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Moments and Huygens’ principle for conformally
invariant field equations in curved space-times

V. WÜNSCH
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99089 Erfurt, Germany
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ABSTRACT. - By means of a certain conformal covariant differentiation
process we define an infinite sequence of conformally invariant tensors
(moments) for Weyl’s neutrino equation in a curved space-time. In the
cases of the conformally invariant-scalar wave equation and Maxwell’s
equations such moments were introduced by Gunther. We prove some
properties of the moments and study the relationship between the moments
and the validity of Huygens’ principle for these conformally invariant
field equations. Using suitable generating systems of conformally invariant
tensors we derive the first moment equations and obtain from them results
on Huygens’ principle.

words : Conformally invariant field equations, moments, Huygens’ principle.

Grace a un certain processus de differentiation de covariant

conformes, nous définissons une suite infinie de tenseurs invariants
conformes (moments) pour 1’ equation de Weyl dans un espace-temps
courbe. Ces moments sont introduits par Gunther pour 1’ equation des
ondes scalaires et les equations de Maxwell. Nous prouvons quelques
proprietes des moments et etudions Ie lien entre ces moments et la validite
du principe de Huygens pour les equations de champ invariantes conformes.
En utilisant des tenseurs invariants conformes adaptes, nous deduisons les
premieres equations de moments et obtenons des resultats a propos du
principe de Huygens.
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434 V. WUNSCH

1. INTRODUCTION

In a four-dimensional pseudo-Riemannian manifold (M, g) with a smooth
metric of Lorentzian signature the following conformally invariant field
equations are considered:

Scalar wave equation ~a ~b t6 2014 ~ Ru =0 El
Maxwell’s equations dcv = 0, 8w = 0 E2

Weyl’s neutrino equation B71 = 0 E3
P. Günther [G4] defined for the equations Ei and E2 an infinite sequence

of symmetric, trace-free, conformally invariant tensors

which he called moments of the equation E~ of order v. He derived these
moments by means of a certain conformal covariant differentation process.
The moments are of particular importance in the theory of Huygens’
principle for E1 and E2. For one of the equations E~ Huygens’ principle
(in the sense of Hadamard’s "minor premise") is valid if and only if the
corresponding tail term vanishes [Ha; G2, 4; W4] . Consequently, if ( M, g )
is analytic we have the following relationship between the moments and the
validity of Huygens’ principle: The equation El or E2 satisfies Huygens’
principle if and only if all corresponding moments vanish on M. These
moment equations I ~ ... i v ( x ) = 0, (cr = 1, 2 ) are determined explicitly
up to now for 0 ~ ~ ~ 4 (see [G 1, 2; Wl, 2, 4; McL 2] ) . For example,
we have Ii2 = where a~~~ E and Bili2 denotes the

B ach tensor [GI, 2; W4].
In this paper we define such a sequence of conformally invariant tensors

also for Weyl’s neutrino equation E3. Using some results on the theory of
conformally invariant tensors [GW 2, 3], in particular, the notion "conformal
covariant derivative" and suitable linear independent systems of conformally
invariant tensors, we give new information about the general structure of
the moment equations I...iv = 0 for cr G {1, 2, 3} and v E {0, 1, ..., 6},
which imply some results on Huygens’ principle for E~ .
The paper is organized as follows. After some preliminaries we give in

Section 3 necessary and sufficient conditions for the validity of Huygens’
principle for the equations E~ and, further, the transformation law for the
corresponding tail terms under conformal transformations of the metric.

In Section 4, Gunther’s and the author’s contributions to the theory of

polynomial conformally invariant tensors [GW2, 3] ] are generalized by
including the Levi-Civita pseudo-tensor and conformally invariant spinors.
Further, some classes of conformally invariant tensors, which are important
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435. MOMENTS AND HUYGENS’ PRINCIPLE

for the moments and necessary conditions for (M, g) to be conformal to an
Einstein space-time are given. In Section 5, we introduce moments also for
Weyl’s neutrino equation and derive some properties of the moments. Using
the results of Section 4 on generating systems of conformally invariant
tensors we obtain information about the algebraic structure of the first
moments. Finally, in Section 6, we show the importance of the moments
for the validity of Huygens’ principle, especially in the case of a Petrov
type N space-time.

