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ABSTRACT. - We présent a qualitative study of the time behaviour of
Gaussian solutions to the général dynamical équations arising from the
Lagrangian variational principle in Stochastic Mechanics.

In particular we give some results on the asymptotic stability of the
solutions of the Schrödinger équation with respect to dissipative perturba-
tions.
We also illustrate with the help of numerical calculations the "increasing

vorticity phenomenon".

RÉSUMÉ. - Nous présentons une étude qualitative de l’évolution tempo-
relle des solutions gaussiennes pour les équations générales qui résolvent
le problème variationnel de la Mécanique Stochastique.
Nous donnons quelques résultats sur la stabilité asymptotique des

solutions de l’équation de Schrôdinger pour des perturbations dissipatives.
Nous décrivons aussi, au moyen de calculs numériques, le « phénomène

de l’accroissement de la rotation ».
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324 L. M. MORATO AND S. UGOLINI

1. INTRODUCTION

The aim of this work is to develop a spécifie example in order to
clarify the consistency of the Lagrangian variational principle in Stochastic
Mechanics with the usual quantization procédures.

This scheme consists of extremizing the mean classical action, calculated
for Markovian diffusions with constant diffusion coefficient, with respect
to the path-wise variations which conserve the Brownian term.

Such a method has been introduced in [1] and subsequently re-examined
in [2] in the case of Euclidean spaces. The extension to the case of

Riemannian manifolds can be found in [3]. For a général discussion and
possible extensions see also [4].
The dénomination "Lagrangian" is used in order to discriminate this

principle from the Eulerian one, where the mean action is considered as
functional of the drift fields [5]. At variance with the latter, the Lagrangian
principle gives in fact more général équations than the Schrödinger one,
the solutions of which form an attracting set. Moreover such équations
have the properties of being of dissipative type, non time-reversal invariant
and of exibiting an interesting gauge structure [2]. Another peculiar fact
is that the corresponding stochastic differential équations have rotational
drift fields.

It is worth remarking that the procédure is conceptually very simple
and it could also be seen as the most natural generalization of the classical
Lagrangian variational principle to the case of diffusive motions in the

configuration space. Therefore one could say that, as the Schrôdinger
équation, also thèse new équations are included in the classical action and,
consequently, they appear interesting per se in the context of the classical
analytical mechanics.

Furthermore they seem to solve a typical conceptual problem connected
with the stochastic approach to quantum physics: are the quantum fluctu-
ations dissipative or not? The answer in this setting could be that the

dissipative effects are présent in the général solutions but they cannot be
observed in the usual conservative solutions of the Schrôdinger équation
which should be seen as a sort of "dynamical equilibrium states".

Unfortunately, for our général équations (a system of parabolic partial
differential équations with a singular non linear term) the Cauchy problem
turns to be absolutely not trivial.

In this paper we study in détail a spécifie example, namely that of two-
dimensional Gaussian solutions in central symmetry: in this case the system
of partial differential équations can be reduced to a non-linear three-
dimensional dynamical system.
A first result is that one can prove by standard theorems the existence

and the continuation for t going to infinity of such solutions. We then
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325GAUSSIAN SOLUTIONS TO THE LAGRANGIAN VARIATIONAL PROBLEM

perform a qualitative study of the time-behaviour showing that the sol-
utions of the Schrôdinger équation take values in a two-dimensional center
manifold.
We also study the asymptotic stability of the orbits lying in the center

manifold (corresponding to the solutions of the Schrôdinger équation)
with respect to dissipative perturbations. In particular we show that such
a property holds (at the first order) for a set of orbits lying in a finite
région of the center manifold which contains the ground state.
We cannot prove the same result for orbits which do not belong to

such a région. This fact is connected with the intriguing phenomenon of
the "increasing vorticity". This fact was firstly observed by Guerra [3].
We devolve Section 4 to the description of such a phenomenon through

numerical examples.

2. THE LAGRANGIAN VARIATIONAL PROBLEM: GENERAL
DYNAMICAL EQUATIONS AND THE ENERGY THEOREM

We summarize in this section the basic facts concerning the Lagrangian
Variational Problem in Stochastic Mechanics ([1], [2]). Let us consider the
classical action functional for the time interval ~]:

f~d is the configuration of the system !R~ -~ is a

scalar field. (The case of configurations taking value in a Riemannian
manifold and that of electromagnetic interactions is also considered in

Stochastic Mechanics [6].)
To fix ideas we can think of one particle of mass m so that d = 3.

Following the original Nelson’s scheme in Stochastic Mechanics ([7], [6]).
we assume that in the case of a quantum particle there exists a

smooth drift field b : fl~ x 1R3 -~ 1R3 and a standard 3-dimensional Wiener

process W (t) such that q (t) is a strong solution of the stochastic differen-
tial équation :

The Lagrangian Variational problem in Stochastic Mechanics is the most
natural generalization of the classical one: one considers as the class of
admissible motions the one given by ail diffusions for which there exists a
smooth drift b so that they are strong solutions of a S.D.E. of type (2.2)
for a fixed Wiener process W (t). The action functional is assumed to be
the mean classical action.

