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ABSTRACT. 2014 We study the wave operators for nonlinear Schrodinger
equations with interactions behaving as a power p at zero. We extend the
existence proof of those operators from the previously known range
p -1 &#x3E; 4/(n + 2) to the optimal range p - 1 &#x3E; 2/n in space dimension n = 3
and to an intermediate range in space dimension ~4.

RESUME. 2014 Nous etudions les operateurs d’ondes pour des equations
de Schrodinger non lineaires avec interactions se comportant en loi de
puissance d’exposant p pres de zero. Nous generalisons la preuve d’exis-
tence de ces operateurs, connue pour p -1 &#x3E; 4/(n + 2), a la valeur optimale
p -1 &#x3E; 2/n pour un espace de dimension 3 et a une valeur intermediaire si
la dimension spatiale est superieure ou egale a 4.
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212 J. GINIBRE, T. OZAWA AND G. VELO

INTRODUCTION

This paper is devoted to the problem of existence of the wave operators
for the non linear Schrodinger equation

where u is a complex function defined in space time A is the Laplace
operator in [R" and f is a non linear interaction, a typical form of which
is

with p &#x3E; 1 and À E These exists an extensive literature on the theory of
scattering for the equation ( 1.1 ) ([ 1 ], [3], [5], [6], [8], [9], [ 11 ], [ 14], [ 15],
[ 18], [ 19], [21 ]-[25], [27]), of which the existence of the wave operators is
one of the first important questions. That question can be formulated as
follows. Let U(~)=exp(/(~/2)A) be the unitary group which solves the
free Schrodinger equation

Let v (t) = U (t) u + be a solution of ( 1. 3) with initial data u + (called
asymptotic state) in a suitable space X. Does there exist a solution u of
( 1.1 ), preferably unique, which behaves asymptotically as v in a suitable
sense when t -~ + oo ? If that is the case the map Q+ : u + -~ M(0) is called
the wave operator (for positive times). The same problem can be considered
for negative times. We restrict our attention to positive times for definite-
ness. A standard way to construct the wave operator Q+ consists in

solving the Cauchy problem for the equation ( 1.1 ) with initial data u + at
t = oo in the form of the integral equation

One usually solves the equation ( 1. 4) first by a contraction method in a
neighborhood of infinity in time, more precisely in the time interval

I = [T, 00) for T sufficiently large, in a space of X-valued functions
of t exhibiting a suitable time decay in order to control the integral in
( 1. 4). One then continues that solution to all times by using the known
results on the Cauchy problem at finite times. In general the contraction
method for large times yields as a by-product the global existence of
solutions for small initial data, as well as a proof asymptotic completeness
for small data. As in linear scattering theory, the existence ofQ+ requires
that the interaction term f (u) decay at infinity in space. In the special
case of the power interaction (1.2), that decay takes the form of a lower
bound on p, which may (in fact does) depend on the choice of the space
X of asymptotic states.
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213ON THE EXISTENCE OF THE WAVE OPERATORS

In the case of the equation ( 1.1 ), in the special case ( 1. 2), the global
Cauchy problem at finite times is well understood in L2 for  4/n
([3], [ 17], [26]) and in the energy space for À &#x3E; 0 and 0~-1 
4/(n - 2) (to be interpreted as for n =1, 2) ([3], [7], [16], [17]).
The available results on the existence of the wave operators are the

following.
( 1 ) In the energy space the wave operators exist for

~-1&#x3E;4/~[9].
(2) In the smaller space n ~ (H 1 ) the wave operators exist for

/? - 1 &#x3E;Max(2/n, 4/(n + 2)) [5].
(3) The wave operators do not exist in any reasonable sense for

~ 1 + 2/n ([ 1 ], [22], [25]), namely for any u + in L2, if u (t) - U (t) u + tends
to zero in L2, then u + = 0 and u = 0.
For n =1, 2 the lower bound in (2) is optimal, in view of the negative

results of (3). However, for ~3, there is a gap between the lower bound
4/(n + 2) and the upper bound 2/n.
The main result of this paper is to reduce that gap for ~3, and actually

to close it for n = 3. For that purpose we prove the existence of the

wave operators by following the scheme described above, in the space of
asymptotic states for 0  p  2. This turns out to be
possible under the conditons p p and p -1 &#x3E; 4/(n + 2 p) v 2/n. For n = 3
and p~/2=3/2, the latter reduces to the optimal condition p -1 &#x3E; 2/n.
For ~4 the two conditions conflict and allow only for values of p
satisfying

or equivalently

The method of proof is an extension of that used in [ 16] to study the
Cauchy problem at finite times, in [ 15] to prove asymptotic completeness
and in [20] to prove the existence of the wave operators for the Hartree
equation under the optimal condition that the potential decays faster than

I x ~ -1. The implementation of that method is complicated by the fact that
we need to use non integer values of p, while at the same time keeping
the local regularity of f to a minimum compatible with a power behaviour

! u ~p for u ~ 0 with not too large values of p. That difficulty is efficiently
dealt with by the use of Besov spaces. We present that theory in Section 3.
In that section, we first recall some basic facts on Besov spaces and derive
a number of estimates on the free Schrodinger group and on the non
linear interaction in that setting (Lemmas 3.3 and 3.4); we then solve
the local Cauchy problem at infinity (Proposition 3.1), which implies
global existence of solutions and asymptotic completeness for small data
(Corollary 3 .1 ); we solve the local Cauchy problem at finite times

(Proposition 3.2), we extend the local solutions to global ones
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214 J. GINIBRE, T. OZAWA AND G. VELO

(Proposition 3 . 3) and we finally derive the existence of the wave operators
(Proposition 3.4) and their intertwining property (Proposition 3 . 5).

In order to display the basic steps of the method with the minimum
amount of technicality, we first recall in Section 2 the result of [5] corres-
ponding to p =1 and p -1 &#x3E; 4/(n + 2) and give a simple proof thereof along
the previous lines.

