and that M satisfies one of the properties (P1), (P2), (P3) mentioned in Section 1. If $A^0(M, E)$ is identified (in a natural way) with $C^{\infty}(M, \mathbb{C}^m)$, then $H_{\nabla, \nabla}$ can be regarded [by (1.4)] as a Schrödinger operator $H_{\omega, \nabla} = \nabla^*_{\omega} \cdot \nabla_{\omega} + \nabla$, where $\nabla_{\omega} = d + \omega$, with a (fixed) magnetic potential ω in $A^1(M, \mathcal{M}_{m,a})$ and electric potential V. Recall that if $\partial M \neq \emptyset$, $H^M_{\omega, \nabla}$ is the Friedrichs' extension [11] associated to the positive sequilinear form $q_{\omega, \nabla}$ defined on $C^{\infty}_0(M, \mathbb{C}^m)$ by:

$$q_{\omega, V}(\phi, \psi) = \int_{M} \left(\left\langle \nabla_{\omega} \phi, \nabla_{\omega} \psi \right\rangle + (V \phi, \psi) \right)(x) dv,$$

for ϕ and ψ in $C_{0}^{\infty}(M, \mathbb{C}^{m})$.

Let λ_{ω}^{M} (resp. λ_{0}^{M}) be the first eigenvalue of $H_{\omega, V}^{M}$ (resp. H_{V}^{M}). As we know by the Kato's inequality (given in [6] for the case of systems), we have:

$$\lambda_0^{\mathsf{M}} \leq \lambda_{\omega}^{\mathsf{M}}.\tag{2.1}$$

Let u_0 be the first eigenfunction of H_V^M attached to λ_0^M . We know that u_0 can be chosen such that $u_0 > 0$ on int (M) and $||u_0||_0 = 1$. Using elementary computations and the fact that ω is skew Hermitian, we get the following lemma (due essentially to Lavine-O'Caroll [9]):

LEMMA 2.1. - For
$$\varphi \in C_0^{\infty}$$
 (M, \mathbb{C}^m),
 $\|\nabla_{\omega} \varphi - du_0 \cdot \varphi/u_0\|_1^2 = q_{\omega, V}(\varphi, \varphi) - \lambda_0^M \|\varphi\|_0^2$.

The first consequence is of course that we get, as in [5], another proof of (2.1). Suppose now that $\lambda_{\omega}^{M} = \lambda_{0}^{M}$ and consider a normalized eigenfunction u_{ω} of $H_{\omega, V}^{M}$ attached to λ_{ω}^{M} . We deduce from Lemma 2.1 and using a minimizing sequence tending to u_{ω} in $L^{2}(M, \mathbb{C}^{m})$ that:

$$[\nabla_{\omega} u_{\omega} - du_0 \cdot u_{\omega}/u_0, \alpha]_1 = 0, \text{ for each } \alpha \in \mathcal{A}^1_0(\mathcal{M}, \mathbb{C}^m).$$
(2.2)

Consequently,

$$u_0 \cdot \nabla_{\omega} (u_{\omega}/u_0) = \nabla_{\omega} u_{\omega} - du_0 \cdot u_{\omega}/u_0 = 0,$$

on int (M) (since u_{ω} and u_0 are C^{∞} on M).

That is to say,

$$\nabla_{\omega} (u_{\omega}/u_0) = 0, \text{ on int } (\mathbf{M}). \tag{2.3}$$

Now, let $\lambda_{\omega, 1}^{\mathsf{M}}$, $\lambda_{\omega, 2}^{\mathsf{M}}$, ..., $\lambda_{\omega, k}^{\mathsf{M}}$ $(k \leq m)$ be the k-first eigenvalues of $\mathbf{H}_{\omega, \mathbf{V}}^{\mathsf{M}}$. Then, we have

PROPOSITION 2.2. If $\lambda_{\omega_{1},1}^{\mathsf{M}} = \lambda_{\omega_{1},2}^{\mathsf{M}} = \ldots = \lambda_{\omega_{n},k}^{\mathsf{M}} = \lambda_{0}^{\mathsf{M}}$. Then, there exists $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}$ in \mathbb{C}^{∞} ($\mathsf{M}, \mathbb{C}^{m}$) such that, for each $x \in \mathsf{M}$, $(\varphi_{q}(x))_{q}$ form an orthonormal system of \mathbb{C}^{m} with:

$$\nabla_{\omega} \phi_q = 0, \text{ for each } 1 \leq q \leq k.$$
(2.4)