2. PRELIMINARIES

Let (M, g) be a space-time, i. e. a 4-manifold together with a smooth
metric of Lorentzian signature, and gab, gab, ~a, Rabcd, Rab, R, Cabcd
the local coordinates of the covariant and contravariant metric tensor, the
Levi-Civita connection, the curvatur tensor, the Ricci tensor, the scalar
curvature and the Weyl curvature tensor, respectively. J and 11P denote the
space of the Coo scalar fields and the p-forms of class respectively.
On 11P the exterior derivative d, the co-derivative 03B4 and .ð :_ - (db + bd)
are defined. Assuming that (M, g) can be equipped with a spin structure we
denote the complex spinor bundles of covariant and contravariant 1-spinors
and their conjugates by S, 5’*, S, S*, the set of all cross sections of S, 5~
S S* by S, S*, S, S*, respectively, the coordinates of cp E E s, the
connection quantities (generalized Pauli-matrices), the Levi-Civita spinor,
the connection coefficients and the spinor covariant derivative by [PR]

If we define for cp E E ?

we have [W4; PR]

In the following we consider the conformally invariant wave equation

Vol. 60, n ° 4-1994.



436 V. WUNSCH

the (source-free) Maxwell equations

and Weyl’s neutrino equation

Let M be a causal domain [F; G4] and r (x, y) the square of the geodesic
distance of x, y E M. For any fixed y E M the set {x E M ~ I r (x, y) &#x3E; 0}
decomposes naturally into two open subsets of M; one of them is called the
future D+ (y) and the other one the past D- (y) of y. The characteristic semi
null cones Ct (y) are defined as the boundary sets of (y), respectively.

Let (y), (y) and G~~2~ (y) be the fundamental solutions of the
linear operators £(0) A, £(1/2) and (., ,y), 0; = 0, 1, 1/2 the tail terms
of G(03B1)± (y) with respect to y, respectively. The tail term is just the factor
of the regular part of the corresponding fundamental solution, which is a
distribution supported inside the future of y [F; G4]. For T(03B1) there is an
asymptotic expansion in r

where the Hadamard coefficients !7~ are determined recursively by the
transport equations [F, G4, W4].

3. HUYGENS’ PRINCIPLE

Let F be a space-like 3 dimensional submanifold of M, D~? ( y) that part
of the interior of the past semi null cone C- (~/), which is bounded by
the hypersurface F and, finally, F (~) := F n Dp (~/). Cauchy’s problem
for one of the equations E~ is the problem of determining a solution
which assumes given values u (and their normal derivative for on the

given submanifold F. These values are called Cauchy data. Local existence
and uniqueness of the solution of Cauchy’s problem has been proved by
Hadamard [Ha] for E1, by Gunther [G2] for E2 and by the author [W4]
for E3

DEFINITION 3 .1. - One of the equations ~ {1, 2, 3}, is said to
satisfy Huygens’ principle (in the sense "minor premise")
if and only if for every Cauchy problem and for every y E M the solution
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437MOMENTS AND HUYGENS’ PRINCIPLE

u depends only on the Cauchy data in an arbitrarily small neighbourhood

Only if Huygens’ principle is valid the wave propagation is free of

tails [F; G4; McL2; W4], that is the solution depends on the sources
distributions on the past null cone of the field point only and not on the
sources inside the cone. Huygens’ principle plays an important role also
in quantum field theory in curved space-times. According to Lichnerowicz
[L; B] the support of the commutator - or the anticommutator - distribution,
respectively, lies on the null cone if and only if Huygens’ principle holds
for the corresponding field equation.

In [Ha; F; G2; W4] it was proved:

PROPOSITION 3 .1. - The equation G {1, 2, 3} satisfies Huygens’
principle iff

Here the superscripts (1), (2) indicate whether the derivative is meant with
respect to x or y.

DEFINITION 3.2. - The terms

are called tail terms ’ equation Ei, jE’2? E3, respectively.
If the metric g ’ undergoes a conformal transformation

the tail terms (3.4) transform according to McL2; W4, 5]

Consequently, a conformal transformation (3.5) preserve the Huygens’
character of the equation e {1, 2, 3} [G4; W4; 0]. In particular,

Vol. 60, n° 4-1994.



438 V. WUNSCH

the conditions (3 .1 )-(3 . 3) are fulfilled for flat metrics [G4; W4], which
implies that if g is conformally flat for the equations jE~ Huygens’ principle
is (trivially) valid.