In [6], [21] some of us derived the existence of modified wave operators
for the equation ( 1.1 ) in space dimension ~3 in the critical case p -1= 2/n,
where ordinary wave operators fail to exist. The method does not extend
to ~4 in the critical case. However, although the modification of the
wave operators is not expected to be needed for p -1 &#x3E; 2/n, it turns out

that the same method allows for their construction under a condition on

p which is slightly weaker than ( 1. 5), namely

or equivalently

In that case however, the situation is slightly awkward: the modified wave
operators also map the free solutions to interacting solutions asymptotic
to them for large times, but the convergence is too weak to ensure the

uniqueness of the latter. The intertwining property holds nevertheless. We
present that theory in Section 4 in the simple case where the interaction f
is a single power ( 1. 2). We define several modified free evolutions, we
recall from [6] an abstract result on the local Cauchy problem at infinity
based on a suitable decay property of the modified free evolution

(Proposition 4 .1 ), we prove that one of the modified free evolutions

satisfies that decay property (Lemma 4 .1 ), we compare the various modi-
fied free evolutions between themselves and with the free one

(Lemma 4. 2), we derive the existence of the modified wave operators
(Proposition 4. 2) and their intertwining property (Proposition 4. 3), and
we briefly discuss their relevance to the definition of ordinary wave
operators.
We conclude this section by giving some of the notation used in this

paper. We denote by the norm in and by Fthe exponent
dual to r defined by l/r+ 1/F= 1. With each r it is convenient to associate
the variable 8 (r) defined by Õ (r) = n/2 - For any p E [R, we denote by
HP == HP the usual Sobolev spaces. We shall also use the homogeneous
Besov and Sobolev spaces of arbitrary order, for which we refer to [2],
[29] and to the appendix of [ 10], [ 12] . For any interval possibly
unbounded, we denote by I the closure of I in IR U { - oo, 00 } equipped

Annales de l’Institut Henri Poincaré - Physique theorique



215ON THE EXISTENCE OF THE WAVE OPERATORS

with the natural topology. For any interval I, for any Banach space X,
we denote by ~(1, X) the space of strongly continuous functions from I
to X and by Lq (I, X) [resp. (I, X)] the space of measurable functions
u from I to X such that II u ( . ); [resp. We denote the
Fourier transform in Rn by

We denote b~ ~ v p and À n p the maximum and minimum of two real
numbers ~, and p.

2. THE WAVE OPERATORS FOR p -1 &#x3E; 4/(n + 2)

In this section, as a preparation to the more complicated treatment of
Section 3, we recall and rederive the existence result for the wave operators
given in [5]. The proof is an extension of the existence proof of solutions
of the Cauchy problem at finite times given in [ 16] and of the existence
proof of the wave operators for the Hartree equation down to the Coulomb
limiting case (excluded) given in [20]. We restrict our attention to space
dimension ~~3.
The free Schrodinger equation ( 1. 3) is solved by the use of the unitary

group U(~)=exp(~/2)A) hereafter referred to as the free Schrodinger
group. That group satisfies the following well known estimates

([ 12], [ 16], [28]).

LEMMA 2. 1. - U satisfies the following estimates:
(1) For any r~2 and 

(2) For any (q, r) with 0~2/~=8(~-)1,

~ (~r) ~~ , (~~) 0~2/~=8(r)l ~~

0~2/~==8(~) , ~~ ~~ 
~~ Fs 

satisfies the estimate

with a , constant C independent of I and s.
We shall need the operators J (t) and o M (t) defined o by

Vol. 60, n° 2-1994.
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(we use the same notation for a function of x and for the operator of
multiplication by that function.) Those operators satisfy the commutation
relations

and

From Lemma 2.1 and o from the commutation relation (2. 7) we deduce
the following j estimates.

LEMMA 2 . 2. - U satisfies the following estimates:
(1) for any r~2 and any 

(2) For any (q, r) with 0 ~ 2/~ = 8 (~)  1,

(3) For any (q, r) and (q’, r’) with 0~2/~=8(~)1 and

2/q’ _ ~ o (r’)  1, for any (possibly unbounded) interval I and for any s E I,
the operator FS defined by (2. 3) satisfies the estimate

with a ’ constant C independent of I and , s.

From the standard o Sobolev inequality

for 0 ~ 8 (r) ~ 1 and from the commutation relation (2 . 8) we deduce the
inequality

and 
The Cauchy problem for the equation ( 1.1 ) with initial data

at time to is equivalent to the integral equation [cf. ( 1. 4)]

The interaction f will satisfy a number of assumptions to be taken from
the following list.

(HI) /=/,+/2 where, for and,
for some p~ with 1 __ p2, f satisfies the estimates

for all z1, z2, where f’i stands for any of ~fi/~z and 
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217ON THE EXISTENCE OF THE WAVE OPERATORS

Single power interactions ( 1. 2) satisfy (HI) with /?i=~2~’ This is
obvious for p &#x3E;_ 2 and follows from Lemma 2.4 in [12] for/?2.

(H2) (gauge invariance). For all For all z~ and all
03C9~ with Equivalently, if f is continuous, there
exists a function IR) such that V(0)=0, V (z) = V ( ~ z I ) for all
z~ and f(z)=~V/~z.

(H3) V satisfies

For suitably regular u we define the energy as

An important consequence of the assumption (H2) and of the commutation
relation (2 . 8) is the following identity C) and for suitably
regular u):

In this section we study the equation (2.14) for initial data uo in the
space

and we shall solve it in the following spaces. Let I be an interval of IR
(possibly unbounded). We define

~(I)={M:M6~(I, HI) J(t)uELq(I, Lr)

For practical purposes, the spaces ~(1) are slightly inconvenient since
they are not Banach spaces. We shall therefore use also the cut off spaces
~(1) defined for 0~8 1 (8 should be thought of as being close to 1 ) by

~(I)={M:Me~(I, HI) and J(t)uELq(I, Lr)

These spaces are Banach spaces with the norm taken as the Supremum of
all the norms involved in its definition. Clearly

and can be made to a Frechet space by taking the projective limit
of the We shall also need the associated local spaces defined
with instead of Lq in (2 . 20). We can now state the main result [5].

Vol. 60, n° 2-1994.
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PROPOSITION 2 . 1. - Let f satisfy (H 1 ) and (H2) with
4/(n+2 )  4/(n - 2) and let uo E E. Then 

( )

&#x3E; ( 1 ) There exists T&#x3E;O, depending only uo; E , such that for an yto ~ T (possibly to = oo), the integral equation (2 . 14) has a unique solution
u E q ([T, oo)). That solution satisfies ~ u (t) ~2 = 1/ uo ~2 for all t ~ T andE(u(s))=E(u(t))for all -

(2) Let in addition f satisfy (H3). Then the previous solution has a unlquecontinuation [as a solution of (2 . 14)] u E (~). In particular the wave
operator S2 + is well defined from 03A3 to itself as the map uo -+ u (o) where uls the solution o,f’ the equation (2 . 14) with to = oo, and SZ+ is a bounded
operator f ’rom ~ to itself.
Proof. - Part (1). we solve the integral equation (2. 14) by a partialcontraction in the space E(ö (I) for 03B4 sufficiently close to l, where 1= [ T, (0)and T is to be fixed later. For that purpose, we have to ensure that allthe norms occuring m the definition of (I) are reproduced by the righthand side of (2 . 14), but we shall require that only the norms correspondingto u E L~ (I, Lr) are contracted. Let B (R) be the ball of center 0 and radiusR m (I). Let