Proof. – Let $(u_{\omega,q})_{1 \leq q \leq k}$ be a system of k normalized eigenfunctions of $H^{M}_{\omega, V}$ attached to λ^{M}_{ω} , and define $\varphi_{q} = u_{\omega,q}/u_{0}$ on int (M). It is clear that $(\varphi_{q})_{1 \leq q \leq k}$ satisfies (2.4) on int (M). On the other hand, using maximum principle (Lemma 3.4 in [3] applied to $\Delta - V$ and $-u_{0}$), we get that:

$$\partial u_0 / \partial \mathbf{N} = \nabla u_0 \cdot \mathbf{N} < 0 \text{ on } \partial \mathbf{M},$$

where $N: \partial M \to \mathbb{R}^n$ is the outward normal vector field to ∂M (note that ∂M is a regular bounded set). Then, let us define $\varphi_q(x_0)$, for $x_0 \in \partial M$ and $1 \leq q \leq k$, by:

$$\varphi_{q}(x_{0}) = \lim_{t \to 0, t > 0} \left\{ u_{\omega, q}(x_{0} - t \operatorname{N}(x_{0})) / u_{0}(x_{0} - t \operatorname{N}(x_{0})) \right\}$$
$$= (\partial u_{\omega, q} / \partial \operatorname{N})(x_{0}) / (\partial u_{0} / \partial \operatorname{N})(x_{0}).$$

Annales de l'Institut Henri Poincaré - Physique théorique

In order to show that φ_q verifies (2.4) on ∂M , it is sufficient to consider the case $M = \overline{Q}$. Let \mathscr{V} be a neighbourhood of ∂Q and Φ in $C^{\infty}(\mathscr{V})$ such that:

$$\partial \mathbf{Q} = \{ x \in \mathscr{V} : \Phi(x) = 0 \}$$
 and $(\nabla \Phi)(x) \neq 0$ for $x \in \mathscr{V}$.

Then, the field \overline{N} defined on \mathscr{V} by: $N(x) = (\nabla \varphi)/|(\nabla \varphi)|$, is C^{∞} on \mathscr{V} and extend N on \overline{Q} . Let $\vec{A} = (A_1, A_2, \ldots, A_n) \in C^{\infty}(\overline{Q}, \mathscr{M}_{m,a})$ such that: $\omega = \sum_j A_j dx_j$ on \overline{Q} , $1 \leq q \leq k$, and $x_0 \in \partial Q$. By a simple computation, we see that, on a suitable neighbourhood of x_0 , we have:

$$\varphi_a = (\nabla u_{\omega, a} \cdot \nabla \Phi) / (\nabla u_0 \cdot \nabla \Phi) + ((A \cdot \nabla \Phi) / (\nabla u_0 \cdot \nabla \Phi)) u_{\omega, a}$$

In particular,

 $\varphi_a \in \mathbf{C}^{\infty}(\bar{\mathbf{Q}}, \mathbb{C}^m)$

and
$$(\nabla \varphi_q + \vec{A} \varphi_q)(x_0) = 0$$
, for $1 \le q \le k$ and $x_0 \in \partial Q$.

Now, we show the second part of this proposition. Let us remark that as a consequence of the Cauchy uniqueness theorem for linear systems of differential equations, we have:

LEMMA 2.3. – If $x_0 \in M$, $\alpha \in A^1(M, \mathcal{M}_{m,a})$ and $\psi \in C^1(M, \mathbb{C}^m)$ such that: $\nabla_{\alpha} \psi = 0$, $\psi(x_0) = 0$. Then, $\psi = 0$ on M.

By this lemma, we obtain easily that, for $x \in M$, the $(\varphi_q(x))_q$ are linearly independent in \mathbb{C}^m . Let us verify that, for $x \in M$ and $1 \leq p$, $q \leq k$, $(\varphi_p(x), \varphi_q(x)) = \delta_q^p$ (where δ_q^p is the Kronecker delta).