Because the functional relationship between the tail terms (3.4) and the
metric is not clear, the problem of determination of all metrics, for which
any equation E~ satisfies Huygens’ principle, is not yet completely solved
(see [G4; W2, 4; McL3; CM; I]). A step forward is the derivation of
suitable infinite sequences of conformally invariant tensors, the so called
moments of ~.

4. CONFORMALLY INVARIANT TENSORS

We consider polynomial tensors, i. e. tensors, whose coordinates are

polynomial in gab and the partial derivatives of gab. These tensors are just
the elements of the tensor algebra TZo generated by the tensors.

by means of the usual tensor operations. Furthermore, let 7Z be the algebra
generated by the tensors (4 .1 ) and the Levi-Civita tensor eabcd1)

DEFINITION 4 . l. - A tensor T (g~ E 7Z is said to be conformally invariant
of weight w, if under the conformal transformation (3.5) T (g) has the
transformation law

It is an important problem to give a survey of all conformally invariant
tensors or to give methods for constructing special classes of such tensors
[GW2, 3; W3].

LEMMA 4 . l. - T (g) E R is conformally invariant iff it is invariant under
all infznitesimal conformal transformations, i. e. iff

Let T be the sub algebra of those elements of R which contain only first
derivatives of $ in their transformation law [GW 2]. From Lemma 4. 1 it
follows that T (g) E T iff P (g, q» has the form

For the linear operator X ~, defined on T by (4 . 4), holds Leibniz’s rule
[GW2] .

Annales de l’Institut Henri Poincare - Physique theorique



439MOMENTS AND HUYGENS’ PRINCIPLE

COROLLARY 4. 1. - T (g) E R is conformally invariant (g) E T and
= o.

Examples. - Xk(gab) = 0, Xk 0, Xk (~u Cu.abc) = If

T (g~ E T then in general we have T ~ T. Let be

DEFINITION 4. 2. - For T E T the tensor

is called the conformal covariant derivative of T [GW2] .
In [GW 2; GeW 1 ] it was proved:

PROPOSITION 4. I. - (i) The conformal covariant derivative ~a is linear,

obeys Leibniz’s rule and commutes with contractions.

(ii) ~a : T -+ T

(iii) T is generated by the tensors

(iv) If T E T has the weight cv, then

where

and

1 e e

(11 B ) Bi1,i2 := ~a b Ca.i1i2b. + 2 Rab =v a bCa.i1iab. (Bach

tensor) X ~ (Bili2) = 0. Therefore, the Bach tensor is a conformally
invariant tensor of weight -l.

Vol. 60, n° 4-1994.



440 V. WUNSCH

Whenever in the following latin indices with subindices arise (e. g.
i 1 ... we assume that symetrization has been carried out over the indices.
If T is any tensor with covariant rank r (r ~ 2), then we denote by T9 (T)
the trace-free part of T. For a symmetric tensor with r ~ 2 we write

LEMMA 4.2. - ’ symmetric, conformally invariant tensor
with covariant rank (I~ - l ) and weight w then

Proof - By (4 . 7) one gets (see [G4], p. 510)

On account of (4 . 8) it follows .ð7;i2 == 2 8~ 8[2 (mod g) and, therefore,

and the assertion (4.9).

A conformally invariant tensor T is called trivial if T is generated by

Lemma 4 .1, Corollary 4.1, Definition 4 . 2 and Proposition 4.1 are very
useful for the construction of nontrivial conformally invariant tensors.

Let ~2~.+1 ~r = 0, 1, 2, ...) be the set of all symmetric, trace-free,
conformally invariant tensors contained in T~o and 7~ respectively, with
weight -1 and covariant rank 2 rand 2 r +1, respectively. Using the above
results, in [GW3; GeWl, 2] linear independent generating systems of ~r
for 0 ~ r ~ 6 were derived. 2)

l’Institut Henri Poincaré - Physique theorique
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PROPOSITION 4.2. - E ?~ then one * #

where ’ the Bach 

60, n° 4-I9g4.
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For the definition of the tensors S62’ ~~ , ,~63’ l~ , which contain many
monomials see [GeW 2, pp. 127-136]. ~
Remark 4.1. - In the case of R~b == 0 the tensors B, W ~2&#x3E; and 56~2’2~

vanish. Consequently, if (M, g) is conformally related to an Einstein
space-time with R~b = 0 then [W8]