It follows from Lemmas 2 . 1 and 2 . 2 part (2), that E 
‘ 

. It isthen sufficient to prove that the operator with F definedby (2 . 3), which occurs in the right hand side of (2.14) satisfies to

and

for aU M, M~ M~ in B(2R). By Lemmas 2.1 and 2.2 part (3) it is sufficientto estimate/(.), V/(.), J/(.) 
(q,r’) with O~W=8(.’)=5~8. We decompose/=/+/, and we estimate the contributions of fi(i=1, 2) separately, omitting theindex  for brevity (note that (q’, r’) is allowed to depend on ) Weestimate

by the Holder inequality in space and time , , with 0~2/q=03B4(r)=03B4~03B4, 
J

with n/m = b + Ö’ and . 2/l = 2 - (b + ö’). In (2 . 27) we have used 2 18). In(2.26)-(2.28 ) .f ’ ( ) u Is a short hand notation to be interpreted as

Annales de l’Institut Henri Poincare - Physique theorique



219ON THE EXISTENCE OF THE WAVE OPERATORS

(u) I - |~zf (u) I + |~zf (u)| in the estimates. In addition in (2 . 28) u inter-
polates between u1 and u2. We next estimate the last norms in (2-26)-
(2-28) by (HI) as

with

We choose 8 (~) = 1 or equivalently s=2*=2n/(n-2), which is allowed for
8 sufficiently close to 1, more precisely provided (/?20141)(~/22014 1)~28. We
then estimate the last norm in (2. 29) by (2.13) and the Holder inequality
in time, thereby continuing (2. 29) by

with 203B8=(p-1)(n/2+1)-2&#x3E;0. Substituting (2 . 29)-(2 . 32) into (2 . 26)-
(2.28) and taking T sufficiently large allows to ensure (2.24) and (2.25).
From there on the contraction proof is standard (see for instance [7], [ 16]).
The conservation of the L2 norm and of the energy for H 

1 solutions
are also standard [7].

Part (2) follows from Part ( 1 ) and the known results on the global
Cauchy problem at finite times ([7], [17]).

Q.E.D.

3. THE WAVE OPERATORS FOR /? -1 ~ 4/(n + 2)

In this section, we prove the existence of the wave operators for the
equation ( 1.1 ) in a range of values of p bounded from below by p -1 &#x3E; 2/n
for n = 3 and by ( 1. 5) for ~4. As in Section 2, we restrict our attention
to space dimension ~3. By looking at the estimates of Section 2, one
can now understand more precisely why it is possible to improve the lower
bound on p below p -1= 4/(n + 2) down to the values quoted above. In
fact the estimate (2. 32) is a special case of the more general estimate

with õ (s) = p and

The last condition on p becomes weaker when p increases, thereby suggest-
ing to solve the Cauchy problem at infinity for the equation (2. 14) with

L2) for values of p higher than 1. In particular the value
p = n/2 would correspond to s = oo and to the optimal condition p - 1 &#x3E; 2/n.
On the other hand, with for M -~ 0, the degree p of differentiability
available on f is at most p. This is compatible with p = n/2 and p -1 &#x3E; 2/n
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in dimension n = 3, but not for ~4. In the latter case, combining the
condition with (3 . 2) yields the condition (1. 5).

In order to implement the previous argument, we are therefore led to
study the Cauchy problem in spaces where u, u, and for convenience

also |~|03C1 u belong to L 00 (I, L2) and more generally to Lr) with
0~2/~=8(r)l, for non integer p&#x3E; 1. At a technical level we shall have
to perform estimates on the non linear interaction f (u) using formulas of
the Leibniz type with non integer derivatives and minimal differentiability
on f . Sobolev spaces are inadequate for that purpose and we therefore
use Besov spaces, where estimates of this type can be performed efficiently.
We refer to [2], [29] for general information on Besov spaces and to the
Appendix of [10] or [12] for a brief summary, especially in the case of
homogeneous Besov spaces which we shall use in what follows. We also
need to combine the family of operators J (t) with Besov spaces and for
that purpose we recall the definition of the latter.

so that

and for any 03BE~0, j(03BE)=1, with at most two non vanishing terms in

the sum. For any 03C1~R and any r, m with 1~r, m~~, the homogeneous
Besov space is defined as the space of distributions (actually of classes
of distributions modulo polynomials, see the Appendix of [ 10], [ 12] for
more details) for which

For any tR" vector valued family A of self adjoint operators in L2 with
commuting components, we define by the functional calculus. For
suitable A, one can then define the space of distributions for
which

In particular B~=B~(2014/V) and the norms (3 . 3) and (3 . 4) coincide
for A= -fV. The previous definition of is somewhat formal as

long as no specific spectral assumptions are made on A. However we shall
use it only for operators A such or - J (t) which is closely related
to - i ~ through (2 . 8), and the functional analytic questions will be solved
in the same way as for the ordinary Besov spaces.
We need estimates on the free Schrodinger group U (t) which generalize

those of Lemma 2.1 to the present setting. The first step in that direction
is the following Lemma.
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221ON THE EXISTENCE OF THE WAVE OPERATORS

LEMMA 3 .1. - Let A (0) = A be a family above and let

A (t) = U (t) A (0) U ( - t). Then for any t, 03C4~R with t~03C4 and for 

Proo_f’. - From the commutation relation

and from the estimate (2 .1 ), it follows that for any j~Z

and (3 . 5) follows from (3 . 6) and from the definition (3 .4).
QED

Of special interest is the case where A(~)= -J(~). In that case it follows
in addition from (2. 8) that

We want to handle the Besov spaces associated with - J (t) by reexpress-
ing them in terms of the ordinary Besov spaces associated 
Because of (3. 7), it is sufficient for that purpose to control the effect of
dilations on the definition of the latter. This is taken care of by the next
lemma. That lemma would be unnecessary if instead of the usual definition
(3.3) through a dyadic decomposition we had chosen the equivalent
dilation covariant definition

LEMMA 3 . 2. - For any and 1 ~ ~ ~ ~ 00,

with

Proof. - We prove the second inequality in (3.8). From the support
properties of it follows that

Substituting (3 .10) in the definitions (3 . 3) and (3 . 4) and using the Young
inequality in lm yields the second inequality in (3 . 8).

Vol. 60, n° 2-1994.
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The first inequality in (3 . 8) is proved in the same way by starting from

instead of (3.9).
Q.E.D.

We are now in a position to state the estimates of the free Schrödinger
group which generalize Lemma 2.1 adequately for the purposes of this
section. From now on we take ~=2 in the Besov spaces B~, m and we
omit the corresponding subscript in B~ 2==B~. We recall that for ~=2, the
homogeneous Besov space B~ coincides with the homogeneous Sobolev
space 

LEMMA 3 . 3. - U satisfies the following estimates:
1 For any E IR, any r~2 and any t, 03C4~R with t~03C4

(3) For any any (q, r) and , (q, r with 0~2/~=6(~i and
0~2/~=8(~) 1, for any (possibly unbounded) interval I and for any s E I,
the operator FS defined by (2. 3) satisfies the estimates

where the constants C are independant of I and s.