By differentiation of the application $S_q^p = (\phi_p, \phi_q)$ [which is in $C^{\infty}(M, \mathbb{C}^m)$] and using the fact that ω is skew Hermitian, we obtain:

$$d\mathbf{S}_{q}^{p} = \langle d\phi_{p}, \phi_{q} \rangle_{0} + \langle \phi_{p}, d\phi_{q} \rangle_{0} = \langle -\omega.\phi_{p}, \phi_{q} \rangle_{0} + \langle \phi_{p}, -\omega.\phi_{q} \rangle_{0} = 0.$$

Here it is understood that the inner products on the right are defined by the requirement that: $\langle \Theta, \varphi \rangle_0 = \sum_s \overline{\varphi}_s \theta_s \in A^1(M)$, for

$$\Theta = (\theta_s)_s \in A^1(M, \mathbb{C}^m) \text{ and } \varphi = (\varphi_s)_s \in A^0(M, \mathbb{C}^m).$$

Then, S_q^p is equal to a constant c_q^p on M (note here that M is connected) and finally

$$\delta_{q}^{p} = \int_{M} (u_{\omega, p}, u_{\omega, q})(x) \, dv = \int_{M} |u_{0}|^{2} (x) (\phi_{p}, \phi_{q})(x) \, dv = c_{q}^{p}.$$

Let us translate this result on the curvature of ω . By differentiation of (2.4), we obtain:

$$\mathbf{K}(\boldsymbol{\omega}) \boldsymbol{\varphi}_q = 0, \quad \text{for} \quad 1 \leq q \leq k. \tag{2.5}$$

Let us define the kernel of K (ω) as the subset of the trivial bundle $M \times \mathbb{C}^m$:

$$\ker \mathbf{K}(\omega) = \{ (x, v) \in \mathbf{M} \times \mathbb{C}^m : \mathbf{K}(\omega)(x) [\partial_j(x), \partial_l(x)], \\ v = 0, \quad \text{for} \quad 1 \le j, l \le n \},$$

where $\{\partial_j(x)\}_j$ is the natural basis of $T_x M$. Note here that ker K (ω) defined in this way is independent of a choice of a basis in $T_x M$. Moreover, it is invariant under global gauge transformations. Suppose that $\lambda_{\omega, 1}^{\mathsf{M}} = \lambda_{\omega, 2}^{\mathsf{M}} = \ldots = \lambda_{\omega, k}^{\mathsf{M}} = \lambda_0^{\mathsf{M}}$, and consider k-functions (φ_q)_q satisfing the above proposition. Let \mathscr{K} be the trivial subbundle of $\mathsf{M} \times \mathbb{C}^m$ generated by (φ_q)_q, and \mathscr{K}^{\perp} the orthogonal fiber subbundle to \mathscr{K} . Condition (2.5) says that ker K (ω) contains \mathscr{K} . More precisely, we have:

LEMMA 2.4. – Assume that $\lambda_{\omega, 1}^{M} = \lambda_{\omega, 2}^{M} = \ldots = \lambda_{\omega, k}^{M} = \lambda_{0}^{M}$. Then, the following equivalent conditions are satisfied:

(i): ∇_{ω} restricted to $A^{0}(M, \mathscr{K})$ takes values in $A^{1}(M, \mathscr{K})$,

(ii): ∇_{ω} restricted to $A^{0}(M, \mathscr{K}^{\perp})$ takes values in $A^{1}(M, \mathscr{K}^{\perp})$.

In other words, the restriction of ∇_{ω} to $A^0(M, \mathscr{K})$ define a connection $\nabla_{\omega, \mathscr{K}}$ on \mathscr{K} .

Proof. – The equivalence between (i) and (ii) results from the following relation:

 $\langle \nabla_{\omega} f, \psi \rangle_0 = - \langle f, \nabla_{\omega} \psi \rangle_0$, for $f \in \mathcal{A}^0(\mathcal{M}, \mathscr{K})$ and $\psi \in \mathcal{A}^0(\mathcal{M}, \mathscr{K}^{\perp})$.

