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ABSTRACT. - The problem of stability of the action variables (i. e. of
the adiabatic invariants) in perturbations of completely integrable (real
analytic) hamiltonian systems with more than two degrees of freedom is
considered. Extending the analysis of [A], we work out a general quantita-
tive theory, from the point of view of dimensional analysis, for a priori
unstable systems (i. e. systems for which the unperturbed integrable part
possesses separatrices), proving, in general, the existence of the so-called
Arnold’s diffusion and establishing upper bounds on the time needed for
the perturbed action variables to drift by an amount of 0(1).
The above theory can be extended so as to cover cases of a priori

stable systems (i. e. systems for which separatrices are generated near the
resonances by the perturbation). As an example we consider the "d’Alem-
bert precession problem in Celestial Mechanics" (a planet modelled by a
rigid rotational ellipsoid with small "flatness" 11, revolving on a given
Keplerian orbit of eccentricity e = r~‘, c &#x3E; 1, around a fixed star and subject
only to Newtonian gravitational forces) proving in such a case the existence
of Arnold’s drift and diffusion ; this means that there exist initial data for
which, for any ~~0 small enough, the planet changes, in due 
dent) time, the inclination of the precession cone by an amount of 0(1).
The homo/heteroclinic angles (introduced in general and discussed in detail
together with homoclinic splittings and scatterings) in the d’Alembert
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problem are not exponentially small with 11 (in spite of first order predic-
tions based upon Melnikov type integrals).
Key words : Perturbed hamiltonian systems, stability theory, Arnold’s diffusion, homoclinic

splitting, heteroclinic trajectories, KAM theory, whiskered tori, dimensional estimates, Celes-
tial Mechanics, d’Alembert Equinox Precession problem.

RESUME. 2014 On considere Ie probleme de la stabilite des invariants

adiabatiques dans les systemes obtenus par perturbation de systemes analy-
tiques integrables a plus de 2 degres de liberte.
On considere d’abord les systemes dits a priori instables : ce sont des

systemes a l degres de liberte dont la partie non-perturbee a les deux

proprietes suivantes : 1 ) elle admet des (/-l)-tores invariants a mouvement
quasi-periodique dont les varietes stables et instables (a l dimensions)
coincident ; 2) la frequence sur chaque tore et l’exposant de Lyapunov sur
sa variete stable ou instable sont du meme ordre de grandeur (unite).
L’analyse de [A] est etendue et on obtient des bornes superieures au
temps minimum necessaire a la variation 0(1) des variables adiabatiques,
prouvant ainsi 1’existence de la diffusion sous des conditions
assez generates.

L’analyse preliminaire ci-dessus ne s’applique pas au cas des systemes a
priori stables : ce sont les systemes dont la partie non-perturbee ne possede
que des mouvements quasi-periodiques dont l’échelle temporelle est

d’ordre 0(1). Bien que pres d’une resonance on puisse trouver des coor-
donnees normales dans lesquelles Ie systeme apparait comme une perturba-
tion d’un systeme a priori instable, les resultats generaux precedents, sur
les systemes a priori instables, ne s’appliquent pas. En effet 1’exposant de
Lyapunov associe a 1’instabilite est, dans ces cas, de 1’ordre de la perturba-
tion (et donc tres petit par rapport aux frequences du mouvement non
perturbe, qui sont de l’ordre 0(1)). L’existence de deux echelles de temps
d’ordre de grandeur different pose un obstacle de principe et Ie probleme
general est ouvert ; il est techniquement lie au fait que de tels systemes a
deux echelles de temps, une fois perturbes, maintiennent une presque
degenerescence des varietes stables et instables, qui res tent presque

tangentes : plus preeisement qui torment, a leurs intersections (pints homo-
clines), des angles plus petits que tout ordre de la perturbation.
Neanmoins on arrive a traiter des cas particuliers : il est remarquable

que les systemes a priori instables qui, avant perturbation, possedent trois
(ou plus) echelles de temps d’ordre de grandeur different, une fois pertur-
bes, deviennent non degeneres, dans Ie sens que les angles homoclines
deviennent de l’ordre d’une puissance de la perturbation (au lieu d’etre
plus petits que toute puissance).

Cette derniere propriete de « grands angles homoclines » mise en evidence
dans ce travail, couplée avec Ie fait que dans certains problèmes de Mécani-
que Céleste les systèmes a trois échelles de temps apparaissent naturellement
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3DRIFT AND DIFFUSION IN PHASE SPACE

lorsqu’on essaye d’en etudier les mouvements qui ont lieu pres d’une
resonnance, nous permet de prouver la diffusion dans quelques systemes
a priori stables.
On a choisi comme exemple Ie modele de d’Alembert pour la precession

d’un corps rigide homogene a symetrie cylindrique, peu aplati aux poles,
dont Ie centre de gravite parcourt une orbite keplerienne avec excentricite
e = ~c, si ~ (assez petit) est 1’aplatissement et c est assez grand. Le corps
est assujetti a la force d’attraction d’une masse situee au foyer de l’ellipse.
Dans ce probleme on prouve que l’axe du moment angulaire peut changer
d’une quantite fixee entre 0° et 90°, quelque soit ~ pourvu qu’il soit non
nul, qu’on attende assez longtemps et qu’on choisisse des donnees initiales
convenables ( proches d’une resonance, et on a aussi choisi la resonance
jour : année = 1 : 2). La degenerescence des systemes de la mecanique céleste
produit les trois echelles de temps voulues, mais il y a aussi des obstacles
techniques additionnels : en particulier nous devons etudier en detail la
theorie des moyennes sur les angles rapides.
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1. INTRODUCTION AND DESCRIPTION OF THE RESULTS

A typical question about diffusion in phase space is the following: could
the Earth axis tilt? To put the question in mathematical form we consider
a model for the Earth precession, well known since d’Alembert [L].

Let a planet ~ be a homogenous rigid body with rotational symmetry
about its N-S axis and with polar and equatorial inertia moments J 3’ J1:
hence with mechanical (polar) which is supposed
to be small. Let the planet move on a keplerian orbit t --~ rT (t), with
eccentricity e, about a fixed heavenly body !7 with mass ~; also e will
be supposed to be small and in fact we shall assume that the eccentricity
and the flattening coefficient are related by a power law: for some

positive constant c. Wishing to be closer to reality one could also assume
that ~ had a satellite ~: what follows could be adapted to this stranger
situation (in the case of the Earth this is particularly relevant as the Moon
accounts for 2/3 of the lunisolar precession). But here, as it will be far

too clear below, we are addressing a purely conceptual question and we
have no pretension that our results apply directly to the solar system or
subsystems thereof.

Regarding the flattening ~ (and hence the eccentricity e) as a (non
vanishing) parameter, we consider initial conditions close to those in which
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5DRIFT AND DIFFUSION IN PHASE SPACE

the planet is rotating around its symmetry axis, at a daily angular velocity
and precessing around the normal to the orbit, at an angular velocity

denoted (Op= on a cone with inclination i. And we ask whether, no
matter how small the flattening coefficient ~ may be (below some 110)’ there
is an initial condition such that, after due time, one can find the planet
precessing on a cone with inclination i’ 7~ ~ with i, i’ fixed a priori, 
dent on 11. Such a phenomenon will be called drift in phase space.
We have not worried, above, about fine points like the distinction

between the symmetry axis of E and the angular momentum or the angular
velocity axes: such a distinction is not a minor one and is of course
relevant to a rigorous analysis of the problem which we defer to section 12.

Closely related to the drift in phase space is the diffusion : we shall see
that the same mechanism that we discuss to show the existence of drift
also shows the existence of orbits along which the inclination does not
increase monotonically (in average) from i to i’ but rather it evolves, on a
suitably large scale of time, so as to either increase or decrease the
inclination by an amount 0(s) according to a prefixed pattern at least
for a number of time steps or order ~&#x3E;0(s’~), for some E small compared
to rt. If one chooses the initial datum randomly and with equal distribution
among the initial data of the above orbits, one will see the inclination
change as a brownian motion, at least as long as it takes to reach the

target value i’ (or its symmetric value with respect to i).
This work is a generalization of the well known example given by

Arnold [A]. The basic feature of Arnold’s example was that the drift took
place around invariant tori of dimension l -1 if l is the number of degrees
of freedom of the system and that the system considered had a very special
form: the tori around which the diffusion took place were explicit exact
solutions of the equations of motion. This is a property which does not
hold in general and a fraction of the work in this paper is devoted to a
detailed construction of the tori and of the flow around them (an analysis
sarted in [M]). Furthermore the instability of the tori is also explicit in
the model in [A]. The general system, however, will be such that most of
the tori will have dimension l and the unstable tori arise near resonances.

Some details of the mechanism generating unstable tori of dimension
/2014 1 along which diffusion takes place may be quite involved, in general.
The point of view of this work has been to see if, starting with the

ideas in the well known example of Arnold, one could develop the theory
to a point to make it applicable to the above celestial problem (for which
the invariant tori arise only near resonances). We felt that such a precise
goal, if pursued without further simplifying hypotheses, would provide a
natural selection of possible assumptions (which could, otherwise, appear
as ad hoc to the reader).
To achieve such a goal several intermediate problems had to be solved.

Vol. 60, n° 1-1994.
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1 ) In section 2 we define precisely a class of systems that we study: it

is a system of 1-1 rotators coupled to a pendulum. Arnold’s example is
in this class, but not so the d’Alembert model for the Earth precession.
The simplifying aspect of the systems in such a class is that it is obvious
from their definition that they are unstable (the instability simply occurs
near the pendulum separatrix): thus we call them a priori unstable. A
detailed theory of such systems is necessary to attack the far harder a

priori stable systems (defined below).
2) In section 3 we point out the main (easy) properties of the uncoupled

( free) systems of a pendulum and several rotators.
3) In section 4 we introduce the key notion of diffusion path : it is a

curve in the rotator action space, along which the free rotators angular
velocities form a vector with suitable diophantine properties. It will play
the role of marking the projection in action space of a drifting or diffusing
motion.