Proo. f ’. - Part ( 1 ) . The estimate (3.12) is the special case of (3 . 5)
corresponding to The estimate (3.13) follows from (3 . 5)
with A (t) === - J (t), from (3 . 7) and from Lemma 3 . 2.

Parts (2) and (3) follow from Part ( 1 ) by a duality argument which is
well known by now (see for instance [13]).

Q.E.D.

In order to study the Cauchy problem for the equation (2.14) in Besov

spaces, we also need Besov space estimates for the nonlinear interaction

/(~).
LEMMA 3.4. - C) with f (o) _~ (o) = 0 and assume that

for some p &#x3E;_ 1

Annales de Poincaré - Physique theorique



223ON THE EXISTENCE OF THE WAVE OPERATORS

for all zl, Z 2 E C. Let 0 _ p  2 n p and 1 ~/, ~ with (~- 1)/~= 1//- 1/r.
estimate

We need the following equivalent norm for the Besov space
Bf,m

which is valid for 0  p  2, where ’ty is the translation by y E as well
as the norm

which is valid for 0  p  l. Let We consider separately the
cases p~2 and p~2.
For /?~2, we write (pointwise in x)

so that by (3.18)

We substitute (3.23) into (3.20), we apply the Holder inequality to

estimate the L1 norms of the two terms in the right hand side of (3.23),
and we use again (3 . 20) and (3 . 21 ) to reconstruct suitable Besov norms,
thereby obtaining

with and (/?-2)/~=1//-1/~. We finally use the inter-
polation (see for instance the appendix of [ 10], esp. Lemma Al)

and the inclusion to conclude the proof of (3 . 19).
For ~ 2, we obtain from (3 . 22) and (3 . 18)

We substitute (3.26) into (3.20), we apply the Holder inequality to

estimate the L~ norms and we use again (3 . 20) and (3 . 21 ) to reconstruct
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suitable Besov norms, thereby obtaining

with We finally use the interpolation

and the inclusion to conclude the proof of (3 .19).
Q.E.D.

We now define the spaces where we shall study the equation (2.14). 
-

The initial data will be taken in spaces Xp, P, defined for p, p’ ~ 0 by

In particular the space E used in Section 2 coincides with As a

generalisation of the spaces (I) used in Section 2, we shall use the spaces
(we recall that B~ = B~ (î Lr for p ~ 0)

For the same reason as in Section 2, we also need the Banach spaces

where 0~81, and the associated local spaces and 
defined with instead of Lq in (3 . 30) (3 . 31 ). The spaces ~(1) used in
Section 2 are closely related to, but not identical with the spaces ~B i (I)
defined by (3 . 30).
We are now in a position to state the basic existence and uniqueness

result for the equation (2 . 14) in a neighborhood of infinity in time.

PROPOSITION 3.1.- Let f satisfy (H 1) and (H2) and let p, p’ with

if p = 0. If n = 3 and p v p’ &#x3E;_ 3/2, the last inequality in (3 . 33) should be
replaced by p2  ~. The same holds for (3 . 33)o if p’ &#x3E;_ 3/2. Let uo E XP, P,.
Then there exists T depending on uo such that for any T (possibly
to = (0), the integral equation (2 . 14) has a unique solution u E P. ([T, 00 )).
That solution satisfies II I u (t) ~2 = II ~0 ~2 f°r all t ~ T . I, f ’ 03C1’~1, that solution
satisfies E(u(t))=E(u(s)) for all If p &#x3E; 0 and if either or

p2_-1  4/(n - 2 p’), then T can be estimated from above in terms of
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Proof . - We give the proof only in the case where p&#x3E;O and where
either p’ ~ p or p2 -1  4/(n - 2 p’). We shall comment briefly on the limiting
cases at the end. The proof follows closely that of Proposition 2.1 part
( 1 ) and proceeds by a partial contraction in the space ~ p,(I) for 8
sufficiently close to 1 and 1= [T, oo). For that purpose we ensure that all
the norms occuring in the definition of ~ P, (I) are reproduced by the
right hand side of the equation (2.14) and that the norms corresponding
to u E Lq (I, Lr) are contracted. Let B (R) be the ball of center 0 and radius
R in (I) and let 

-- 
-

It follows from Lemma 3 . 3 part (2) that It is again
sufficient to prove that the operator M -~ Fto ( f (u)) with Fto defined

by (2 . 3) satisfies (2 . 24) and (2 . 25) for all u, u1, u2 in B (2 R). By
Lemma 3 . 3 part (3), it is sufficient to estimate f(u) and f(u1)-f(u2) in

Lq’ (I, L~),/(M) in Lq’ (I, in Lq’ (I, for some

(q’, r’) with 0~2/~=8(~)=8~§. We decompose f= fl + f2 as in (HI)
and we estimate the contributions of f (i =1, 2) separately, omitting the
index i for brevity. We estimate 

-

by the Holder inequality in space and time, and with u interpolating
between u 1 and _M~. In all cases (q, r) and (k, s) should satisfy
0~2/~=8~) =8~8 and (2 . 30) (2 . 31 ). The choice of admissible b’ and 8
will be possible provided _

We estimate the last norm in (3.35)-(3.37) in different ways depending
on the values of p, p and p’.
We consider first the case where p -1 _ 4/(n - 2 p), which covers the

case p’ ~ p entirely. In that case, we estimate

by a Sobolev inequality with 0~8(~)=8~8 and

We then estimate the Lk norm in time by the Holder inequality as
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with 2/~=8" and o = (p - 1 ) (p" + 1 /q" -1 /k) or equivalently, by (3 . 39)
and (3 . 41 ),

The Holder inequality can be applied provided ~~’ and provided the
last time integral converges at infinity, or equivalently 06~(~-l)p",
which by (3 .43) can be rewritten as

We now choose p" and r" (or equivalently 8").
For p  n/2 (which covers the case ~4 entirely), we take p" = p so that

(3.44) follows from (3.33). It remains only to satisfy the conditions

~ (s)  n/2 [cf. (3 . 41 )] and (3 . 38) for Õ sufficiently close to 1. For that

purpose we choose b" = 0 if (p -1) (n/2 - p)  2 and 0  b"  n/2 - p if

(~-i)(~/2-p)=2.
For n = 3 and p~3/2, the condition (3 . 33) reduces to

and we take 8" = 0, 8 (s) = p" = n/2 - E, thereby satisfying 8 (s)  n/2, (3 . 38)
and (3 . 44) provided

We consider next the case where 4/(~20142p)~2014 1 ~4/(~20142p’), a situa-
tion which implies p  p’ and which for n = 3 is relevant only if p  3/2.
We estimate again u in Lk (I, LS) by Sobolev inequalities, by interpolation
and by the Holder inequality in time as

with 1 o and o

or equivalently by (3 . 39)