Let us prove (i). Consider $f = \Sigma_q(f, \varphi_q) \cdot \varphi_q \in A^0(M, \mathcal{K})$ and using (2.4), we obtain:

$$\nabla_{\omega} = \sum_{q} [d(f, \varphi_{q}) \cdot \varphi_{q} + (f, \varphi_{q}) \cdot d\varphi_{q} + (f, \varphi_{q}) \cdot \omega \cdot \varphi_{q}]$$

= $\sum_{q} d(f, \varphi_{q}) \cdot \varphi_{q} \in \mathcal{A}^{1}(\mathcal{M}, \mathscr{K}).$

Let us give the main theorem of this section.

THEOREM 2.5. – The following three conditions are equivalent:

(i) $\lambda_{\omega, 1}^{\mathsf{M}} = \lambda_{\omega, 2}^{\mathsf{M}} = \ldots = \lambda_{\omega, k}^{\mathsf{M}} = \lambda_{0}^{\mathsf{M}}$

(ii) ker K (ω) contains a trivial subbundle \mathscr{K} of M × \mathbb{C}^m of rang k, such that:

(a): $\nabla_{\omega} A^{0}(M, \mathscr{K}) : A^{0}(M, \mathscr{K}) \to A^{1}(M, \mathscr{K}),$

(b): $\nabla_{\omega, \mathscr{K}}$ is flat,

(c): $U_{\gamma}(\nabla_{\omega, \mathscr{K}}) = \{I_k\}$, for each closed curve γ in M.

(iii) $k \cdot \text{Sp}(H_V^M) \subset \text{Sp}(H_{\omega, V}^M)$, where

$$k \cdot \operatorname{Sp}(\operatorname{H}_{\operatorname{V}}^{\operatorname{M}}) = \operatorname{Sp}(\operatorname{H}_{\operatorname{V}}^{\operatorname{M}}) \cup \operatorname{Sp}(\operatorname{H}_{\operatorname{V}}^{\operatorname{M}}) \cup \ldots \cup \operatorname{Sp}(\operatorname{H}_{\operatorname{V}}^{\operatorname{M}}), (k \text{ times}).$$

Proof. – The assertion (i) \Rightarrow (ii) is an easy consequence of Proposition 2.3, Lemma 2.4 and Theorem 1.1'. Let us prove (ii) \Rightarrow (iii), which is the non trivial part of the statements. Consider a frame $\mathscr{E} = (e_a)_a$,

 $e_a \in \mathbb{C}^{\infty}(\mathbb{M}, \mathbb{C}^m)$ for $1 \leq q \leq k$, of \mathscr{K} over \mathbb{M} . Using (a), we can write:

$$\nabla_{\omega} e_q = \sum_s \langle (d+\omega) e_q, e_s \rangle_0 \cdot e_s.$$

This means that the 1-form $\omega_{\mathscr{X}} = {}^{t}([\langle (d+\omega)e_{i}, e_{i}\rangle_{0}]_{1 \leq i, l \leq k})$ is the connection form of $\nabla_{\omega, \mathscr{X}}$ with respect to \mathscr{E} . Now, conditions (b) and (c) say that $\nabla_{\omega, \mathscr{X}}$ is trivial:

$$\exists \mathbf{W} \in \mathbf{C}^{\infty} \left(\mathbf{M}, \, \mathcal{U} \left(k \right) \right) : d\mathbf{W} = \mathbf{W} \cdot \boldsymbol{\omega}_{\mathscr{K}}. \tag{2.6}$$

Using elementary computations, we see that if $(\eta_s)_s$ [resp. $(\delta_l)_l$] is the canonical basis of \mathbb{C}^k (resp. \mathbb{C}^m) and $\mathbf{E} = {}^t ([e_i, \delta_l)]_{1 \le i \le k, 1 \le l \le m}$, then

 $(d\mathbf{E} + \boldsymbol{\omega} \cdot \mathbf{E} - \mathbf{E} \cdot \mathbf{W}^* \cdot d\mathbf{W}) \eta_s \in \mathbf{A}^1(\mathbf{M}, \mathscr{K}) \cap \mathbf{A}^1(\mathbf{M}, \mathscr{K}^{\perp}), \quad \text{for} \quad 1 \leq s \leq k.$