4) In section 5 we prove that the points of the diffusion curves can be
interpreted as l -1 dimensional invariant tori: most of them persist after
the perturbation (i. e. the coupling between the pendulum and the rotators)
is switched on. The stability of low dimensional tori has been studied in
the literature by various authors: we present it from scratch because we
need very detailed bounds and analyticity properties of the perturbed tori
equations and a simple normal form for the motion of a large class (/+1
dimensional) of nearby points. The bounds must be general and at the
same time simple enough to be applicable to the harder cases that we
analyze later (like the d’Alembert model). Hence we need results stated in
terms of the few really important features of the hamiltonian. We therefore
proceed by identifying the relevant parameters (basically ratios of the
independent time scales that govern the motions) and produce a proof in
which the only ingredient is the use of the Cauchy theorem to bound the
derivative of a holomorphic function by the ratio between the maximum
modulus, in the considered analyticity domain, and the distance to the
boundary of the analyticity domain. We call, for obvious reasons, such
bounds dimensional bounds (See lemmata 1.1’ of § 5). The normal coordina-
tes that we describe are a generalization of the celebrated Jacobi coordina-
tes near the unstable equilibrium point of the pendulum (See lemma 0
of § 5, and appendix 9 for a description of the classical Jacobi map).

5) In section 6 we develop the perturbation theory of the stable and
unstable manifolds of the invariant tori constructed in section 5 ; following
Arnold, we call such manifolds whiskers. The theory is discussed to

arbitrary order of perturbation theory: such a generality is necessary only
if one has in sight applications to a priori stable systems (such as the
celestial one of d’Alembert). Such analysis requires establishing, for the
purpose of a consistency check, some remarkable homoclinic identities,
established in appendix A 12.
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For the models in the class of the a priori unstable systems the theory
to first order is sufficient and we deduce that the homoclinic angles (i. e.
the angles between tangent vectors to the stable and to the unstable

whiskers) are, no wonder, described by a tensor (that we call the 
tion tensor) related to the Melnikov integrals, reproducing results of Melni-
kov which are well known [Me].

6) In section 7 we show that, given a diffusion path, if the perturbation
has suitable properties (expressed in terms of some explicit condition of
absence of low order resonant harrrionics in the Fourier development of
the perturbation at path points) then the set of points along the path
representing invariant tori (for the full hamiltonian) is so dense that one
can find a sequence of them spaced by an amount far smaller than the
size of the homoclinic angles.

7) In section 8, using the normal form described in section 5 in a very
essential way, we show that in the assumptions of section 7 the diffusion
path is open for diffusion and show the existence of initial conditions which
evolve in time so that the projection of the motion in action space follows
the diffusion path. We also find an explicit estimate of the time needed
by the drifting motions to reach the other extreme of the diffusion path.
The path is independent on the size ~ of the perturbation and it is non
trivial (i. e. not a single point) if /&#x3E;3 (no diffusion or drift are possible if
/=2 by the KAM stability).
The time it takes is of the Arnold’s example is

covered by the theorem, but our result is less general than Arnold’s one
as it can be applied to diffusion paths which are segments of length of
0(1) but not arbitrarily placed on the action axis: this is the price that
we have to pay to get concrete bounds on the drift time (and not only a
finiteness result). We do not know if this restriction would also be present
by using Arnold’s method (i. e. whether Arnold’s method could give, in
his example, actual constructive upper bounds on the diffusion time).

8) In section 9 we begin to worry about the fact that the above analysis
does not cover a priori unstable systems in which the pendulum Lyapunov
exponent (i. e. in physical terms the gravity acceleration), that we call
here 11, is not fixed but it is linked to the perturbation size (usually much
smaller) that we call fl. The reason is that in such cases the first order of

perturbation theory is "degenerate" in the sense that it predicts homo clinic
splitting with some angles of size O (~, exp - k r~ -1~2), for some A:&#x3E;0. This
leads essentially to a situation in which the first order perturbation theory
is not sufficient, even to establish the existence of the homoclinic splitting,
not to speak of the existence of drift: it is well known that there are

examples in which the situation does not improve by going to higher order

In fact the problem is already quite hard in the case of a forced

pendulum (i. e. /=2) and with the rotator being a clock model, perfectly

Vol. 60, n° 1-1994.
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isochronous ; this means that the rotator action B appears in the form of
an additive term in the hamiltonian equal to 03C9B and the rest of the
hamiltonian depends only on the pendulum coordinates I, cp and on the

conjugate angle Â, "position of the clock arm". If the perturbation size is
supposed for some the problem is non trivial (a case
reducible to the ones treated in sections 6, 7, 8 would be if

~, = O (exp - c r~ - b) with b &#x3E; 1 /2: but this is, unfortunately, a case of little
interest in view of the expected size of  in the applications).

If /&#x3E;2 the angles are in general rather hard to describe: we find some
rather implicit expressions for them, in general, but we can make use of
them in the one case with /=3 which motivated our work (i. e. the
d’Alembert equinox precession model). Actually we point out an ambiguity
about what one defines to be the homoclinic angles of splitting as there
are at least two different interesting sets of coordinates that can be
considered. To relate them we introduce the concept of homoclinic phase
shift (a quite remarkable notion in itself: see item 13) below for a qualita-
tive description of it).

In general, in the cases with an exponentially small splitting to first

order, we do not discuss a proof of the existence of a homoclinic point:
although the results that we have developed are probably sufficient for
constructing a proof. The reason is not only to cut a little shorter this
paper but mainly because the theory is, nevertheless, not empty: in fact
we can apply it to a special but wide class of models for which the
homoclinic point problem is (well known to be) exactly soluble (in the
sense that one can show the existence, and locate exactly the position, of
the homo clinic point). We call such class the even models : as the property
is based on a symmetry of such hamiltonians. Many models of forced
pendula fall in this class that we introduce and treat, for completeness, in
section 9.

9) In section 10 we discuss in more detail the notion of homo clinic
phase shift particularly in the case of even models with /=3, in which one
of the rotators is a clock and the other is "slow", i. e. its free angular
velocity is of order 11 while also the pendulum gravity constant is of
order rt. The introduced formalism allows us to show that the phenomenon
of large homoclinic splitting takes place even in presence of fast rotations,
as long as there is at least one slow among them : this property holds only
in systems with /~3 (and generically it does happen, as we show) and in
spite of first order (Melnikov type) computations (which predict exponen-
tially small splittings). Some detailed calculations are performed in appen-
dix A 13 and they are interesting by themselves.
The existence of one fast rotation and other slow ones looks very special

but we show in section 12 that the d’Alembert precession model, which is
a priori stable, is reducible to such a case: this is due to the extra degenerac-
ies present in all celestial problems.

Annales de l’Institut Henri Poincaré - Physique theorique
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10) The actual application of the theory to even models with l = 3,
relevant for the precession problem, requires some extra work performed
in section 11 and the technique is also an illustration of a rigorous
application of the usually qualitative averaging methods.

11 ) In section 12 we finally study the a priori stable d’Alembert preces-
sion model. The original d’Alembert model took the planet orbit to be
circular: in this case the model has /=2 and diffusion is not possible.
Therefore we take the orbit to be keplerian with eccentricity e &#x3E; 0 ; this
leads to a large class of models obtained by truncating the eccentricity
series to order k ; we study for simplicity only the case k = 2: the general
case (k arbitrary), does not seem to offer more difficulties, except nota-
tional ones. The work having been organized in order to treat this case,
the discussion is rather simple.
We choose in our example as diffusion path a line which has the

physical interpretation of a 1: 2 resonance between the "day" period and
the "year" period, and is such that a motion along it has the interpretation
of changing the size of the angle between the ecliptic and the angular
momentum of the planet ("inclination"). We just have to check that the
model can be reduced, by a suitable change of coordinates, to a /=3
system of a pendulum with small gravity or order 11 forced by a fast clock
and by a slow anisochronous rotator ; the perturbation parameter is the
eccentricity e of the orbit, which we have to take small with ’11, e.g. 
for some convenient c&#x3E;O. The model is even, in the sense of sections 9, 10,
and the theory of sections 9, 11 fully applies at least to portions of 0(1)
of the diffusion path: for many of them we thus get the existence of drift
(and diffusion).

13) The notion of homoclinic scattering and phase shifts arises naturally
as a byproduct of the analysis performed to describe the phase shifts

occurring on the homoclinic motion and near it. Calling a the rotators
angular coordinates and cp the pendulum angle suppose that at some

arbitrarily fixed reference angle (p==(p there is a homoclinic point at

a==ao. Two points starting at t = 0, (p=(p, one on the stable whisker and
one on the unstable whisker of some invariant torus with the same position
coordinates a, will evolve towards the invariant torus (respectively forward
and backward in time) so that their asymptotic motion gives two points
which move quasi periodically keeping a time independent phase with
respect to the homoclinic motion. It will be a function of the distance of
the initial points to the homoclinic point, i. e. of a. The difference 03C3[03B1]
between such phases evaluated at ~==±00 will be the phase shift. The
"scattering" will be the family of derivatives at 0153 = 0153o. In other
words we use the homoclinic point as a gauge to fix the origin of the
angles on the standard torus on which the quasi periodic motion is linear
and we look at the trajectory starting on the unstable whisker at t = - 00

Vol. 60, n° 1-1994.
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infinitesimally close to the invariant torus and evolving into a point with
cp = cp and some a at t = 0, "jump" on the stable whisker (keeping the values
of 0153, cp), and evolve towards the invariant torus again. The trajectory will
be asymptotically lagging behind the homoclinic trajectory by an amount
~, say, at t = - oo and by an The notion of

o[a] is intrinsic as the coordinates on which the motion on the torus

appears as linear and which are "close" to the corresponding unperturbed
ones are uniquely defined.