The use of the Sobolev inequality and the interpolation are possible
and 0 _ ~ _p -1 or equivalently

a condition which is satisfied in the range of values of p, p, p’ that we are
considering. In addition the power of T in (3.45) is strictly negative

or equivalently (~2014l)(~/2~p’)2. The remaining conditions
b (s)  n/2 and (3 . 38) are satisfied (for 03B4 sufficiently close to 1) by taking
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In all cases with p &#x3E; 0 and either p’~p or p -1  4/(n - 2 p’), we have
therefore estimated u in Lk (I, LS) for a suitable choice of k and s in terms
of the norms available in the definition of p.(I) with a coefficient
containing a strictly negative power of T. Substituting that estimate into
(3.35) (3.36) (3.37) and taking T sufficiently large proves the required
estimates (2. 24) and (2. 25). From there on the contraction proof and the
proof of the conservation laws are standard, in the same way as in

Proposition 2. 1 part (1).
We now comment briefly on the limiting cases which have been excluded

so far, namely the case p = 0 and the case p -1= 4/(n - 2 p’) &#x3E; 4/(n - 2 p).
In those cases u can still be estimated in Lk (I, L S) in terms of the norms
available in ~p’(I), but the estimates come out with T independent
constants instead of strictly negative powers of T. The contraction proof
still works in that case with minor modifications (see for instance [4], [ 12]
where similar situations occur). One replaces the spaces P. (I) by

One defines

It follows from Lemma 3 . 3 part (2) that R (R)~ ell ~0; XP, and that

R (I) tends to zero when T ~ ~. The estimates of u in Lk (I, LS) do not
contain any negative power of T, but they contain strictly positive powers
of R (I) and can therefore again be made small by taking R (I) sufficiently
small and for that purpose by taking T sufficiently large. However in that
case no estimate is obtained for T in terms of II uo; XP, alone.

Q.E.D.

As a byproduct of Proposition 3 .1, one obtains global existence and
uniqueness of solutions of the Cauchy problem and asymptotic complete-
ness for small initial data in XP, P..
COROLLARY 3.1. - Let the assumptions of Proposition 3. 1 be satisfied.

Then there exists Ro &#x3E; 0 such that for any to E IR or for to = ::I:: oo, for any
uo E XP, P, with II uo; XP, P, ~ II ~ Ro, the equation (2 . 14) has a unique solution
u E P. (IR). That solution satisfies II u (t) ~2 = II 0 112 for all t ~ R and if
p’ &#x3E;_ l, E (u (t)) = E (u (s)) for all s, t E The wave operators Q:t, defined as
the maps u (o) where u is the solution of the equation (2 . 14) with

to = ::I:: oo, and their inverses Q; 
1 
are bijections of X03C1, P, locally in a neighbor-

hood of zero.
The next step in the existence proof of the wave operators consists in

extending the solutions constructed in Proposition 3 1 by solving the
global Cauchy problem at finite times. Since this is not the main point of
the present paper, we shall not strive for the maximal generality in this
direction. In particular we shall carry along the norms in o but not
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use them in any essential way to solve the Cauchy problem at finite times,
so that the conditions on p in the next two propositions will involve only
p’ . Using the ~’P, o norms would require to avoid the point t = 0 in the
local resolution and to use the pseudoconformal conservation law [8] in
the derivation of a priori estimates for 03C1~ 1.
We first give a local existence and uniqueness result.

PROPOSITION 3 . 2. - Let f satisfy (HI) and (H2), let p, with 

D’Pi n 2 and

(p2  oo if n = 3 and p’ &#x3E;_ 3/2). Let uo E XP, P, and to E IR. Then there exists
T &#x3E; 0 such that the equation (2. 14) has a unique solution u E ~03C1, 03C1’ (I) where
I = [to - T, to + T] . That solution satisfies II u (t)~( 2 = II 0~2 for all t E I . I. f ’
p’ &#x3E;_ 1, that solution satisfies E (u (t)) = E (u (s)) for all s, t E I. If
p2 -1  4/(n - 2 p’), T can be estimated from below in terms of II uo; XP, 

Proof. - The proof proceeds in the same way as that of Proposition 3 1
by a partial contraction method in ~’P, P, (I), whereby all the norms occuring
in the definition of ~’p, P, (I) are reproduced by the right hand side of the
equation (2 .14) but only the norms of u in Lq (I, Lr) are contracted. One
is led as before to estimate u in Lk (I, LS) for k and s satisfying (3 . 38)
(3 . 39). In the present case, we estimate

with 0~ 2/q"=03B4 (/’) = 03B4"~ 8, with 0~ p" _- 03C1’, with k and s satisfying again
(3 . 3 8) (3 . 39) (3 . 41 ) and with ~=(~-1)(1/~-1/~)~0 or equivalently
bv ~3.39~

We ensure all the relevant conditions by making the following choices.
For p’  n/2, we take p" = p’. If (p -1) (n/2 - p’)  2, we take Õ" = 0 (i. e.
q" = oo ) If(~-l)(~/2-p’)=2, we take 8" =2/~=8 (so that
q" = k) and 8(~)= p’+8. All the conditions are then satisfied provided

For n = 3 and p~3/2, we take 8"=0 (i. e. q" = oo) and ~ (s) = p" = n/2 - E.
All the relevant condition are then satisfied provided

The time T can be estimated in terms of I provided 8’&#x3E;0,
namely provided p2 -1  4/(n - 2 p’).

Q.E.D.

The local solutions obtained in Proposition 3 . 2 can be continued to all
times by standard arguments, provided a priori estimates are available on
the norms of those solutions in ~’P, P. (I). Such estimates are obtained in
the following proposition.
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PROPOSITION 3.3. - Let f satisfy (HI), let p’  2, let 0~X03C1, P,, let
I be a bounded interval, let to E I and let u be a solution of the equation
(2.14)~~~(1).

(1) Let p = 0 and and let p2 -1  4/(n - 2 po). Then u is

estimated in X0, P, (I) in terms of ~0; Xo, I and of the norm of u in

(2) Let f satisfy (H2), let and ~-l4/(~-2p’). Then u is

estimated in PIp, P, (I) in terms Xp, I and of the norms of u in

(3) (H2), let p, and p2 -1  4/n. Then u is estimated
in P, (I) in terms uo; Xp, 

In particular the solutions constructed in Propositions 3.1 and 3.2 can
be continued to The L2 norm is conserved.