Consequently,

$$d\mathbf{E} + \boldsymbol{\omega} \cdot \mathbf{E} - \mathbf{E} \cdot \mathbf{W}^* \cdot d\mathbf{W} = 0 \quad \text{in } \mathbf{A}^1 (\mathbf{M}, \, \mathcal{M}_{m \times k}), \tag{2.7}$$

where $\mathcal{M}_{m \times k_{\mathrm{M}}}$ is the set of $m \times k$ -matrix. Let $\lambda \in \mathrm{Sp}(\mathrm{H}_{\mathrm{V}}^{\mathrm{M}})$, u an associated eigenfunction of $\mathrm{H}_{\mathrm{V}}^{\mathrm{M}}$, and set:

$$u_q = u \operatorname{E} \cdot \operatorname{W}^* \cdot \eta_q \in \operatorname{C}^\infty(\operatorname{M}, \mathbb{C}^m), \quad \text{for} \quad 1 \leq q \leq k.$$

Then, u_a 's are independent in $L^2(M, \mathbb{C}^m)$ and we have for $1 \leq q \leq k$:

$$\mathbf{H}_{\omega, \mathbf{V}}^{\mathbf{M}}(u_q) = \mathbf{E}\mathbf{W}^* \cdot (\mathbf{H}_{\mathbf{V}}^{\mathbf{M}} \otimes 1) u \cdot \eta_q = \lambda u_q,$$

using (2.7). This means that λ is also an eigenvalue of $H^{M}_{\omega, V}$ with multiplicity greater or equal to k.

As a consequence, we have:

- THEOREM 2.6. The following three conditions are equivalent: (i) $\lambda_{\omega_{1},1}^{\mathsf{M}} = \lambda_{\omega_{2},2}^{\mathsf{M}} = \ldots = \lambda_{\omega_{1},m}^{\mathsf{M}} = \lambda_{0}^{\mathsf{M}}$,
- (ii) $H_{\omega,v}^{M}$ and $H_{v}^{M} \otimes 1$ are unitary equivalent,
- (iii) (a): $K(\omega) = 0$, (b): $U_{\gamma}(\omega) = \{I_m\}$, for each closed curve γ in M.

3. COMPARISON THEOREMS, CASE II

We look here at the **case II** and we fix a finite system of local trivializations $(B_{\alpha}, e_{\alpha})_{\alpha \in I}$ of E, with B_{α} connected for each $\alpha \in I$. Let ω_{α} be the connection form of ∇ with respect to (B_{α}, e_{α}) and u_0 (resp. λ_0^M) the first eigenfunction (resp. eigenvalue of H_V^M as in Lemma 2.1.

Let us first remark that, using a partition of unity subordinate to the covering $\{B_{\alpha}\}_{\alpha}$, we can formulate (*see* [4] for the detail of the proof) this lemma in this case as follow:

LEMMA 3.1.
$$- \| \nabla \xi - du_0 \otimes \xi / u_0 \|_1^2 = [\mathbf{H}_{\nabla, \nabla}^{\mathsf{M}}(\xi), \xi]_0 - \lambda_0^{\mathsf{M}} \| \xi \|_0^2,$$

for $\xi \in \mathcal{A}_0^0(\mathsf{M}, \mathsf{E}).$

As a consequence of this lemma and the min-max principle [11], we have:

 $\lambda_0^{M} \leq \lambda_{\nabla}^{M, E}$, where $\lambda_{\nabla}^{M, E}$ is the first eigenvalue of $H_{\nabla, V}^{M, E}$.

In order to formulate Proposition 2.1 in this case, we can get using local trivializations the following lemma:

LEMMA 3.2. – If $\xi \in A^0(M, E)$, $x_0 \in M$ such that $\nabla \xi = 0$ and $\xi(x_0) = 0$. Then, $\xi = 0$.