In presence of perturbations the phase shift is a non trivial function of
the distance to the homoclinic point. We define analytically the phase
shifts in section 10 and briefly discuss them in section 10 and,
appendix All, how they are related to the homoclinic splitting.
We present all details in a self contained way. Some of the details are,

however, exposed in a series of appendices. Some of the appendices also
contain classical results not so easy to find in the literature in the form in
which we need them. Some, (very few), of them are not really necessary
but they are reported because they clarify conceptual and historical aspects
of the problem (namely the statement of Nekhorossev theorem § A 1 ), the
d’Alembert precession theory for the Earth (§ A6, §A7), the Jacobi map
(§ A9), the bounds on the homoclinic scattering (§ A 11 ) and they occupy a
negligible amount of space.

2. A PRIORI UNSTABLE SYSTEMS.
REGULARITY ASSUMPTIONS

Let (A, a), (I, p) be canonical coordinates describing a mechanical
system with l degrees of freedom. We suppose AEV c Rl -1, 

and where V is the closure of some open bounded set and
TS is the s-dimensi.onal torus. We shall regard TS interchangeably as

[-03C0,03C0]s with opposite sides identified or we regard it as Cs1 = {pro-
duct of s unit circles in the s-dimensional complex space via the
identification cp = (cp ~, ... , cp~) E TS ~ z = (zl, ... , zs) E CS with 

(7=1, ... , s).
The free system will consist of l -1 rotators described by the angles a

and their conjugate momenta A, and one pendulum described by the angle
p with conjugate momentum I.
The pendulum oscillates with energy:

Annales de l’Institut Henri Poincaré - Physique theorique



11DRIFT AND DIFFUSION IN PHASE SPACE

where Jo (A) is a suitable inertia moment and 203C0g (Ä) - 1 is the characteristic
period of the small oscillations or, as well, g (A) is the Lyapunov exponent
of the unstable fixed point. We call (2 .1 ) a standard pendulum hamiltonian.
The rotators will move without being affected by the pendulum oscilla-

tions. A complete example hamiltonian will be:

where R is another inertia moment.
More generally we shall consider 03B1-independent hamiltonians like:

where P is a real analytic hamiltonian depending on a parameter  and
describing a pendulum in the sense discussed below, and h (A, J.!) will also
be assumed real analytic.
To clarify what we mean by a pendulum hamiltonian P we recall the

characteristics of the pendulum phase portrait. The isoenergy lines in

(I, p )-space with P = E are closed continuous curves with topological
properties that may change as E varies. The lines of separation between
the regions covered by curves of the same type {i. e. curves which do not
contain an equilibrium point and which can be deformed into each other
without crossing an equilibrium point) are called separatrices and contain
at least one equilibrium point, and at most finitely many (as we are only
considering analytic hamiltonians).

In our case we want to allow an explicit ( , A)-dependence of P: hence
the above picture is a, A dependent. We shall require that, for all values
of A of interest, the pendulum P has a linearly unstable fixed point I~(A),

which is the only such point on the corresponding separatrix and,
furthermore, we require that I~ (A), P~(A), together with its Lyapunov
exponent g (A, j~) ( ~ 0 by assumption), depend analytically on A, u.

Clearly the above is a very mild restriction, only exceptionally false: it

emerges from the analysis that all we really want is that in the whole

range of the A’s the unstable fixed point, which we select for our analysis,
depends analytically on A, ~ and does not merge, as A, ~ vary, with other
fixed points. We shall call the above equilibrium point a selected unstable
equilibrium point of P.

In such a situation we shall say that (2. 3) describes an a priori unstable
free assembly of rotators witnessed in their rotations by a free pendulum
with a selected unstable point of equilibrium.

It is not restrictive, under the above circumstances, to assume that the
selected unstable point is the origin 1=0, (p==0, and that its energy is
P=0. In fact one can always change coordinates by using the canonical
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12 L. CHIERCHIA AND G. GALLAVOTTI

map generated by the function:

i. e.:

which is clearly well defined and which generates a new hamiltonian of
type (2 . 3) which has 1=0, cp = 0 as selected unstable equilibrium point.
Furthermore if P (A, J.1) --- P (o, A, 0, J.1) we can always redefine P as

P - P (A, J.1) by accordingly changing h: hence the requirement that also
P (o, A, 0, J.1) = 0 is not restrictive.
The aspects of the regularity properties that we use, motivated by the

above descriptions, are as follows:

ASSUMPTION 1. - The unperturbed hamiltonian Ho has the form (2.3)
and the pendulum energy P has the origin (I = o, cp = o) as a selected unstable
equilibrium point where P takes the value 0 (for all A and J.1 in the domain

of definition of Ho) ; the associated (non negative) Lyapunov exponent,
g (Ä, J.1):

is bounded away from zero as (A, vary in their domain of def inition.

ASSUMPTION 2. - The functions hand P are real analytic in their

arguments. Hence they are holomorphic in their variables in a complex
domain SP., P, ç’, ç, jJ, described by five parameters p’, p, ç’, ç, j:i&#x3E; 0 as:

ASSUMPTION 3. - The following non degeneracy conditions:

hold on SP,, p, ç’, ç, ;:1.

Then we set:

DEFINITION. - Hami/tonians verifying all the above assumptions 1-:- 3

will be briefly referred to as regular anisochronous a priori unstable free
hamiltonians.

They are called a priori unstable, because the instability assumption is
clearly built in the free system definition.

Such hamiltonians are quite common in the theory of the resonances
of anisochronous systems.
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13DRIFT AND DIFFUSION IN PHASE SPACE

For instance consider an l degrees of freedom system with free hamil-
tonian h of the form h (A, B) in action angle coordinates A, B, a, ~, such
that the equation of the resonance is simply aB h (Ã, B) = 0. Suppose that
B = B (A) is the consequent resonance surface. Then, if E f (A, a, B, À) is a
perturbation, one can find canonical coordinates (A’, aB I, p) apt to

describe the motions that take place near the resonance and in which the
hamiltonian takes the form (2. 3) (in square brackets in the following
expression) plus a small correction:

with 1 equal to the average of f over the angles a, ~ and Gp equal to the
average of the function f - f over the a alone ; here p can be fixed arbitrarily
and E is the strength of the perturbation. But, the larger p is, the harder
it is to find the functions Gp, fp and a coordinate system in which (2. 8)
holds and the smaller becomes the (tiny) region of phase space around
the resonance surface where the new coordinates can be used to describe
the motion, (this is essentially the Nekhorossev theorem, see [BG], and
appendix Al).
We consider hamiltonians H which are perturbations of regular free

a priori unstable hamiltonians Ho, defining the latter by the assumptions
120143 above:

with/holomorphic in the domain Sp. p ~ ~, see (2 . 6). We shall often refer
to the Fourier expansion of f in the a variables, which we shall write as:

The problem of phase space drift and diffusion will be posed as follows:

DIFFUSION PROBLEM. - Given Ã1, A2, With

can one find for all J.! small enough, but non zero, initial data close (as J.! ~ 0)
to (0, Ai, 0) in the (I, A, 03C6)-variables which, in due time ( -dependent, of
course) evolve into data close to (0, A2, 0)? More bluntly can one realize a
displacement of O ( 1 ) in the A variables with a perturbation of order J.! as

small as we please ?
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14 L. CHIERCHIA AND G. GALLAVOTTI

3. THE FREE SYSTEM.
DIFFUSION PATHS AND WHISKER LADDERS

To formulate our results we need several concepts. The first is the
notion of diffusion path on a energy level E, whose value will be kept
fixed throughout this section, as well as the value 

Let ~-~~ be a curve piecewise analytic in joining
A~==A~ to A2 = AS2, such that, using the notation in (2 . 3), one can find
two constants i, t for which:

then there is a Y-dependent constant K&#x3E;O such that:

If D is the maximum of ~Ah (A, 0) in a neighborhood of the curve 2.
DEFINITION. - If Y is a curve with the properties 1), 2) above we call it

a diffusion path.
Clearly under the genericity assumption (2 . 7), det aA~h ~ 0, a diffusion

path consists of just one point if /=2 (because h = E fixes A): no diffusion
path exists between distinct points in action space, if /=2. For this trivial
reason our results, which otherwise do not distinguish /=2 from /&#x3E;2, will
be occasionally uninteresting if /=2.

In appendix A2 we show that under the genericity assumption (2.7) the
constants t, ’t can be taken to be t = l -1 and T=(/2014l)~. But on special
curves it could be possible to make better choices: for instance in section 11
we discuss an application with l = 3 in which ~=1.
Note that the diffusion paths lie, by definition, in the space of the

A-variables which are the "rotators" velocities (or fast action variables,
or adiabatic invariants : using the terminology borrowed from the theory
of resonances mentioned in connection with (2 . 8), (2 . 9) ; see also

appendix AI); it is a notion depending solely on the free system hamil-
tonian evaluated when the pendulum (or slow, or secular) variables
(i. e. (I, cp)) are set to the equilibrium position.