(4) Let f satisfy (H2) and (H3), let let and

p2 -1  4/(n - 2). Then u is estimated in PIp, P, (I) in terms of ~ uo; Xp, p. iI.
In particular the solutions constructed in Propositions 3.1 and 3.2 can

be continued to ~p p. loe (~). The L2 norm of u and the energy are conserved.
Proof. - The proof of a estimates consists in using the integral

equation (2 .14) to derive linear inequalities for the norms to be estimated,
with coefficients which involve only the norms already available and which
can be made small. For that purpose, one estimates the norms to be
controlled by Lemma 3 . 3 part (2) for the free term and by (3. 35) (3. 36)
for the integral in (2.14). It is then sufficient to estimate again u in
Lk (I, LS) for k and s satisfying (3 . 38) (3 . 39) in terms of the available
norms. This is done in exactly the same way as in the proof of
Proposition 3.2. The coefficients in the linear inequalities can be made
small in small time intervals provided the exponent 8’ of I I or T in (3 . 50)
is strictly positive. The a priori estimates in arbitrary intervals are then
obtained by iteration. The proof of Proposition 3. 3 then proceeds as
follows, by using the estimates in the proof of Proposition 3 . 2.

Part ( 1 ) . Use (3 . 3 5) and estimate u in L k (I, LS) as in the proof of
Proposition 3 . 2 with p’ replaced by po.

Part (2). Use (3 . 36) and estimate u in L k (I, LS) as in the proof of
Proposition 3 .2.

Part (3). The known results on the L2 theory provide global solutions
in with conserved L2-norm. Apply part ( 1 ) with and then

part (2).
Part (4). The known results on the H 1 theory provide global solutions

in with conserved L2 norm and energy. Apply part ( 1 ) with 
and then part (2).

Q.E.D.

We can now combine Propositions 3.1 and 3 . 3 to state the results for
the wave operators. We have proved
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PROPOSITION 3.4. - Let f satisfy (HI) and (H2), let 

and

If p’ &#x3E;_ 1, assume in addition that f satisfies (H3). Then the wave operator
Q + is well defined from XP, P, to itself as the map u (0), where u is the
solution of the equation (2 . 14) with to = oo as constructed in Proposition 3. 1
and Proposition 3 . 3 part (3) (for p’  1) or part (4) (for p’ ~ 1). Q + is a

bounded operator in XP, P,. Similar results hold for negative time.
An important property of the wave operators is the intertwining prop-

erty. In order to state it, we remark that the space XP, P, is invariant under
the free evolution provided p = p’, and we define the total evolution as
the non linear map W (t) : u (o) ~ u (t) where u is a solution of the equation
(2 .14) . Then

PROPOSITION 3 . 5. - Let f, p, p’ satisfy the assumptions of Proposition 3 . 4
with p = p’. Then the wave operators obtained in Proposition 3 . 4 satisfy

for E IR and all u E Xp P..
We conclude this section by showing that the assumptions made on p 1,

p2 in Proposition 3 .4 lead to the conditions on /? announced in the

introduction. The upper limits in (3 . 52) are the standard limits correspond-
ing to the L2 theory and to the H 

1 theory respectively. The main interest
concentrates on the lower limit. For n = 3 and p~/2=3/2, that limit
becomes p 1-1 &#x3E; 2/n = 2/3, which is known to be optimal. For ~4 how-
ever, the condition 7?i -1 &#x3E; 4/(n + 2 p) conflicts with the regularity condition
p  p 1 on f. The optimal value of p is given by p -1= 4/(n + 2 p) and
allows to treat any p satisfying the condition (1 . 5).

4. THE MODIFIED WAVE OPERATORS FOR ~4

, In this section, we prove the existence of modified wave operators for
the equation ( 1.1 ) in a range of values of p bounded from below as in
( 1. 6). Since the case of space dimenion n = 3 is adequately covered by the
results of Section 3, we restrict our attention to ~4 in all this section.

Furthermore, since the theory is more complicated and the final results
’ 

not entirely satisfactory, we also restrict our attention to the case where f
is a single power interaction of the form ( 1. 2) with 2/~~-14/~, so
that in particular /?2 for ~4. We let f (u) = ug ( I u I2) so that

t g (s) _ ~, s~p-1»2. The exposition follows closely Section 3 of [6] to which
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we refer for details and in particular for some of the proofs. We also refer
to Sections 1 and 2 of [6] and to Section 1 of [21] for general information
on modified wave operators in the present nonlinear setting. Here we
simply recall that the free evolution vo (t) = U (t) uo is replaced by a modi-
fied free evolution v (t), several examples of which will be considered

below, and that the modified wave operators are constructed by solving
the following integral equation for w = u - v

where

As in [6] we look for solutions of that equation in the following Banach
spaces. Let 9&#x3E;0, 0 2/~=8 (~)1 and T&#x3E;0. We define

The spaces Xe,r(T) depend monotonously on 8 and r, namely 

The basic existence and uniqueness result is the following.

PROPOSITION 4 . 1. - defined by ( 1. 2) with 2/n  p -1  4/n. Let
e&#x3E;0,08(~)l and

Let To &#x3E; 0 and let v E ~ ([To, oo), L2) n L 00 ([To, oo), L (0) satisfy

where  is defined by (4 . 3). Then the equation ( 1 . 1 ) unique solution
u E ~ L2) (î Lr) such that u - v = WE (To).
The proof is the same as that of Proposition 3 . 1 of [6] and will be

omitted, except for some brief comments. One first solves the equation
(4 .1 ) in X8, r (T) by a contraction method for T sufficiently large, and one
then extends the solution to all times by using the known results [26] of
the L2 theory of the Cauchy problem at finite times. In particular one
extends the solution u below To by using the equation (2.14) which is

(formally) equivalent to (4 .1 ) and which does not involve v. Note that
since p -1 &#x3E; 2/n, and in contrast with Proposition 3 .1 of [6], no smallness
condition in required on I I v ~ I ~ .
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We now define several modified free evolutions which are appropriate
for the equation ( 1.1 ). Let u + = uo be the asymptotic state. We introduce
the phase function

where

and the regularized phase function

with ~, &#x3E; O. We then define (cf. (2 . 27) (2 . 28) and (2 . 34) in [6]) the modified
free evolutions

as well as the regularized versions thereof vi, ~ (t) (i =1, 2, 3) obtained from
(4.12)-(4. 14) by replacing S by Sw We recall that from the commutation
relation

it follows that

In particular for i = 2, 3.

so that for i=2, 3, vi and vi,  satisfy the condition (4 . 7) provided M+ E L 1.
We shall eventually apply Proposition 4 .1 with and for that

purpose we need to show that also the condition (4.8) is satisfied. We

recall that the associated 7 is given by (2 . 31 ) in [6])

In what follows we shall most of the time omit the argument t in Sand

Sw We shall also omit the second argument with the understanding that
S is then the function S (t, ~), or the operator of multiplication by that
function in momentum space variables, or the operator S(~-~’V) in

configuration space variables.
We now state the basic estimate on ~
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M~/!

where S:t = (:i: s) v 0. Then the following estimates hold for all t ~ 1.