Now, let us denote by $\lambda_{\nabla, 1}^{M, E}$, $\lambda_{\nabla, 2}^{M, E}$, \ldots , $\lambda_{\nabla, k}^{M, E}$ the *k*-first eigenvalues of $H_{\nabla, \nabla}^{M, E}$, and recall that ∇ is supposed compatible with the Hermitian structure of E. Namely,

 $d(\xi, \zeta) = \langle \nabla \xi, \zeta \rangle_0 + \langle \xi, \nabla \zeta \rangle_0, \quad \text{for} \quad \xi, \zeta \in \mathcal{A}^0(\mathcal{M}, E). \quad (3.1)$

Then, using (3.1) and Lemma 3.2, we can obtain in the same way as in Proposition 3.2 the:

PROPOSITION 3.3. If $\lambda_{\nabla, 1}^{\mathsf{M}, \mathsf{E}} = \lambda_{\nabla, 2}^{\mathsf{M}, \mathsf{E}} = \ldots = \lambda_{\nabla, k}^{\mathsf{M}, \mathsf{E}} = \lambda_{0}^{\mathsf{M}}$, then, there exists k-sections (ξ_s) of E over M such that $\{\xi_s(x)\}_s$ is an orthonormal system of E_x for each $x \in \mathsf{M}$, and that:

$$\nabla \xi_s = 0 \quad \text{in } A^1(M, E), \qquad \text{for } 1 \le s \le k. \tag{3.2}$$

COROLLARY 3.4. – Under conditions: $\lambda_{\nabla, 1}^{M, E} = \lambda_{\nabla, 2}^{M, E} = \ldots = \lambda_{\nabla, k}^{M, E} = \lambda_{0}^{M}$, we have:

(i) $E = \mathscr{K} \oplus \mathscr{K}^{\perp}$ (Whitney sum), where \mathscr{K} is a trivializable subbundle of E with rank k,

(ii) $\nabla = \nabla_{\mathscr{K}} \oplus \nabla_{\mathscr{K}^{\perp}}$, where $\nabla_{\mathscr{K}}$ is a flat connection on \mathscr{K} such that: $U_{\gamma}(\nabla_{\mathscr{K}}) = \{I_k\}$, for each closed curve γ in M.

Let us give the main theorem of this section.

THEOREM 3.5. - The three following conditions are equivalent:

(i) $\lambda_{\nabla, 1}^{\mathsf{M}, \mathsf{E}} = \lambda_{\nabla, 2}^{\mathsf{M}, \mathsf{E}} = \ldots = \lambda_{\nabla, m}^{\mathsf{M}, \mathsf{E}} = \lambda_{0}^{\mathsf{M}},$

(ii) $\operatorname{Sp}(\operatorname{H}^{\mathrm{M}, \mathrm{E}}_{\nabla, \mathrm{V}}) = m \cdot \operatorname{Sp}(\operatorname{H}^{\mathrm{M}}_{\mathrm{V}}),$

(iii) (a): E is trivializable, (b): the curvature of ∇ vanishes, (c): $U_{\gamma}(\nabla) = \{I_m\}$, for each closed curve γ in M.

Proof. – The implication (ii) \Rightarrow (i) is trivial.

The assertion (i) \Rightarrow (iii) follows directly from Corollary 3.4.

Let us prove (iii) \Rightarrow (ii). We start from (iii) (a) and we consider a family $\{r_{\alpha}\}_{\alpha}$ of applications (*i.e.*, a trivialization of E) such that:

$$r_{\alpha} \in C^{\infty}(B_{\alpha}, \mathcal{U}(m)), r_{\alpha} = g_{\alpha\beta} \cdot r_{\beta} \quad on \ B_{\alpha\beta}, \quad \text{for} \quad \alpha, \beta \in I.$$
 (3.3)

Let $(\xi_{\alpha})_{\alpha}$ be the local trivializations of a section ξ in the system (B_{α}, e_{α}) . By (3.3), we have

$$r_{\alpha}^{*}\xi_{\alpha} = r_{\beta}^{*}\xi_{\beta}$$
 on $B_{\alpha\beta}$, for $\alpha, \beta \in I$. (3.4)

Annales de l'Institut Henri Poincaré - Physique théorique

Then for each $\xi \in A^1(M, E)$, define $F_{\zeta} \in C^{\infty}(M, \mathbb{C}^m)$ by: $F_{\xi \mid B_{\alpha}} = r_{\alpha}^* \cdot \xi_{\alpha}$ for $\alpha \in I$. It is easy to see that the application T defined by: $T(\xi) = F_{\xi}$ is one to one.