It is easy to see that if /&#x3E;2 there are, under the non degeneracy
conditions (2. 7) many diffusion paths joining any two close enough points
A1, A2 lying on a connected portion of the energy shell h (A, 0) = E, see
appendix A2. The argument is similar to the one usually invoked to

prove the abundance of diophantine irrationals (See, for instance [G]): the
/2014 1 =2 case is particularly easy and the condition is fulfilled by any curve
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with non vanishing curvature ; in the case /-1 =3 one has to consider a
curve joining ÄI, Ä2 with nowhere vanishing curvature and torsion, etc.
To see the connection between the torsion and the above mentioned

values of 03C4, t one should recall that a smooth curve s ~ a(s) in d
dimensions is said to have all its d-1 torsion coefficients non vanishing
if, for each fixed s, the first d derivatives of a (s) are linearly independent:
the torsion coefficients are suitable orthogonal invariants associated with
the derivatives of order higher than the first (hence their number is d-1).
The first non degeneracy condition of the second line of (2. 7) permits

us to conclude that any curve with all its l- 2 torsion coefficients non
zero verifies (3 . 2) ; the last non degeneracy condition in the second line
of (2. 7) implies that a curve which, in a local chart on the energy surface,
has all (the /20143) torsion coefficients non vanishing will also have all the
(/20142) torsion coefficients non vanishing when it is regarded as lying on
the l -1 dimensional action space.
The values of the exponents arise from the remark that if the curve has

all torsions non zero then a codimension one plane cutting it in a point
cannot have a contact of order higher than l-1 with the curve. Thus a
layer of width 8 does not contain, locally, an arc length exceeding
O (b 1 ~~~ -1 ~). Therefore the statement follows by choosing 8=1/(C~~)
with (r+!)/(/- !)&#x3E;/-1, so that one can sum the arc lengths over v (as it
is clearly necessary) ; i. e. the choice i = (l-1)2, t = l -1 is sufficient, see
appendix A2.
For every A one can define the (l-1)-dimensional torus invariant for

the motion governed by Ho:

Such tori represent data in which the l-1 rotators are mindlessly and freely
rotating while the pendulum stands up in its selected unstable equilibrium
position. The picture, hence the tori, is obviously unstable and in fact the
tori posses stable and unstable manifolds, called whiskers by Arnold [A],
(for reasons that emerge as soon as one tries to make a symbolic drawing
of the situation). The whiskers correspond to data in which the rotators
continue to rotate freely witnessing the pendulum falling from or climbing
to the equilibrium position (respectively describing the unstable or the
stable whiskers) and performing one of the two separatrix swings. More
mathematically:

where, to fix the ideas, we have assumed that I &#x3E; 0 means p &#x3E; 0, while
I  0 means Ï&#x3E;  0 and each separatrix swing takes place over the complete ’

circle (pe[-7t, 1t] (as in the standard pendulum case ; in these cases we
shall speak of "open separatrices"). Such properties may fail in some
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pendula (e.g. one of the separatrices could be contractible to a point): in
these cases (3.4) has to be changed in an obvious way.

It is always true, however, that the set P (I, A, cp, 0) = 0 will consist of
two branches which will be called the separatrix swings : in the case of the
standard pendulum they are the subsets of W (Ã) with I &#x3E; 0 or I0.
Furthermore the following well known accident happens:

hence in the general case both sets in (3.4) will be equal and coinciding
with the separatrix data. Given a diffusion path .2 we can associate to it,
for Jl=O, a one parameter family of 
sional tori, invariant with respect to the free evolution.
The family s ~ (T0(s), Wstable(s), Wunstable(s)) of the above tori and of

their whiskers will be said to form a whisker ladder, leaning again
try a drawing for the word motivation.

4. MOTION ON THE SEPARATRICES. MELNIKOV INTEGRALS

Suppose, for simplicity, a (open) separatrix encircling the circle, with a
monotonic motion taking place on it (e.g. such that the sign of I and that
of Î&#x3E; coincide). We shall write the parametric equations for the branch
I  0, p &#x3E; 0 of W (Ã) as:

where i is the separatrix swing with I  0 [i. e. the branch with I  0 of the
curve through the selected unstable equilibrium point, 2)].
In the general case (when the separatrix may be shorter than the full
circle, "closed separatrix case") one cannot use cp to parametrize a full
separatrix swing, i. e. a branch of W (A): one would have to use a different
extra parameter to describe W (A) at the cost of conceptually uninteresting
complications.

If X (Ä, cp, A, cp, a) is the point (4 .1 ), let us denote with
the symbol XO (Ä, cp, a, t) - (I° (t), A, (p~), point into which
X (Ä, cp, a) evolves at time t in the motion governed by the hamiltonian
equations with hamiltonian (2 . 3) with 
The (3 . 4), (2 . 3) and our choice of coordinates (in which 1=0, cp = 0 is

the selected unstable point ) imply:

where g - g (A) - g (A, 0) is the Lyapunov exponent of the selected equili-
brium point, i. e. it is given by g2 = - det (a2 P (o, A, 0, 0», where a2 P is
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the matrix of the second derivatives with respect to I, po Furthermore,
denoting t~ (A) = aA h (A, 0):

where we have used that P(0,A,0,0)=0, by our assumptions 1-3,
Section 2, so that the integrand tends to zero by (4 . 2) ; the function 3 is
defined by (4. 3).

It is convenient to fix once and for all an origin on the separatrix
corresponding to the action A: we take it to be the point I, cp with p
such that the solution I (A, p) of the equation P (I, A, cp, 0) = 0 for I,
parametrized by A, reaches its absolute maximum value as a function
of po We call this point the origin of the separatrix. In the case in which
P is a standard pendulum (i. e. it is given by (2 .1 )) the position cp is (p=7t,
where the pendulum attains the maximum velocity.

Therefore we can define the asymptotic phase shi, f’ts 9~ (A) equal to the
limits as t -~ ± 00 of 9~; A, p). They depend on the starting point, i. e.
on cp, which however we keep fixed as above, and on A ; their difference
3 (Ã) is:

and - 9 (A)/2 has the geometric interpretation of the A-gradient of the
area enclosed between the considered branch (I0, p &#x3E; 0) of separatrix
and the I = 0 axis (for closed separatrices it is the A gradient of the area
enclosed by the considered separatrix swing).
We set the following definition in terms of the above concepts:
DEFINITION 1. - The free system rotators and pendulum are independent

a t A if ~ (A) - 0.
The obviously interesting case (2 .1 ) with A independent R (A), g (A) is

clearly very special and it is an example of independent in the above sense.
If, on the other hand, in (2 .1 ), the functions ~(A), R (Ä) are not constant ,

the phase A’ (o) are easily computed:

We shall call X° (t) --_ (I° (t), A, o~))=X~ ~ ~ t) the separa-
trix motion corresponding to the initial point with cp = cp and some initial
A, a [cf paragraph after (4 .1 )].

Given a diffusion curve ~, s -~ Ãs we introduce the following notations:
0), 9~)=9~; AS, cp), and define [See also (2.10)] :
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18 L. CHIERCHIA AND G. GALLAVOTTI

which makes sense for (which, in general, is a subset of full

measure of 2), ~~ (3.1).
Clearly the function F(~; a, ~)201420142014~0 exponentially fast (4.2)],

t 

and the following Melnikov integral is well defined, see (3.1), for

~eX(oo) ~[~, ~]:

(similar quantities were considered by Poincare in [P]; see also [A]). Note
that in the special case of a degenerate phase shift, i. e. of independence
of the rotators and the pendulum, the M f are defined for all s2]
because the part involving the small denominators in (4. 6) disappears by
integration by parts. In the latter case, in fact, it is:

where c(A~)=) L/o(I~~(p,0)-/o(0,A,,0~0)]~ is a constant

which shall play no role and f (t ; a, s) =f(I0 (t), A,, (p (t), a, 0) -
/(0, A,, 0, a, 0) .

Such a case with/(0, AS, 0, a, 0)==0 was considered by Arnold in [A] .
For see (3 .1 ), the equation:

admits necessarily at least two solutions (e.g. one is at 03B1 = as when as is a
minimum for M f and the other when 0152s is a maximum).
The following definition will be important:

DEFINITION 2. - We say that the arc of diffusion path corresponding to
s E [sl, s2] ~ [sl, s2] is directly open for diffusion under the perturbation f,
see (2 . 9), (21 oj, 

_ _

1 ) no f-resonance occurs for s E [sl, s2], in the sense that 0, AS, v
is analytic in s E [sl, s2] for all v. _ _

2) the equation (4 . 9) admits a continuous solution 0152 ~ 0152s for all s E [sl, s2]
and such that:

More generally we say that an arc o.f’ a diffusion path is open for diffusion
under the perturbation f ’ i, f ’ it can be covered by finitely many arcs directly
open for diffusion.
Note that the non resonance condition is a very strong condition: except

for very special f we can expect to find open diffusion paths only when f
is a trigonometric polynomial. In the latter case, however, it is clear that,
in general, there will be many open, possibly very long, such paths.

Annales de l’Institut Henri Poincaré - Physique theorique



19DRIFT AND DIFFUSION IN PHASE SPACE

Consider a diffusion path and assume that property 1 ) of the above
definition is verified because f is a trigonometric polynomial with no non
vanishing coefficients fvcorresponding to v.s for which rose v = 0 for some s.
Then given a point of parameter s on the path, it will be generically true
that s is inside some arc of 2 directly open for diffusion under f the
genericity is with respect to the choices of the non zero coefficients of
the trigonometric polynomial f. This is a consequence of the explicit
formula (4 . 6) and of the remark that one can change rather arbitrarily the
function M f (a, s) by changing f and the change is effectively computable.
Our main result in the above anisochronous, a priori unstable, case is

the following.

PROPOSITION. - Consider a hamiltonian like (2.9) with Ho verifying the
assumptions 1= 3 of section 2 and f being a trigonometric polynomial of
degree d.