Vol. 60, n° 3-1994.



326 L. M. MORATO AND S. UGOLINI

Denoting by ~ ti ~ i = ~ ~ ... N an equipartition of the interval tb] and by
~ the time différence (ta - the mean discretized action can be written
as:

where the last equality follows by estimating (qti+ 1 - qti) to the order

(A)~[6].
By the given définition of the class of admissible motions it follows that

we must consider variation processes such that ~(~):==~(~)+8~(~)
still belong to that class, i. e. there must exist a smooth drift field b’ so
that:

where W (t) is the same B.M. as in (2 . 2).
Introducing the smooth vector field / : tR -~ f~d by the equalities:

E being a real positive number, one can easily verify that h (t) satisfies, in
the limit of E going to zéro, the first order differential équation :

We can observe that since thé variation does not involve thé divergent

terms  in (2.3) we can work directly with thé regularized action (see
2 A

also [4] for a différent method and possible extensions)

where b * is the backward drift.
The Lagrangian variational problem then is that of giving conditions

on the admissible ~ (t) so that:

This can be done by fixing either initial position and final momentum or,
exploiting the backward représentation, the final position and the initial
momentum. In fact since (2.6) is a first order differential équation is not
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327GAUSSIAN SOLUTIONS TO THE LAGRANGIAN VARIATIONAL PROBLEM

possible fixing both initial and final positions. Notice also that h (t) is not
adapted to the filtration generated by q (t). It is immédiate from (2. 6) to
see that h (t) is a functional of the past of q (t) so that the future incre-
ments of the Wiener process are independent of it; but this is no longer
true for incréments in the past.

This asymmetry in the measurability properties breaks down the time
reversai invariance of the équations of motion.

Denoting by p the time dépendent probability density of the trial
diffusion and by ~:=(~+~)/2 the current velocity, the solution to the
Lagrangian variational problem is given by the dynamical équations :

It is immédiate to notice that in the case V X v = 0 the équations reduce
themselves to the Madelung ones, that is to the hydrodynamical version
of Schrôdinger équation.
The relationship between the général solutions and the subset cor-

responding to the orthodox ones is provided by the following theorem [2]:

THEOREM 1 (Energy Theorem). - Let ( p, v) be any solution of (2.9),
(2 . 10) and let assume p=O at infinity (1). Then, defining the mean energy
by:

one 

We can see that choosing as physical équations (2 . 9), (2.10~), the set
of solutions with p v)2 = 0 is an attracting set.

(1) The case with more général boundary conditions can also be treated [2].
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3. GAUSSIAN SOLUTIONS FOR THE TWO-DIMENSIONAL
HARMONIC OSCILLATOR

3.1. Existence and continuation for t going to + 00

Denoting by rand 8 the polar coordinates in the plane (x, y) we put:

and look for solutions (p, v) of the type:

where A, a, a are time-dependent scalar parameters with A &#x3E; o.
Notice that:

so that we often will refer to a as the "vorticity parameter".
The time évolution of thèse particular solutions to général équations

(2 . 9), (2. lOb) for C given by (3 . 1), if they exist, is described by the
solutions of the three-dimensional first-order non linear system of O.D.E.:

This is immediately derived by introducing (3 . 1 ), (3 . 2) and (3 . 3) in (2 . 9),
(2.10~) With this position the dimension of A, a and
a can be assumed to be that of an energy.
Denoting by ç, the triple (A, a, ex) the system (3 . 5) can be written as:

where 1: [R3 ~ is a Since this fact guarantees the exist-
ence of solutions of (3 . 5) (at least locally) we can claim that solutions ( p, v)
to (2 . 9), (2.10&#x26;) of type (3 . 2), (3 . 3) also must exist at least locally in
time.

In terms of (A, a, a) the mean energy, by (2 .11 ), is:

and consequently the energy theorem reads:

The minimum value of W is k, that is the ground state energy.
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The energy theorem allows to prove that ail solutions to (3. 5) can be
continued for t going to + oo . In fact one can easily see that the inside of
the spherical surface defined by all représentative points Ço s. t. W(o)=Wo
(Wo being any positive constant), that is the sphère of center

C : = (Wo, 0, 0) and radius R : = /W~-~, because of equality (3 . 8), is a
trapping région for all solutions (t) of (3 . 5) starting from any point ~o
on such a surface.

As is well known this is a sufficient condition for (t) can be continued
for t going to infinity [8].