Moreover,

۴

$$\operatorname{supp} \xi = \operatorname{supp} F_{\xi}, \qquad (3.5)$$

$$[\xi, \xi']_0 = \int_{\mathbf{M}} (\mathbf{F}_{\xi}, \mathbf{F}_{\xi'}) \, dv \equiv [\mathbf{F}_{\xi}, \mathbf{F}_{\xi'}], \quad \text{for} \quad \xi, \xi' \in \mathbf{A}^0 (\mathbf{M}, \mathbf{E}). \quad (3.6)$$

On the other hand, if $\omega \in A^1(M, \mathcal{M}_{m,a})$ is the connection form of ∇ [which is trivial by the conditions (b), (c)] with respect to the frame defined by $(r_{\alpha})_{\alpha}$, *i. e.*,

$$\omega_{|B_{\alpha}} = r_{\alpha}^* \cdot \omega_{\alpha} \cdot r_{\alpha} + r_{\alpha}^* dr_{\alpha};$$

and if $\mathscr{H}^{M}_{\omega, V}$ is the Schrödinger operator with magnetic potential ω . Then, by a direct computation (and using the min-max principle for the hereunder (C.3) property) we obtain the following properties:

$$(C.1): d\xi_{\alpha} + \omega_{\alpha} \xi_{\alpha} = r_{\alpha} (dF_{\xi} + \omega \cdot F_{\xi})|_{B_{\alpha}} \quad \text{for} \quad \alpha \in I,$$

$$(C.2): [H_{\nabla, V}(\xi), \xi']_{0} = [\mathscr{H}_{\omega, V}(F_{\xi}), F_{\xi'}], \quad \text{for} \quad \xi, \xi' \in A_{0}^{0}(M, E),$$

$$(C.3): Sp (H_{\nabla, V}^{M, E}) = Sp (\mathscr{H}_{\omega, V}^{M}).$$

Now, the condition (ii) results from (C.3) and Theorem 2.6, respectively.

REFERENCES

- J. AVRON, I. HERBST and B. SIMON, Schrödinger Operators with Magnetic Fields. I. General Interactions, Duke Math. Journal, 45, 1978, pp. 847-884.
- [2] B. DOUBROVINE, S. NOVIKOV and A. FOMENKO, Géométrie contemporaine. Méthodes et applications, Éditions Mir, Moscou, 1979.
- [3] D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, 1977.
- [4] O. HEBBAR, Effet d'Aharonov-Bohm pour un état borné dans le cas des systèmes, Thèse de Doctorat à l'Université de Nantes (France), 1992.
- [5] B. HELFFER, Effet d'Aharonov-Bohm sur un état borné de l'équation de Schrödinger, Commun. Math. Phys., 119, 1988, 315-329.
- [6] H. HESS, R. SCHRADER and D. A. UHLENBROCK, Domination of Semigroups and Generalization of Kato's Inequality, *Duke Math. Journal*, Vol. 44, 4, 1977.
- [7] H. HESS, R. SCHRADER and D. A. UHLENBROCK, Kato's Inequality and the Spectral Distribution of Laplacian on Compact Riemannian Manifolds, J. Diff. Geometry, 15, 1980, pp. 27-37.
- [8] R. KUWABARA, On Spectra of the Laplacian on Vector Bundles, J. Math. Tokushima Univ., 4, Vol. 16, 1982, pp. 1-23.
- [9] R. LAVINE and M. O'CAROLL, Ground State Properties and Lower Bounds on Energy Levels of a Particle in a Uniform Magnetic Field and External Potential, J. Math. Phys., Vol. 18, 1977, pp. 1908-1912.

- [10] S. MANABE and I. SHIGEKAWA, A Comparison Theorem for Eigenvalues of the Covariant Laplacian, J. Funct. Anal., Vol. 94, 1990, pp. 349-357.
- [11] M. REED and B. SIMON, *Methods of modern mathematical physics*, IV, New York, Academic press, 1978.
- [12] I. SHIGEKAWA, Eigenvalue Problems for the Schrödinger Operator with the Magnetic Field on a Compact Riemannian Manifold, J. Funct. Anal., 75, 1987, pp 92-127.
- [13] R. O. WELLS, Differential Analysis on Complex Manifolds, Grad. Texts. Math., Vol. 65, Springer-Verlag, 1979.

(Manuscript received October 28, 1992.)