Remark 4 . 2. - McLenaghan and Leroy investigate in [McL, L] the class
of generalized plane wave metrics

where z = x3 + ix4 and a = a, D, e, F are arbitrary functions of x 1 only.
For the special case a = 0 we obtain the important subclass of plane wave
metrics [S2, G3, 4; DC; W4]. In [AW; Ge W2] it was shown:

LEMMA 4.3. - For a metric (4 . 10) it holds

where

LEMMA 4.4. - A generalized plane wave plane wave metric

Consequently, in virtue of Remark 4.1 a generalized plane wave metric
g is conformally related to an Einstein metric iff g is a plane wave metric.

It is well known that the equations El - E3 are conformally invariant
[PR; W4]. In particular, for Weyl’s neutrino operator under the conformal
transformation [PR; W4]

we get
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where ~p := e-~3~2~ ~p. In Section 5 we need a conformal covariant derivative
of a conformal invariant spinor SX with the weight ~, i. e. a spinor with
the transformation law

Similarly to (4.5) one can define inductively for r &#x3E; 0 :

C C

Here X ~ (B7 i1 1 ... B7 i r SX ) is again given by (see (4 . 3 ), (4 . 4))

where we omit terms which are nonlinear in the derivatives of ~. The
e e

transformation law of ~ i1 ... V SX contains only first derivatives of 03C6.

LEMMA 4 . 5 . - A conformally invariant spinor with weight w satisfies

Induction with respect to ~: by X~ (8 x) = 0 the formula (4.11)
is correct if k == o. If (4.11) is fulfilled for any k, then on account of

(~?[W4]) - . 

we have analogues to (4.7)

c c c

In order to calculate ~i1 X03B3(~ i2 ... ~ik+1 SX) we use the induction

hypothesis and obtain under consideration of ~ a gbd = 0, Va = 0

the assertion.

Vol. 60, n° 4-1994.
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5. MOMENTS OF THE FIELD EQUATIONS

1. The moments of the scalar wave equation
From (2.4) and the transport equations for the Hadamard coefficients it

follows, that the coincidence values B7~~) ... B7~~) (x, x) are elements
of [G4]. Here B7(1) denotes the covariant derivative of with respect
to the first variables. Because of (3.6) and Proposition 4.1 the conformal

covariant derivatives B7~~) ... V7~~) (x, x), r = 0, 1, 2... are contained
in T. In [G4] it was defined and proved:

DEFINITION 5.1.2014 The covariant r-tensors given recursively by

with

are called moments o, f ’ the scalar wave equation El of order r.

PROPOSITION 5 .1. - It holds i r yST, r &#x3E; 0 and I i , , . i r - O i, f ’ r
odd. 4j

2. The moments of Maxwell’s equations E2
The tail term K (~, ~) of Maxwell’s equations E2 (see (3.2)) is a double
differential form of degree 2:

One defines for every x E M and r ~ 2 the covariant r tensors [G4; W2]

and for r even recursively

with

On the other hand let be

Annales de l’Institut Henri Poincaré - Physique théorique
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Then *K (x, y) is the left dual of K (.r, y) which is analogues to K (x, y)
(see (3.7)) conformally invariant with weight zero. Now one ’ defines for

and for r odd recursively

DEFINITION 5 . 2. - The covariant r-tensors given by

are called moments equations of order r. 5~

In [G4] the following was shown, using in particular (3.2):

PROPOSITION 5 . 2. - The moments (5.2) are elements of Sr (r ~ 2).
3. The moments of Weyl’s neutrino equation
The tail term N (x, ?/) of the equation E3 (see (3.3)) is a spinor of

0?(T/) [W4]. We denote by N XA (x, y) its coordinates. Here the

underlined indices refer to ?/. In [W4, p. 69] it was proved:

Now we define for every x E M and r ~ 1 the covariant (complex)
r-tensors [W4]

and for r ~ 1 recursively

with

Vol. 60, nO 4-1994.
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PROPOSITION 5 . 3 . - The tensor ir I*i1 ..., is r &#x3E; 1.