In particular for )J. = 4/3

so that the condition (4. 8) for all e with

Proof. - The proof follows closely that of Lemma 3 . 2 of [6] and will
only be sketched briefly. Omitting the subscript + for brevity, we compute

and we estimate as in [6]

from which (4.20) follows by taking the L2 norm. We next compute (in
momentum space variables)

so that

and

Now (4 . 21 ) follows from (4 . 26) (4 . 29) (4 . 30) by taking the L2 norms,
applying Sobolev inequalities, and factorizing the largest power of t (for
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~1). That power comes from the second term in the bracket in (4 . 29)
and comes out as

Finally (4 . 22) follows from (4.18) and (4 . 20) (4 . 21 ) with ~=4/3, the
value for which the powers of t from (4 . 20) (4 . 21 ) become equal.

Q.E.D.

Although we shall apply Proposition 4 .1 with v = v2, ~ only, we shall be
interested in using the various modified free evolutions ~ and

vi (i =1, 2, 3). For that purpose, it will be necessary to show that their

differences belong to the spaces X (T) defined by (4 . 4). We shall also need
to compare the various modified free evolutions with the free one vo. This

will be achieved by the following lemma.

LEMMA 4 . 2. - Let 2/n  p -1  4/n and let vi
defined by (4 . 12) (4 . 13) (4 . 14) with S and S~ defined by (4 . 9) (4 . 11 ).

(1) Let u + E X2, o = ~ (H2). Then for all (q, r) with 0 _ 2/q = ~ (r) _ 2,
8(r)~/2, the following estimates hold for all t &#x3E; 0

(2) Let with p satisfying £ (4 . 19). Then for all (q, r)
with 0~2/~=8(~)~2, the following estimates hold for all ~1
and some estimating function M (. ).

with

Then for i =1, 2 and for all ~ 1

where ’ 2* = 2 n/(n - 2), andfor all (q, r) with 0~ 2/~=8(~=8~1 and some
estimating , function M ( . )

where ’
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In particular under the assumptions of Lemma 4 . 1 and for  = 4/3, all

the pairwise differences between the v~ and vi, ~ (i =1, 2, 3) belong to Xe, r ( 1 )
for all (q, r) with 0 ~ 2/q = 8 (r) ~ 1 and for all 6 in the range (4 . 23).

(4) Let u+ E Xp, o = ~ (HP) for p satisfying (4 . 35). Then

In particular under the assumptions of Lemma 4. 1 and for Jl = 4/3, all

the differences vo and vi, ~ 
- 

vo (i =1, 2, 3) belong to Xø, r ( 1 ) for all (q, r)
with 0  2/q = ~ (r) _ ~ -1 and for 9 = (p -1)n/2 -1.

Proof. - The proof of Part ( 1 ) and of the first inequality in (4 . 3 3) are
identical with those of Lemma 3 . 3 in [6] and will be omitted. The second

inequality in (4.33) is a restatement of (4.21).
The proof of Part (3) is very similar to that of Lemma 3 .4 of [6] and

will only be sketched briefly. Omitting again the subscript + for brevity,
we estimate for i =1, 2

by the same computation as in (4.25) and with e given by (4.39). We
next estimate as in Lemma 3.4 of [6]

Now

so that

Then

where the last inequality follows from the elementary inequality
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which holds for 0  a  1, applied with and

o~=(~-l)/2. Taking the L2 norms of (4 . 46)-(4 . 49) and substituting the
result in (4. 44) yields _

from which (4. 37) follows immediately by the use of Sobolev inequalities.
Interpolating between (4.36) and (4.37) and taking the Lq norm in time
yields (4. 38). The last statement follows from the estimates (4. 31), (4. 32),
(4 . 3 3) (4 . 3 8) by taking ~=4/3.
The proof of part (4) is a simplified version of that of part (3), obtained

by taking i =1 and replacing S~ by zero. One finds

from which (4 . 40) and (4 . 41 ) follow by the use of Sobolev inequalities.
Finally (4 . 42) follows from (4 . 40) and (4 . 41 ) by interpolating and taking
the Lq norm in time. The last statement of part (4) follows from (4.42)
and from the last statement of part (3).

Q.E.D.

We are now in a position to state the main result of this section.

PROPOSITION 4 . 2. - defined by ( 1. 2) 2/n  p -1  4/n. Let 8, r
satisfy 08(r)l, (4 . 5) (4.6) and (4 . 23). Let p satisfy (4 . 19) and

let u+ E L1 n XP, o n LI). Let =4/3 and let vi and

~, be defined by (4 . 9)-(4 . 14). Then the equation (1 . 1) unique solution

L2) such that for one i E ~ 1, 2, 3},

That solution u is independent of the choice and of (8, r) in the previous
allowed range. In addition u satisfies (4 . 53) for with 0~8(r)l,/9A-
all 03B8 in the range (4 . 23), for i =1, 2, 3.

Similar results hold for negative times.

Proof. - The result for v = v2, ~ follows from Proposition 4 .1 and
Lemma 4.1. The result for other choices of v follows from the result for

v = v2, ~ and from Lemma 4 . 2. The subsequent statement follow from
Lemma 4 . 2 again and from the fact that Xe, r depends monotonously on
8 and r.

Q.E.D.

Whenever the assumptions of Proposition 4.2 are satisfied, we define
the wave operator Q+ as the map u + -~ u (o) where u is the solution of
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the equation ( 1.1 ) obtained in that proposition. The wave operator Q- is
defined similarly. The range of values of p for which the assumptions
(4 . 5) (4 . 6) and (4 . 23) are satisfied is that defined by p -1  4/n and by
(1. 6). The lower bound on p thereby obtained is slightly better than the
lower bound ( 1. 5) obtained in Section 3 for ~4. On the other hand the
results of Proposition 4. 2 are less satisfactory than those of Proposi-
tion 3.4 for two reasons

( 1 ) The wave operators are defined as maps from
X = L 1 n ~ (? U to L2 . Unfortunately we are not able to prove that

map X into itself.

(2) Since we are in a situation with p -1 &#x3E; 2/n where we expect the
modification of the wave operators not to be needed, we also expect that
the solutions u obtained in Proposition 4. 2 behave asymptotically as the
free solutions vo(t)=U(t)u+. By Lemma 4 . 2 part (4), that is indeed the
case, namely (4 . 53) also holds with and 0  ~ (r)  1, but only in the
restricted range 0  8 ~ (p -1) n/2 - 1, which is but a small subset of (4 . 23).
We are unfortunately unable to prove the uniqueness of u under that
condition.
The wave operators constructed above nevertheless satisfy the usual

intertwining property when restricted to a suitable subspace of asymptotic
states invariant under the free evolution. Since for p &#x3E; n/2 and
since the condition (4 .19) is always weaker than p &#x3E; n/2, we choose Xp p
with p &#x3E; n/2 as an appropriate invariant subspace. We denote again by

the (nonlinear) evolution defined by the equation ( 1.1 ) in L2.