Given a diffusion path ~ directly open for diffusion, suppose that

ai (Ä). v = ~Ah (A, 0) . v # 0 for A in 2 and for al| vi  cd, for some constant
c&#x3E;o.

If c is large enough then one can find, for all Jl # 0 small enough, initial
data with "fast action variables" (i. e. A variables) close to one extreme

of 2, A1, and "slow variables" [i. e. (I, cp)] close to the selected unstable
equilibrium position, which evolve, drift, into data with the A variables close
to the other extreme, Ä2, of 2. And close can be taken to mean within a
distance 

One can find constants Tl, cl &#x3E; 0 such that:

provides an upper bound to the minimum time necessary for the drift from
A 1 to A2 .

If the path ~ is open for diffusion, but not directly open, one can show
the same result with a function T whose expression will depend on the
structure o_f’ 2: in particular, it will depend on the number of segments
directly open for diffusion.

’The above theorem does not convey all the information that we gather
by proving it: the dimensional nature of our bounds makes them very
flexible and we use them in the later sections of this paper to cover a

variety of cases in which the non degeneracy conditions are not verified,
and eventually lead us to the result on the a priori stable heavenly problem
described in the introduction.
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5. EXISTENCE OF LADDERS OF WHISKERS

In this section we consider a hamiltonian (2 . 9) verifying the assumptions
1 2014 3 of section 2 and study the persistance of the unperturbed whiskered
tori and their regularity properties also, [M], [Gr], [Z]).
The basic technical facts concerning the existence of the l -1 dimensional

invariant tori and the normal form of the flow in their vicinity are stated
in the following lemmata 1.1’ and in lemma 2 (formulated after the

proofs). 
’

Since the theorem presented in the lemmata is a local theorem in the
vicinity of the unperturbed invariant tori, it is useful to introduce a system
of coordinates in which it is most conveniently studied. Thus we introduce
a new system of canonical coordinates (I, A, cp, a) _ ~~ (po, qo, Ao, 0152o)
defined by a canonical transformation ~ enjoying the properties explained
in the following lemma.

Let C~={z~~~~}, and consider the sets of the points I, Ä, ç, z,
and, respectively, z?, ~y, A, z, with:

Recall the definition of V (beginning of 9 2) and that H in (2.9) is

holomorphic in U (p’, p, ç’, ç, jl, a) (assumption 2, ~ 2).
LEMMA 0. - For all a E V there exist positive constants Ko, po, Ço and a

canonical transformation (I, cp, A, ;,) = R  (po, qo, Ao, ;’0) defined and holo-
morphic in W (Ko, po, Ço, jl, a) with values in a domain U (p’, p, ç’, ç, jl, a)
of holomorphy of (2 . 9) and casting H in the form:

where ’ and ho, fo are analytic in W (Ko, po, Ço, ~, a)~
Expressions for possible values of Ko, Po, terms of p’, p, ç’, ç, ~ and ’
of a ’ few constants depending £ on h, f can be found in appendix A3, see
(A3 . 39).

The proof is given in appendix A3.
The map R  will have ° the form:

with R, S, 8 real-analytic in W (Ko, po, 0’ , a) [often 5. will be suppo-
sed to act also on the variable , trivially changing , into itself].
The result in lemma 0 is well known: it extends a celebrated theorem

by Jacobi who proved the above lemma in a variety of cases, first of all
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for the standard pendulum. In the latter case the Jacobi map R  can be
constructed quite explicitly by using the theory of the jacobian elliptic
functions, see appendix A9.
Lemma 1 below gives us a normal form for the hamiltonian flow near

the unperturbed whiskers. It tells us that most of the structure of unstable
tori and of corresponding manifolds survives the onset of the perturbation.
In particular the tori are obtained by setting suitable coordinates 
equal to 0 ; and the whiskers, in the vicinity of the tori, are obtained by
setting /?=0 (unstable whisker) or (stable whisker). The whisker
ladder still exists, with a few rounds missing (where ~1~, see below).
LEMMA 1. - Consider a hamiltonian (2.9), verifying the assumptions

120143 of section 2. be a diffusion path s ~ AS with energy E [see 1), 2)
of §3], and let s ~ ~% o (s) --_ ~% o (AS) be the family tori,
see (3 . 3), associated with ~f. Suppose that U U (p’, p, ~, ç, ~, ~, which

is contained in the holomorphy domain of (2. 9), is a region where the map
R  can be defined via lemma 0 above:

Fixed n &#x3E; 0 and Jl real, there exists, on the energy level E of the perturbed
system, a family s -+ g- J1 (s) of (l -1)-dimensional "whiskered" tori, C"-close
to the line of tori s -+ g- o (s) within O as 0, which for Jl small enough
verify the following properties:

1) There exist positive constants c, c, K, k such that the- tori g- J1 (s) are
invariant for s E 03A3  c [sl, s2] where : 03A3 ~{ s|C (s)  k I and:

2) 77~ ~n(~) ~~ 
E B~eT~B ’ K&#x3E;0,

~:

where A’ - AS (pq, J.1) with AS (J, J.1) analytic in J, Cn-smooth in J, s, J.1 and

AS (0, 0) coincides with the diffusion curve As; 8, 0, A, O are analytic in 03C8,
p, q, divisible by J.1 and Cn-smooth in ~, p, q, s, J.1, and R, S, Õ are as in

lemma 0 (hence depend on s, J.1, p, q only and are analytic in their variables).
3) There are functions y’ (J, s, J.1), y (J, s, J.1) analytic in J for |I J I  1(2, Cn-

smooth in J, s, J.1 and divisible by J.1 if J = 0 (and by J if J.1 = 0), such that the
motion on the invariant surfaces is simply:

Vol. 60, n° 1-1994.



22 L. CHIERCHIA AND G. GALLAVOTTI

where y = y s~ y’ = y’ s~ gs = g 0), see (2 . 5), t~s --_ ro (AS),
see (3. 1). Hence the tori (s) and their stable/unstable whiskers (s)
are obtained by setting in (5 . 5), respectively, p = q = 0 ; p ~ 0, q = 0,. and
p=0, q~0.

4) The smallness condition on Jl and the constants k, K, c, c, K can be
given an explicit dimensional form in terms of a few parameters associated
with h, f, [see (5 . 76), (5 . 90), (5 . 82), (5.67), (5. .18) below],. similarly one
can construct explicit bounds on the smallness of S, K, A, O, y, y’, [see
lemma 2 and (5. 89), (5. 79), (5. 88) below].

Instead of fixing the energy E of the invariant tori and the frequency
ratios of the corresponding quasi periodic motions one can fix the frequen-
cies [i. e. y in (5 . 6)] at the cost of leaving E free.

Calling s --+ AS the diffusion curve equation and defining the two

functions uis = aA ho (AS, 0, 0), and gs = a J ho (AS, 0, 0), see (5 . 2), we intro-
duce a real parameter u and consider the vectors:

We define the diffusion sheet ~ : (s, u) ~ AS" by:

This is well defined, taking into account the non degeneracy conditions
(2 . 7), by the implicit function theorem, if u ~ I is small enough. We shall
suppose that u varies in an interval [ - u, ü] so small that:

More stringent requirements on u will be imposed later.
One then obtains results similar to those described in lemma 1 with the

basic difference that all the main functions will be analytic also in P, near

P. = o, and the energy of the motions on the invariant surfaces will no

longer be fixed. More precisely one obtains the following statement:

LEMMA 1’. - Consider, as in lemma l, a hamiltonian (2.9), verifying
the assumptions 1 -:-- 3 of Section 2. Let 2 be a diffusion path s ~ AS with
energy E, and let s, u --&#x3E; ASU be the diffusion sheet, defined in (5 . 7),
(5 . 8), and let s, u ~ g- o (s, u) be the family of (l-1)-dimensional tori

[see (3 . 3) with A = Asu)] associated with 2. Suppose, as in lemma l, that

U U (p’, p, ç’, ç, , a), is a region where a map R  can be defined via
äe!£

lemma 0.

Fix n &#x3E; o, let u be real and small, and P, complex. Then there exists a

family s, u ~T (s, u) of (l-1)-dimensional "whiskered" tori, Cn-close to
the sheet of tori s, u ~ g- o (s, u) as Jl ~ 0, which for  small enough verify
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the following properties:
1) The tori (s, u) are invariant for s E ~~ c [sl, s2] and for u E [ - u, u]

for a suitable u &#x3E; 0: here E~ is the same set defined in 1 ) of lemma 1 and
verifies the same bound (5.4) (same constants).

2) The tori !!7 JI (s, u) are part of a family of invariant l-dimensional
surfaces parametrized by 03C8 E T’- 1, p I, |q|I  x, (K as in lemma 1 ), as:

where A’ _--_ AS" (pq, with A’SU (J, analytic in J, Cn-smooth in J, s,
u and Asu (0, 0) = Asu [see (5 . 8)] ; ", 0, A, O are analytic in ~, p, q, J.l,
divisible by and Cn-smooth in all their arguments, and R, S, ð, which
depend on s, p, q only, are as in (5 . 3).

3) There is a function y’ (J, s, u, analytic in for I J I 1(2 and J.l
small enough, Cn-smooth in s, u, J and divisible by  if J = 0 (and by J if
J.l = 0), such that the motion on the invariant surfaces is simply:

where y’ = y’ (pq, s, u, gsu --_ g (Asu, 0), 03C9su = ( 1 + u) (Os and y --_ u is now

fixed a priori.
4) The constants k, K, c, c, K are as in lemma 1 above,. furthermore the

smallness condition on | | and the (new) functions S, 0, A, O, y’ satisfy the
same bounds of the corresponding objects of lemma 1 [See point 4) of
lemma 1 ] .