Proof. - Let us write in this proof instead of7~...,, Ni 1... iT , ~21 ~ ~ ~ 
’’’ ~B p(2&#x3E; ’’’ p~2~ shortly 7., ~, r ~ T, V~ respectively.

Then it may be shown that for r &#x3E;_ 1

e e e

Using the differentiation rule B7==B7 (1) + B7 (2) along the diagonal of
M x M and Lemma 5.1 we obtain

hence

We prove (5.6) by induction with respect to r. By (5.7) we have for r = 1:

Now let (5.6) be fulfilled for 1 ~ r ~ ( I~ - 1). Then from (5.4) and 0
(5.7) it follows for r = 1~

Annales de l’Institut Henri Poincare - Physique - theorique
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where ’ F is the hypergeometric polynomial at the point 1.

DEFINITION 5 . 3 . - The covariant real r-tensors given by

are ’ called moments of Weyl’s neutrino ’ equation of order r.

where

Proof. - Induction with respect to r. Obviously, the assertion is true for
r = 1. Now we assume, that the assertion is valid for r - 1. Then we have

from which it follows

Vol. 60, n ° 4-1994.
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Lemma 4.5 and (4.11 ) imply that

can be represented as linear form in the symmetric covariant derivatives of
N~ up to the order r - 2. Consequently, on account of (5.8) and (5.9) we get

(see also [G4], Lemma 4.10), hence

In [W4, p. 154] it was proved, that (5.10) is symmetric and trace-free.
Hence, the assertion is valid also for r.

PROPOSITION 5 . 4 . - The moments are elements r ~ 1.

Proof. - The spinor equivalents of the moments are polynomial with
respect to the covariant derivatives of the curvature spinors with real

coefficients [W4].
Therefore

where the moments contain the Levi-Civita tensor linearly if r odd (see
[W4]). Now we have to show, that the moments are conformally invariant
of weight (20141). Obviously, it is sufficient to prove this for the tensors (5.4).

Induction with respect to r. From (5.3), (5.4), (3.8) and eÏ&#x3E; 
it follows for r = 1:

Lemma 4.2 implies 1

Further, we get from (5.3), Lemma 4.5, (3.8) and

(see [Sch]) the formula ,

Annales de l’Institut Henri Poincaré - Physique ’ théorique’
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Finally, from (5.4), (5.5), (5.12), (5.13) it follows

Consequently I3 ,..ir is conformally invariant. The proof of the weight
is easily done.
We summarize the results of this Section:

THEOREM 5. .1. - Every field equation E03C3, 03C3 E {I, 2, 3} implies an

infinite sequence {I03C3i1...ir} of symmetric, trace-free, conformally invariant
r-tensors of weight ( -1 ).

4. The first moments
The propositions 5.1, 5.2, 5 .4 and 4.2 imply

PROPOSITION 5 5 . -- There are real coefficients 03B1(03C3), 03B2(03C3)k, ,(2, 03C3), 03B3(3, 03C3)l,
03C3(2, 03C3)m, 03B4(3, 03C3)p such that for the moments I03C3i1 ...ir it holds

60, nO ~-1994.
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6. HUYGENS’ PRINCIPLE AND MOMENT EQUATIONS

The following theorem shows the importance of the moments for the
validity of Huygens’ principle:

- 

THEOREM 6. .1. - Let (M, g) be an analytic space-time. The field equation
E ~ 1, 2, 3} satisfies Huygens’ principle if and only if all the

corresponding moments or order r vanish on M.

Proof - For the cases ~ = 1, 2 see [G4, W2] . If for E3 Huygens’
principle is valid, then because of (3.3) we have for all x E M and r &#x3E; 0

hence, by Lemma 5.2

Conversely, from (6.2) and Lemma 5.2 it follows (6.1). Since (x, y)
is analytic the spinor (x, y) can be determined with the help of the
Taylor expansion of NXA (x, y) at the point y = x, which by (6.1) has only
zero coefficients. Hence, N (x, ~/) = 0 and E3 satisfies Huygen’s principle.

DEFINITION 6. 1 . - The equations

are called moment equations for -E~ of order r.