3.2. Qualitative study and center manifold

We can observe that (k, 0, 0) is the unique fixed point of (3 . 5), which
of course corresponds to the ground-state.
To do a qualitative study of time-behaviour of the solutions to (3.5)

we linearize around such a fixed point. Putting 2 k =1 and

we can write the linearized system in the form :

The eigenvalues are À1, 2 = ~ i, ~3=2014!. This implies the existence of
an invariant two-dimensional center subspace Ec represented by the plane
(x, y) and an invariant one-dimensional stable subspace Es represented by
the z-axis. The trajectories lie on cilindrical surfaces as shown in Figure 1.
By the center manifold theorem (see for example [9], thm. 3 . 2 .1 ) we

can claim that such a structure is conserved for the original non linear
system (3 . 5). More precisely there exists an invariant two-dimensional
center manifold Mc tangent to Ec in ( 1, 0, 0) and an invariant one-dimen-
sional stable manifold MS tangent to Es in the same point. In our case
the center manifold is unique and coïncides with the plane (A, a) (the
"Schrödinger plane").
We can observe that every initial state of finite energy whose representa-

tive point belongs to the stable invariant manifold has the peculiarity of
relaxing toward the ground state.

Vol. 60, n° 3-1994.
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FIG. 1. - A generic trajectory of the linearized system.

3.3. The problem of the asymptotic stability of Schrödinger orbits
with respect to dissipative perturbations

Let us consider the system (3 . 5) reduced to the center manifold, that is
to the plane (A, a). To be précise we consider the set of particular
solutions such that çÓ is of the type (Ao, ao, 0). Recalling the
observations given at the end of Section 3 .1 we can see that, since in this
case the energy is conserved, the corresponding trajectories are represented
by circles. We shall refer to them as the "Schrödinger solutions" and the
"Schrödinger orbits", respectively.
Given a Schrôdinger solution we consider a perturbed solution
by solving (3 . 5) with initial condition ~o : == (Ao, ao, We want to

investigate the conditions, if they exist, under which the corresponding
asymptotic Schrôdinger orbit coïncides with the unperturbed one.

Clearly this fact is not true in case both Ço and 03BE*0 lie in Schrôdinger
plane: in fact in this case (t) and (t) correspond to two différent
Schrôdinger orbits which conserve respectively the energy W (ço) and
W(~).
The interesting case occurs when Ço is of the type (Ao, ao, rto) and 03BE*0 is

given by ao, 0). In this case we have a purely rotational, and conse-
quently purely dissipative, perturbation of the orbit to which the point ~ô
belongs.

Annales de l’Institut Henri Poincaré - Physique théorique
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We shall see that it is possible to give a simple condition on the initial
energy so that the asymptotic orbit coïncides with the unperturbed one
up to terms of the second order in ao.
Without loss of generality we can fix the initial conditions in the plane

E of équation : ~==0, i. e. ~ : = (Ao, 0, 0) and Ço : = (Ao, 0, (Xo), and assume
Aok (see 2).

In analogy with the Poincaré map method, let r dénote the periodic
trajectory (t) and consider the plane E as Poincaré section for the flow
map generated by (3 . 6). In fact E is transverse to the flow and
there is a single intersection of r with E (if 0  A  k).

Beeing 03BE*0 the intersection point of the periodic orbit r with the plane
E (with Aok), starting from the point Ço which is in the neighborhood

of 03BE*0 we can consider the map P:U ~ 03A3 defined by
P ?0) ~ = (’r), where ’r is the time for the trajectory with initial point ~o
to return to E for the first time.

We dénote by ~ A~ ~ 1= o,1, .. , respectively the séquences
of the first and third coordinates of points P (~o), P 2 (~o), ... that is of
the intersections of the trajectory with the plane ~ [with A (t)  k].
Easy considérations of the geometrical and analytical nature imply that

Let also dénote i,. _ i,.... io 
= 0, the séquences

of the corresponding énergies, according to (3 . 7), and crossing times.
We can prove the following proposition:

PROPOSITION 1. - Let (t) and (t) be the solutions to (3 . 5) starting
from the initial points 03BE0 and 03BE*0 respectively. ... 

be the

corresponding crossing coordinates as defined above. Then if ~o
satisfies the condition:

Proof - Let dénote by (A (t), a (t), a (t)) and by
(A* (t), a* (t), 0). We have:

We notice that the corresponding decreasing séquence of énergies satisfies
the relation:

Vol. 60, n° 3-1994.
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Thus the is bounded. Let W 00 be its limit. We
also have (recalling section 3.1 and that Aik):

so that, by continuity of Ai as function of Wi, and 03B1i we have:

We consider separately the two cases Aoo Ao and Aoo &#x3E;Ao.
(i) Case Aoo  Ao. Denoting by W * the (conserved ) energy of the unper-

turbed orbit, that is:

we have :

Substituting in (3 . 17) we get:

But since we also have:

So that:

(ii) Case By the Energy Theorem we have, from (3 . 8):

Suppose now that for every t~0 the following condition is satisfied :

and, in addition,

Then it is immédiate to see that, in such a case,

and therefore:
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Substituting the explicit expressions of W 0 and W 00 in (3 . 25) we find:

which implies:

Let now examine condition (3 . 22). As observed above, (t) must remain
confined in the trapping région given by the interior of the sphère centered
in (Wo, 0, 0) and with radius Ro = /W~-A~ Wo denoting the initial

energy. Thus A (t) and a (t) must remain confined in the disk given by
the intersection between such a sphère and the plane (A, a). A sufficient
condition in order (3.22) is verified is then that the line of équation
(A + a) = 0 does not cross such a disk. An elementary calculation shows
then that the condition is: 

_

(3 . 28)

The corresponding région in the Schrôdinger plane is qualitative repre-
sented in Figure 2.

FIG. 2. - Représentation of Schrôdinger orbits.
The dashed région corresponds to condition (3 . 28).

Vol. 60, n° 3-1994.
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Finally we can directly prove that:

where Qo is the minimum of the function f : R+  R ~ R; (A, a) --+ A + a,
A&#x3E;0, on the intersection between the spherical surface corresponding to
Wo and the plane (A, a), that is the circle of équation :

Let SZt be the minimum of the function f on the surface corresponding to
W~:=W(~(~)). An easy calculation, applying the Lagrange multipliers
method, gives:

We observe that:

where the explicit expression of go is of course:

Thus Qo dépends only on the initial energy and is strictly positive if

/2. So this condition guarantees that both (3 . 22) and (3 . 23) are
satisfied. Consequently we can write:

so that:

It is immédiate to recognize, recalling the définition of Wo, that Qo goes
to a positive constant when ao goes to zéro. Thus the proposition is

proved.
We can conclude that the Schrôdinger orbits are "at the first order"

asymptotically stable with respect to purely dissipative perturbations.

4. NUMERICAL EXAMPLES AND THE INCREASING
VORTICITY PHENOMENON

We have se en in Section 3 that a sufficient condition for the first order

asymptotic stability of a Schrôdinger orbit (A* (t), a* (t))t E ~+ with respect
to purely rotational dissipative perturbations, is given by the condition
that the associated energy is less than k J2.
The reason for we cannot prove an analogous result for orbits which

do not belong to such a région is connected with the "increasing vorticity
phenomenon", which actually is immediately expected by équation (3 . 5).
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We observe in fact that the further degree of freedom given by the vorticity
a implies that there exists a "separation plane" given by the équation :

such that the vorticity decreases when the system respresentation point ç
remains in the région where h &#x3E; 0, it increases when h  0 and it remains
constant when h = 0.

This phenomenon was firsly observed by F. Guerra for a more compli-
cated example (see [3]).
We have numerically integrated system (3.5) by the coupled Adams

and Runge-Kutta methods. In particular Figure 3 illustrâtes the time-

evolution for an initial state Ço = (5.0, 2.0, 10.0) with energy Wo =13.3

FIG. 3. - A typical time-evolution of a generic solution of system (3.5).

and external frequency k = 2.0 (in The relaxing time is 3.2
(within 10 -1 °) and in Figure 4 the corresponding évolution of the vorticity
a and of the energy W (t) is plotted.
The time évolution of energy dissipation was also studied in détail for

différent values of Ço and k. We have observed that, given fixed initial
values and Ao&#x3E;0, for small (Xo and high k there is a gréât energy
dissipation, so that the asymptotic orbit is close to ground state (k, 0, 0).
In the opposite case there is almost no dissipation.
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FIG. 4. - Time-evolution of the vorticity parameter a (t) end energy W (t)
of the same solution of (3 . 5) represented in Figure 3.

5. CONCLUSIONS AND OUTLOOK

We have proved the existence and the continuability for t going to
infinity of two-dimensional Gaussian solutions of the général équations
(2 . 9), (2.10~).
The detailed study of the particular case under considération has shown

a good consistency of the new structure with the orthodox quantization:
in fact we have identified the Schrödinger plane with a center manifold
and proved that there exists a finite région, containing the ground-state
représentative point, such that any Schrödinger orbit lying in it is (at the
first order) asymptotically stable with respect to purely rotational (i. e.
dissipative) perturbations.
We have also described the somehow unexpected phenomenon of the

increasing vorticity. It would be interesting to investigate whether such a
phenomenon can occur in régions of the space of configurations where
the probability density decreases, so that the vorticity would eventually
concentrate in the zéros of the asymptotic density.
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Since to a normalized smooth solution (p, v) of the system (2 . 9), 
corresponds a diffusion process it is natural considering the consistency
problem also from the probabilistic point of view of the convergence of
diffusions.

This aspect will be illustrated in a forthcoming paper [ 10].
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