In fact the strategy of our analysis will be to prove lemma 1’ first and
deduce lemma 1 by showing that the parameter u can be determined so
that the real part of the energy maintains a prefixed value E.

Proof - The first step is to change variables

using the canonical change of coordinates of lemma 0 to put (2. 9) in the
form (5. 2).
By our assumption this is possible and we call po, Ço parameters

such po, Ço, ~, a) is, for all contained in the set

U U (p’, p, ç’, ç, jl, a) where the hamiltonian is defined.
a*~~

In this way we define ho, fo on W = W (1(0’ po, Ço, jl, a) for all 
Let Eo, 110’ ro be the suprema, in Wand of the functions ~~h0~
and ~(~2Ah0)-1~, ~(~Jh0)-1~, respectively. The norm of a vector or matrix
will be, for simplicity, the maximum of the components.
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Consider the equation (5. 8). By a simple implicit function analysis we
see that if:

for B large enough, it admits a solution Asu such that, [See appendix A4,
(A4 . 3)]:

We also consider the equation:

and $ we see that it u ~ verities (5 . 12) and  J.l with:

then the equation has a solution A ° (s, u, J, Jl) close to Asu within Po/4,
[See appendix A4, (A4 . 5)] and, obviously, A° (s, u, 0, 0)=A~.

Recalling that 3j /~o 0, 0) and setting:

we find that in a domain u, J, the

following bound holds for a suitable constant B:

See appendix A4, (A4 . 6) ; in such bounds we have used "dimensional"
(or "Cauchy") estimates: see below.

Therefore we can fix po, K~ ~ so that (5.12) holds (hence ~1/4)
and also 4 Ào Eo  1 (hence  1 /4, [See (5.9) for the definition
of because I can also be bounded by the r.h.s. of (5 .17) by a
similar estimate ; see (5 . 9) for the definition of A possible choice is:

where po, Jlo are taken to be necessarily smaller than K~ and 1, respectively,
for later convenience. The constant B can be taken to be the same in all
the above formulae, possibly readjusting it (to avoid the introduction of
too many symbols, a procedure that we shall use very often below).
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The functions h0, f0 will be holomorphic in the new coordinates in a
domain that we have, to some extent, tailored to our needs. They will, in
fact, be regarded as holomorphic in a domain containing:

where the sheet (s, u) -+ ÄO (s, u, J, ) is defined by (5.14) with:

In the coming analysis the constant Co will be left as a free parameter
and will be chosen at the end in order to check (5 . 4). Thus, using  1 /4,
in F0 it will be true that:

where, see (3 .1 ), ’t is a diophantine constant. Note that the just introduced
parameters Ko, po, Jlo are not, in any sense, the maximal ones compati-
ble with the analyticity properties of h0, f0.

All our arguments will have dimensional nature involving combinations
of the sizes of various functions, hence it is convenient to define the size
of a function F, holomorphic in a domain W, as:

where, of course, the symbol 11.11 is incomplete and (therefore) it will be

always accompanied by the specification of the domain W considered in
evaluating (5 . 22), unless obvious from the context.

Let us collect here the positive parameters Eo, Eo, 110’ go that we
use to measure the size of h"_ f" fcomnare ~2 7Y!’

where 11.11 is considered in Wo, see (5 .19). This is consistent with the

previous meaning and usage of the previously defined values of Eo, rlo, ro.
The holomorphy of ho, fo imposes restrictions on the relative values of

the above constants ; namely there exists Bo &#x3E; 0 depending only on the
number l of degrees of freedom and such that:

which we will repeatedly use for the purpose of simplifying bounds, at
the expense of their sharpness ; (one can take Bo = l -1, see appendix A4).

The quantities in (5.24) have the physical interpretation of ratios of the
various relevant time scales relevant for our problem.
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Our basic tool (already used in obtaining (5.17)) for bounds on a
function F, of one variable, holomorphic in a domain ~ will be to restrict
it to a smaller domain ~’ and to estimate the n-th derivative of F in
~’ by n! times r-n, with r = distance between fØ’ and ~, times the supre-
mum of F in ~. We call such a bound a dimensional estimate : it is a

consequence of (one among) the Cauchy’s theorem(s).
In performing dimensional bounds it is convenient to deal with 

sionless combinations of the main parameters (5.23). Thus all our bounds
will naturally involve the following dimensionless combinations of the
parameters Eo, Co, r 0’ 9~ 80, po, ~o~ that we have associ-
ated with our hamiltonian [See (5. 23), (5.18), (5.20), (5.17), (5.19)]:

and we see, from (5 . 17), (5.24), (5.20), and from (5.18) and the comment
following it, that all the elements of the first line are ~ Bo &#x3E; 0 ; we shall
impose, without loss of generality, that the element of the second line is
~1/2.
To help reading the formulae we often close in parentheses the above

dimensionless combinations of parameters, even tough they may not be
necessary.
Given a function F holomorphic on Wo, see (5.19), we introduce the

Fourier coefficients F~ (A, p, q) and the Taylor coefficients F,hk (A, z) of
the expansions:

where zj=expi03B1j and (the latter two notations will
j j

be used interchangeably).
Thus we can introduce the following functions (truncations for

We can now begin our sequence " of estimates leading j to the proof of
lemma . 1’ and 0 lemma « 1.
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The following £ dimensional estimates hold 0 for various truncations of fo ;

where is evaluated from (5 . 22) on the domain

po, and the inequalities express simple dimensional
estimates in the sense defined above: the constants that arise have been
adjusted so that only the two parameters B1, 03B21&#x3E;0 are needed. Sharper
bounds would require more constants ; but we are not interested in sharp-
ness of the estimates (in this paper).
We assign, a priori, a sequence 8o&#x3E;8i... of positive numbers such

00

that 4 ¿ 03B4jlog2 and such that ðj does not approach zero too fast (e.g.
j=O

8~=(l+~)’~2~1og2): it will be a set of auxiliary parameters that we
shall use in our inductive construction. Below we introduce sequences of
other parameters B1, B2, B3, ... and Pi, 132’ Ps..... depending only on
the number of degrees of freedom l (and on the diophantine constant ’t,
see (3 .1 )), and we shall suppose the B/s and the increasing (there will
be, however, only finitely many such constants).

Let No be such that (5.28) for instance,
recalling that Eo E-10 03C1-10  1 /2, by the remark following (5 . 25):

Calling (Ao, (Xo, po, qo) the canonical coordinates in which we describe
our initial hamiltonian as in (5 . 2), we consider the canonical map defined
via a generating function which, denoting the new variables with a prime,
is a function ~ (A’, p’, (Xo, qo, Jl) given by:

where J. ~)=~Ao(~ J, Jl)
with and the bar denotes average over the (x-variables.
The functi.on D can be written:

The function ~ is defined in a domain:
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(hence smaller than the one where (5.28) hold), where po is so chosen to
control the denominators in (5 . 31 ). By dimensional bounds one checks
easily that if:

see appendix A5.
The last inequality can be combined with dimensional bounds to imply:

for suitably chosen B2, P2&#x3E;0. and in the domain (5.32).
The canonical map associated with 03A6 is generated by the following

standard relations (omitting the explicit ~-dependence):

which could be written in the more precise complex variables notation,
[See comment after (5 . 26)], by replacing (Xo by Zo in the argument of D,
writing iz0 j~z0j for and replacing the third of (5 . 36) by:

obtain a map from (5.36), one has to use the implicit functions
theorem: in so doing the domain of definition of ~ has to be taken
somewhat smaller than the domain, (5 . 32), of definition of C. If we want
~ (A’, a’, p’, q’, Jl) to be defined on the domain:

(i. e. "just giving up regularity" by an extra 80) we must impose a condition
implying that it is po 1 03BE-10 03B4-20~03A6~  1, i. e.:

with B3, f33 conveniently large.
This follows from a trivial implicit function theorem. After a moment

of thought one realizes that such a condition implies at the same time the
injectivity of the map (5.36), the non vanishing of its jacobian and it
also imposes that the image of the boundary of the domain

where" 1&#x3E;" is defined stays well away from the
boundary of W: in appendix A4 we have called such an argument an
image of the boundary lemma, for instance, [G], §5.11). Here (5 . 18),
i. e. po  Ko, has been used to eliminate Ko from the condition.
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The map ~ : (Â’, (?, p’, q’, ~)e~/ ~ (Âo, Xo, po, qo) will take the form:

p’~ q’) ~~ ù? 1 (5.40)

and in the domain W the bounds:

J .

are valid, with x defined by (5. 39), and has been again used.
The map ~ will transform the Hamiltonian (5 . 2) into:

hl (A’~ p’ q’, (A’, a’~ 7~ q’, (5 . 42)
where:

h i = h o (A’ ~ p’ q’ ~ N~) +.Î ô (A’ ~ p’ q’ ~ N~) 1

/?(Â~~B ~== ~ ~) (p , q ) , k - f/~A~ J.l) -, " ~)-~, }fo(A,p q, 
~=0 

~)(P q) = ffo(A, rt,p q, (27t/ ~
(5 . 43)

The functions hl, Il are easily controlled (by "just giving up a bit 80 of
regularity" in each variable) in:

~~-3~ (5 . 44)

by using dimensional estimates, from (5.40), (5.41) and along a well
known elementary scheme, see [G] section 12 ; the result is:

11/111w~B4ç ’" ~ 4bo - 13 4Eo(EoEo - 1 
(5. 5)

The next step is to study the equations for given by:

(5.46)

with (s, Â° = Â° (s, u, J, ~), see (5 . 20).
By Taylor expansion this can be written, setting Mo = ôÂÂ ho (Â°, J, p),

as:

, (5 . 47) 
"

and ~(~) =  m (a) can be bounded by:
if (5 . 48)

The (5.47) can be studied by applying the implicit function theorem.
The usual argument about the "image of the boundary" implies the
existence of a unique solution to the equation â = m (â) with â ~  p if

b ~ ~ m ~ ~ p P 1  1 for a suitaby large b : for instance [G, proposition 19,
p. 490] shows that b = 28 is sufficient (but b = 2 would also be sufficient).
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Therefore we take:

where 3(e(0, 1 ) is a free parameter that we eventually fix close to 0

(e.g. 1 /4) and b is as above (e.g. b = 2).
We deduce that a sufficient condition for the existence of a solution to

(5 . 47) with I a ~  p is:

and the latter condition can be imposed by requiring:

for suitably large (3 s .
Setting Äl (s, u, J, ~,) = A° (s, u, J, get [See (5.48)]:

The free constant x could in fact be taken zero, at the price of having no
Eo dependence in the r.h.s. of (5. 52): a property that we do not want in
later estimates.