PROPOSITION 4 . 3. - Let defined by (1.2) with p -1  4/n and p
satisfying ( 1. 6), let p &#x3E; n/2 and let constructed as above. Then for
any M+ e Xp p and any s~ IR

The proof follows closely that of Proposition 3.2 of [6]. As
in the latter, it is sufficient to prove that v defined by

belongs to Xe, r as a function of t for fixed s for one admissible pair (8, r)
for which uniqueness in Proposition 4 . 2 holds in X8, r. Taking s &#x3E; 0 for
definiteness and omitting again the subscript + for brevity, we estimate as
in the proof of Lemma 4. 2 part (3)

by Sobolev inequalities, and

Vol. 60, n° 2-1994.



238 J. GINIBRE, T. OZAWA AND G. VELO

Now

so that by Sobolev inequalities, for all ~ 1

Interpolating between (4. 56) and (4. 58) and taking the Lq norm in time,
we obtain for all ~ 1

for all (q, r) with 0~2/~=8(~=8~1, so that for fixed s, for

all such r and for 08~(~- 1)~/2.
Q.E.D.

[1] J. E. BARAB, Nonexistence of Asymptotically Free Solutions for Nonlinear Schrödinger
Equation, J. Math. Phys., Vol. 25, 1984, pp. 3270-3273.

[2] J. BERGH and J. LÖFSTRÖM, Interpolation Spaces, Berlin, Springer, 1976.

[3] T. CAZENAVE, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos
Matematicos, Vol. 22, Instituto de Matematica, Rio de Janeiro, 1989.

[4] T. CAZENAVE and F. WEISSLER, The Cauchy Problem for the Critical Nonlinear

Schrödinger Equation in Hs, Nonlin. Anal. TMA, Vol. 14, 1990, pp. 807-836.

[5] T. CAZENAVE and F. WEISSLER, Rapidly Decaying Solutions of the Nonlinear Schrödin-
ger Equation, Commun. Math. Phys., Vol. 147, 1992, p. 75-100.

[6] J. GINIBRE and T. OZAWA, Long Range Scattering for Nonlinear Schrödinger and
Hartree Equations in Space Dimension n~2, Commun. Math. Phys., Vol. 151, 1993,
pp. 619-645.

[7] J. GINIBRE and G. VELO, On a Class of Nonlinear Schrödinger Equations I. The Cauchy
Problem General Case, J. Funct. Anal., Vol. 32, 1979, p. 1-32.

[8] J. GINIBRE and G. VELO, On a Class of Nonlinear Schrödinger Equations II. Scattering
Theory, General Case, J. Funct. Anal., Vol. 32, 1979, pp. 33-71.

[9] J. GINIBRE and G. VELO, Scattering Theory in the Energy Space for a Class of Nonlinear

Schrödinger Equations, J. Math. Pures Appl., Vol. 64, 1985, p. 363-401.

[10] J. GINIBRE and G. VELO, The Global Cauchy Problem for the Nonlinear Klein-Gordon

Equation, Math. Z., Vol. 189, 1985, pp. 487-505.

[11] J. GINIBRE and G. VELO, Time Decay of Finite Energy Solutions of the Nonlinear
Klein Gordon and Schrödinger Equations, Ann. Inst. Henri Poincaré, Phys. Théor.,
Vol. 43, 1985, pp. 399-442.

[12] J. GINIBRE and G. VELO, Scattering Theory in the Energy Space for a Class of Nonlinear
Wave Equations, Commun. Math. Phys., Vol. 123, 1989, pp. 535-573.

[13] J. GINIBRE and G. VELO, Smoothing Properties and Retarded Estimates for Some

Dispersive Evolution Equations, Commun. Math. Phys., Vol. 144, 1992, pp. 163-188.

Annales de l’Institut Henri Poincare - Physique - theorique "



239ON THE EXISTENCE OF THE WAVE OPERATORS

[14] N. HAYASHI and M. TSUTSUMI, L~ (Rn)-Decay of Classical Solutions for Non Linear
Schrödinger Equations, Proceedings of the Royal Society of Edinburgh, Vol. 104, 1986,
pp. 309-327.

[15] N. HAYASHI and Y. TSUTSUMI, Remarks on the Scattering Problem for Nonlinear
Schrödinger Equations, Lecture Notes in Math., Vol. 1285, 1987, Springer, pp. 162-
168.

[16] T. KATO, On Nonlinear Schrödinger Equations, Ann. Inst. Henri Poincaré, Phys. Théor.,
Vol. 46, 1987, pp. 113-129.

[17] T. KATO, Nonlinear Schrödinger Equations, in: Schrödinger Operators, Lect. Notes
Phys., Vol. 345, Springer, 1989.

[18] J. E. LIN and W. A. STRAUSS, Decay and Scattering of Solutions of a Nonlinear
Schrödinger Equation, J. Funct. Anal., Vol. 30, 1978, pp. 245-263.

[19] H. P. McKEAN and J. SHATAH, The Nonlinear Schrödinger Equation and the Nonlinear
Heat Equation; Reduction to Linear Form, Comm. Pure Appl. Math., Vol. 44, 1991,
pp. 1067-1080.

[20] H. NAWA and T. OZAWA, Nonlinear Scattering with Non Local Interaction, Commun.
Math. Phys., Vol. 146, 1992, pp. 259-275.

[21] T. OZAWA, Long Range Scattering for Nonlinear Schrödinger Equations in One Space
Dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493.

[22] W. A. STRAUSS, Nonlinear Scattering Theory, in Scattering Theory in Mathematical
Physics, J. LAVITA, J. P. MARCHAND, eds, Reidel, 1974.

[23] W. A. STRAUSS, Nonlinear Scattering Theory at Low Energy, J. Funct. Anal., Vol. 41,
1981, pp. 110-133.

[24] Y. TSUTSUMI, Scattering Problem for Nonlinear Schrödinger Equations, Ann. Inst. Henri
Poincaré, Phys. Théor., Vol. 43, 1985, pp. 321-347.

[25] Y. TSUTSUMI, Global Existence and Asymptotic Behavior of Solutions for Nonlinear
Schrödinger Equations, Doctoral Thesis, University of Tokyo, 1985.

[26] Y. TSUTSUMI, L2 Solutions for Nonlinear Schrödinger Equations and Nonlinear Groups,
Funkcialaj Ekvacioj, Vol. 30, 1987, pp. 115-125.

[27] Y. TSUTSUMI and K. YAJIMA, The asymptotic Behavior of Nonlinear Schrödinger
Equations, Bull. Am. Math. Soc., Vol. 11, 1984, pp. 186-188.

[28] K. YAJIMA, Existence of Solutions for Schrödinger Evolution Equations, Commun.
Math. Phys., Vol. 110, 1987, pp. 415-426.

[29] H. TRIEBEL, Theory of Function Spaces, Birkhauser, 1983.

( Manuscript received June , 22, 1993.)

Vol. 60, n° 2-1994.