During the last forty years in the investigations of Huygens’ principle for
a- G {1) 2, 3}, the first moments were determined, using the transport

equations for Hadamard’s coefficients, suitable test metrics and often normal
coordinates [A; GI, 2, 4; GW1; McLl, 2; S3; WI, 2, 4]. By complicate

de l’Institut Henri Poincaré - Physique theorique
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calculations one obtained in this way more detailed information about the

coefficients of Proposition 5.5.

and [RW; GeW2]

COROLLARY 6 .1 . - If the equation E ~ 1, 2, 3} satisfies Huygens’
principle, then, in particular, the following moment equations 

7) must hold

where

PROPOSITION 6.1. - (i) If g is a plane wave metric, then for all r and a~
it holds I~ .,.ir = 0.

(ii) If g is an Einstein metric, a central symmetric metric a (2, 2)-

decomposable metric or a conformally recurrent metric and 03C3 ~ {1, 2, 3},
then from ~(ME)~ ~ 1~ = 2, 4} it follows, that g is a conformally flat or
a Plane wave metric.

(iii) Let g be conformally equivalent to a metric with ~~ = 4 and

03C3 E {I, 2, 3}. Then the equations {(ME)03C3k|k = 2, 4} imply, that g is
of Petrov type N.

Vol. 60, n ° 4-1994.
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(iv) # be of Petrov type N and cr 6 {2, 3}. The moment equations
~(M~E)~ ~ 1~ = 2, 4, 5} are satisfied if and only if g is conformally equivalent
to a generalized plane wave metric.

(v) Let be 0 Petrov type e {1, 2, 3 and

Then the = 2, 4, 5, 6} are fulfilled if and only if g
is conformally equivalent to a plane wave metric. 8~

(vi) of Petrov type D and 03C3 E {1, 2, 3}. There are no metrics,
for which the = 2, 4} are valid.

Proof - If g is a plane wave metric then every equation E~ satisfies

Huygens’ principle [G3; Sl; W4]. Hence, Theorem 6.1 implies the assertion
(i). The assertion (ii) was proved in [W4]. For the case Rab = 0 see [McL 1 ] .
For the proof of (iii) see [W6]. If g is of Petrov type Nand (ME’)~ hold for
1~ = 2 and 4, then g is conformally equivalent to special cases of complex
recurrent metrics [CM]. If in addition E {2, 3}, is satisfied,
then g is conformally equivalent to a generalized plane wave metric (see
[AW], p. 81 ). Conversely, if g is conformally equivalent to a generalized
plane wave metric, then by Lemma 4.3 the equations are satisfied

for k == 2, 4, 5. In order to prove (v) we remark, that g is conformally
equivalent to a plane wave metric, iff g is of Petrov type N and the

equations (ME)1k for k = 2, 4, 6 are satisfied [CM]. For o- E {2, 3} by
(iv) from = 2, 4, 5} it follows, that g is conformally equivalent
to a generalized plane wave metric. Now (5.14) and Lemma 4.3 imply

from which by Lemma 4.4 and (6.3) it follows, that g is conformal

equivalent to a plane wave metric. The conversion is clear because of (i).
Finally, in [W7, CM] it was proved the assertion (vi). 9)

COROLLARY 6 .2 . - Let g be of’ Petrov type N and the condition (6.3) 8)

fulfilled. Every field equation E03C3 satisfies Huygens’ principle if and only if
g is conformally equivalent to a plane wave metric.
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NOTES

1) The Levi-Civita tensor eabcd is strictly speaking a pseudo-tensor.
2) In [OW3] generating systems were derived also for higher dimensions.
3) It is easy to prove, that there are no trivial tensors in 85 and 86.
4) In [G4] moments for a general hyperbolic equation for higher dimensions were defined, too.
5) If r odd then because of (4.12) the moments contain the Levi-Civita pseudo-tensor lienar

and the moments are strictly speaking pseudo-tensors.
6) For this assertion it is sufficient for y to require to be of class 
7) A conjecture is, that the moment equations (ME)~ (r = 2, 4, 5, 6) are also sufficient for

the validity of Huygens’ principle for = 1, 2, 3, and that these equations are
fulfilled if and only if g is conformally flat or a plane wave metric [W4, 6; CM].

8) For 03C3 = 1 by Lemma 6.1 the condition (6.3) is satisfied. For 03C3 = 2, 3 we show this in
a subsequent paper.

9) In order to prove (ii)-(vi) we mainly use the two-component spinor formalism of Penrose
and the spin coefficient formalism of Newman and Penrose fPR1
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