Therefore (5 . 52) insures also that (A, a, p, q, ~,) --_ (A1, a, 0, 0, 0) lies

very well inside the domain, W, of definition of hl + fl, (i. e. 
Choosing suitably B6 and ~6 one easily checks that the two conditions:

imply all the conditions imposed so far [i. e. imposed in (5.51), (5 . 33),
(5 . 39)].
With the above defined (s, u) -+ A 1 (s, u, J, ti) we can define, via (5.19)

with 0 ~ 1, the set:

where:
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Note that for By, P7 large enough it follows that so that the
domain W 1 is strictly contained in the domain W, see (5 . 44), of definition
of h1, f1 and the above definitions, via dimensional estimates, allows to
control all the derivatives of h1 and f1 in W 1.
The new parameters measuring the size of hl, fl (cf (5. 23), (5 .16)) can

be taken, by (5 . 45), to be any parameters verifying the
followine ineoualities:

provided the conditions in (5.53) hold.
Following the familiar pattern of KAM theory we are now going to

iterate the above scheme, ~. w~ &#x26;~ 1, 2... ~
together with their size parameters (~j, Ej’ ...) obtained

&#x26;~ ~A~ This procedure makes sense
provided the analogous of condition (5.53) are satisfied at each step of
the construction.

We claim that one can find B, P depending only on /, ’t and large
enough so that: 

....

implies that the above scheme can be carried out an infinite number of
times.

To prove the claim we proceed by induction and to simplify the discus-
sion we introduce the following dimensionless parameters:

and a number 1 which is any prefixed number less than 1. Given 1 we
fix the so far free x so that ’X&#x3E; 1 - 1 - == 0 + (one could already say that x
is any prefixed number close to 0 (e.g. 1 /4) and 1- is a free parameter to
be eventually fixed slightly above 1/2: but we prefer to keep the parameters
free as the inequalities look probably more transparent in this way).

Furthermore we impose the following conditions which permit simple
bounds on the r.h.s. of (5.56) and (5. 53):

and in terms of this definition we fix the definition of the parameters
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verifying the analogous of (5 . 56) for general / as follows:

where 

Hence if Eo is small enough (depending j on the value chosen for 1- ) we
see that V j:

so that, if Eo is small enough compared to 1 (depending on the choice of
the number denoted 1-) and if is small enough (i. e.  8-1), it

will be 

for some B;.
Thus we see, by taking into account the rapidity of convergence to zero

of Ëj and if P-, B _ are suitably large, that the conditions in (5 . 59) are
equivalent to:

if 1- - is defined to be slightly smaller (by any prefixed amount) than the
value fixed for 1- appearing in (5 . 59).
Choosing 1- , 1- - slightly larger than 1 /2, and taking into account the

expression in (5.62) for it follows that all conditions are implied by
the following:

where B9, ~9 are constants depending only on l.
The above discussion contains some "hidden" assumptions on the initial

data, namely (5 . 20), (5 . 9), and 8 Ào Eo r 0  1. They are verified automati-
cally if the parameters po, ~o are chosen as prescribed by (5.18),
(5 . 20).
Hence we can say that (5.64) together with (5.9), (5.20) and

4 Ào Eo r 0  1 are implied by:
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possibly readjusting B9, P9 (recall, as well, that As we shall see
below this is the final condition under which lemma 1 holds.

This completes our check of the claim in (5.57).
Thus we can construct, for canonical transformations

~,(~0==~) mapping into Wj (Wj is defined in (5 . 54) with 1 -~;
recall that Such maps are close to the identity within 
in the A-variables and within in the p, q-variables and

in the o-variables.
Their derivatives of order k in A’s, h in the a’, z in the p, q are

bounded by multiplying the above bounds by Since

[See (5.35), (5.60)] we realize that the map ~,
approaches the identity very quickly.
Taking into account the (5. 52) it also follows that the sheets ~’ defined

by (s, --~ A’ (s, u, 0, fl) approach a limit sheet:

defined by (s, u, 0, Jl), u, 0, 0)=A,, (5 . 66)
and control is kept on any prefixed number of derivatives of here
we have used that, [See (5.52)] 3(&#x3E;0.

Furthermore the domains of holomorphy of the maps hence of

~ 0 ~ 1 ... .~/==~ do not shrink to zero in the a, p, variables.
If we call ~~ (A’, a, p’, q, Jl) the generating function of the composite

map ~, the above remarks imply that 1&#x3E;j can be extended to a C"
function defined in the vicinity of the sets the extension, which we
still denote 03A6j, can be made in class C" for any n so that 03A6j converges in
the Cn-norm to a limit 1&#x3E;00 (simply because the variations of the 1&#x3E;/s are
basically bounded as the ~., i. e. by 82 ~O1}2 E~/2).1 Eo Pj (5 . 35), (5 . 58),
(5 . 61 ), (5.62)], in their analyticity domain ; hence they have their deriva-
tives very small and therefore can be extended remaining small ), see [La],
[Sv], [CG] and [Pö] for similar constructions.
The limit 1&#x3E;00 will be uniquely defined on

with (cf 2) of lemma 1:

and it will be real-analytic in the ao, p’, ~qo variables, Cn-smooth in A’,
oco, ~, prefixed number n of derivatives if Eo is small enough.

Therefore 03A6~ generates a canonical which for takes
the form [cf (5.5)]:
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and for (s, a) the solutions of the motion equations take
the form (5 . 11 ) with 03C9su, gsu defined in (5 . 7), (5.9) and with

y’ --_ u~ (s, u, J, Jl) defined by [cf (5.16)] :

where lim h~. Note that if we denote by H ~ (A’, ~r, p, ~, ~) the

original hamiltonian (5 . 2) computed in the new variables defined 
it is:

Furthermore (s, u, pq, J.1) is analytic in p, q, ~ if (s, u) are fixed in : o.
The parametric equations of the whiskers (5.10) are now immediately
obtained in terms of (5 . 68) and of the transformation (5 . 3) of lemma 0.
Setting:

we find [cf (5.10)]:

The linearity of the flow on the surfaces (5.10) follows because fj tends
to zero very fast with all its derivatives, including the A derivatives in
spite of the fact that the A-domain shrinks: in fact the derivatives are

bounded, for real A, a, p, q, by Ej times some inverse power of Pj and
for all by the inequality (5 . 62).

Note that the Hoo, by our construction, has derivatives with respect to
~ vanishing if A’ = A°° (s, u, pq, ~), [~(5.70)]; points it

depends non trivially on ~. Hence for (s, u, 0, ) and
(s, u) the (5 . 68) describe invariant tori 5"" ~ (s, u), and their whiskers
are obtained by considering/?=0, or 

We express (5.65) in terms of the more fundamental parameters
Ko, Po, Ço of lemma 0 ; see (5 .18), (5 . 25), (5 . 58). If we assume for simpli-
city that for a suitable constant 1 one has:

so that [See (5.18)]:
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then (5 . 65) becomes:

Finally, we see that, in the case of interest to us, ~o is of the form ~0 for
some Eo, so that the condition of  small takes the form [See (5.75)]:

provided 2 ro  Co and for suitable constants 
This is still not completely explicit as the values of po, Ko, Ço are not

the analyticity parameters of the original hamiltonian. In fact they can be
deduced from the latter via the application of lemma 0.
Lemma 0 allows us to take appendix A3, (A3 . 39) and (5 . 73)]:

if p’, ~, p, ç are the original hamiltonian regularity parameters 2),
and m, r, G, B, K, 0’2’ 03, a are introduced in appendix A3, see (A3 . 3),
(A3.47), (A3.49) and (A3.53), (A3. 39).
We can also deduce, from the analyticity in J.1, a simple bound on the

size of the variation (s, u, J, ~,) - A° (s, u, J, J.1) I and of the variation
of the whisker graphs, i. e. of the functions in the r.h.s. of (5 . 68) and, by
dimensional estimates, consequent bounds on their derivatives. We see
from the above analysis that the bounds (5 . 41 ), (5 . 52) must hold, with
different constants replacing ~3’ B3 for the corresponding functions in

(5 . 68). Hence for suitable constants GA, G~:

where the norms are evaluated by fixing (s, u) here we have just
bounded the value at z of a function holomorphic in a disk of radius zo
and vanishing at the center z=O by its supremum times we take
z and use the holomorphy in ~,.

And, using (5 . 52) and (5.35), (5 . 41) the constants GA, G~ can be easily
expressed in terms of our dimensionless constants:

for suitably chosen constants B 12, ~ 12 and having denoted [x]’ the func-
tion for x &#x3E; 1.
The function y’ in (5. 11) is the value in (5.69): it is analytic in

I J (  Ko/2 [See (5 . 61 )] and | || 0| I and it is bounded there, for all
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s, [See (5.20), (5.17), (5 . 61 )], by:

To check (5.4) we simply use that the above proof has a free parameter
Co. The set E (Co), see (3.1), has measure at least (s2 -sl) [1- 
by the assumption that 5£ is a diffusion path, see (3.2). Therefore we
choose, taking into account that the constant Co appears to the power 6
in the basic condition (5 . 75):

Then we see that the constants k, K, c and c of lemma 1’ can be taken:

(where we have replaced D by Eo: See 2) § 3) and, what is more important,
the smallness condition on  can still be met.

This finishes the proof of lemma 1’. Note that the smallness condition
on I [i. e. (5 . 75) with does not involve go (defined in
(5.23)): such a quantity will appear in fixing the energy in order to get
lemma 1 as a corollary of lemma 1’.
We now let p, q be such that J=/?~, ~=0, 

u, J, J.1) and, fixing we try to find u --_ u (s, J, J.1) so that

the real part of the energy E (s, u, J, Jl) associated to the initial data

(Ãoo, 0, p, c~, Jl) coincide with the prefixed value 0, 0) (See 1)
of §3). In view of the above construction, the energy E (s, u, J, Jl) is given
by (compare with (5 . 69), (5 . 70)):

and by Taylor expansion at ~=0, u = 0 [See (5.7), (5.8), (5.66)]:

where the derivative is computed by differentiating (5 . 8) and
= 0. 0); P is some Coo function (at s fixed) with p  1 and

the constant G can be taken to be proportional, via a constant depending
only on /, to E0(E0~003C1-10)2 (recall that the constant u, see (5.9), can be
taken to be a numerical constant times Po 1)-2, (5.18)).

The first two derivatives of P with respect to u, J can be bounded by
our dimensionless constants. Hence, recalling the definition in (5.23) of
go, we see, by the implicit function theorem, that under the further

condition:
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we can find u=u(s, J, Jl) as desired i.e. so that [See (5.83)]:

Therefore condition (5 . 85) together with (5 . 75) with Co == r 0 I ~ 1-1/7 are
sufficient to yield lemma 1 and lemma 1.
The functions y’, 5~ ~ A, E&#x3E; of lemma 1 are obviously related to the

corresponding (but different) functions of lemma 1’: just set u - u (s, J, ).1)
in (5 . 72), (5.71) and in the definition ofy’ [cf (5.69)]; 

and the function y (J, s, Jl) is just y=M(J, ~ Jl). The functions y, y’ are
easily seen to satisfy the bound [cf. (5. 69), (5.17), (5.18)]:

Bounds on ( ~ ~, ~ 0 ~, ~ A (, ~ O ~ I are easily obtained by recalling their
definitions, (5 . 71 ), (5 . 72) (for the functions of lemma 1’) and (5 . 87) (for
the functions of lemma 1 ), the bounds (5 . 78), (5.79), and the bounds on
I R I, IS /’ 181 (A3 . 54)]:

where G~ is as in (5. 79) (actually increased by a factor 2) and the norms
are taken at fixed for the functions of lemma 1, or at (s, 
fixed for the functions of lemma 1’.

Finally, we remark that all the requirements [(5.75), (5.76), (5.81),
(5. 85)] we needed to prove lemma 1’, 1 can be enforced by requiring the
single condition:

where B, j3 &#x3E; 0 are suitable constants depending only on l and i (See
(5.23), (5.25), lemma 0 and (5 . 76) to refresh the memory about the
various parameters involved].

This completes the proof of lemma 1’ and lemma 1. In fact we have
proved:

LEMMA 2. - There exists a canonical map G {p’, q’, Ä’, 03B1’) = (I, A, q&#x3E;, à)
of class Cn and a line 2 J1 : s --+ Äp {s), contained in the energy surface of
energy E for the perturbed hamiltonian (2 . 9), of class C" with the properties:

1) ~ is Cn-close to the identity as f.1 --+ o, !£ J! is Cn-close to !£ as J.1--+ o
and the domain i,s a set o~’ the form V x T’- 1 X S2 where V is a

Vol. 60~ n° 1-1994.



38 L. CHIERCHIA AND G. GALLAVOTTI

neighborhood of Y containing Y  and S2 is a neighborhood of the origin
in R2.

2) For s in a set of measure K, c &#x3E; o, the set

~ (Ã~ (s) x T1-1 X S2) is invariant for the flow generated by the perturbed
hamiltonian (2.9).

3) The derivatives in A’ of the hamiltonian (2. 9) regarded as a function
of the new coordinates (p’, q’, Ã’, ~’) as well as those in p’, q’ at constant
p’ q’ vanish on the above set, so that the flow is linear in the 03C8 E Tl -1
variables and hyperbolic in the p, q variables.

4) Explicit bounds on the parametric equations of the invariant tori, on
their whiskers and on the main dimensionless parameters involved in the
construction are provided by the bounds found in the course of the above
proof.

This lemma is a quick if a little mysterious, way of summarizing the
analysis of this section.
Another important corollary o, f ’ the above lemmata is that they can be

shown to cover the case of a forced system:

where B, ~, are a pair of conjugate action angle variables and

(A, a) E R~ - 2 x Tl - 2 are other action angle coordinates which will be sup-
posed anisochronous, i.e. such to compare
with the previous notations one should set A=(B, A) a).

In this case the notion of diffusion path has to be suitably adapted. We
consider a curve in A space, Y={s~As} and define E (C) exactly as in
(3 .1 ) with A replaced by A and we say that J~ is a diffusion path if (3 . 2)
holds. In other words in forced systems the action ‘ forcing reservoir"
B does not enter into the definition.
The following technique, invented by Poincare, applies remarkably

well to this case, see [P], p. 118, tome I, ch. III. Note that, if

Ho (I, A, (p)=/!(A, ~) + P (I, A, cp, Jl) and H is as in (5.91), the hamil-
tonian :

where E #0 is fixed arbitrarily, is such that h2 has the property that [See 1)
of appendix A9]:

2 1-2
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where in (5 . 93) we evaluate the derivatives at 1=0, cp = 0 (hence P=0).
Thus h2 is non degenerate and, furthermore, at I = 0, cp = 0:

~2=(~B~~2)=(~co) if h2 ~ci~ ~~ = co~ o~ --_ c~ B + h = E (5 . 94)
and we see that the line 22 obtained from 2 by adding to each of its
points a coordinate Bs computed from the equation 03C9B+h(As, 0) = E is
a diffusion path for h2 in the sense of section 2.

It is immediate to check that a(~)) is a motion for (5 . 92),
then with 0=~(~(0), (x(0), ~)/E), is a motion for (5 . 91 ).
We can thus construct, by using the above lemmata, whiskered tori for
h2 + f2 (and hence for H).
For a proper usage of the bounds involved in the above lemmata, one

has to estimate the basic dimensional quantities. Fixing the arbitrary
parameter E - 4 po max {~ °Ã 00 I} we see that:

and this allows to bound the norms, ~(~2)~!!. !!(~2)’~ !!~2!!. associ-
ated to H2 in (5 . 92) in terms of constant times the corresponding quantities
for (5.91), while we can take and 

[See also 1 ) of appendix A9] for a suitable constant 03B2; of course the norms
referring to (5 . 92) are taken over the action domain 

[See (5 . 95)]. Thus we see that the statements of lemma 1’
and lemma 1 just carry over to the present case under a condition like
(5.90) with:

~=[[B~~(~Eop,~(r,E,)~(~opo’E~)r(~E,p~)]-~ (5 . 96)
and with the same quantitative bounds established in the proofs, provided
we interpret the notion of diffusion path in the way described above.

Finally, we remark that the whiskered tori that we obtain for (5 . 91 )
via lemma 1’ applied to (5 . 92) and via the rescaling described after (5 . 94),
have, for U), the ~-frequency equal to co (as it should
as the clock velocity co cannot change, just because it is a clock).

6. LARGE WHISKERS. HOMO CLINIC POINTS AND ANGLES

In section 5 we have constructed invariant tori surviving the onset of a
perturbation as well as the parts of their whiskers in their immediate
vicinity. We now derive the equations of the whiskers away from the
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invariant tori with the purpose of finding whether they contain homoclinic
intersections.
The whiskers can be continued to form a full invariant manifold by

evolving them with the solution map (I, A, cp, a) ~ Sr (I, A, cp, a) associ-
ated with the perturbed Hamilton equations generated by (2 . 9). We regard
the map St as defined in the original coordinates, which are globally
describing our system and we shall call local the part of the whiskers
constructed so far, via lemma 1’, denoting it by W’~~ (s, u).
The full stable whisker will be:

for values of u small and == 1: (Co), see lemma 1’ section 5 and (5 . 20).
Lemmata 0 .1’ imply that this set can be described, for and ~ I
small enough, by parametric equations:

where (p is a priori fixed in the following discussion (to be  21t in the
case of an open 4) separatrix while for closed separatrices,  (p
should be replaced by for To fix ideas
and simplify notations we shall discuss here mainly the stable case, the
unstable one being completely analogous (See also below) ; however, when
needed, we shall attach to the above functions (6.2) superscripts to

distinguish among the two different cases (such superscripts should not
be confused with the parameters s, u in (6 .1 ) and elsewhere).

Fixing and u small, the functions A((p, a, I((p, a, Jl) have to
be such that for any I P’  (p, a’ E T’- 1 there are cp, a such that:

St (I (q/, ~, q/, A (q/, a~ ~) = (I ((p, a,~), (p, A ((p, a~ a), a) (6.3)
and we know, from lemma 1’, that for small enough I((p, a, ~),
A (cp, a, Jl) are analytic functions in the perturbation parameter a.
We shall fix (cp, (x) and try to determine the functions I (cp, a), A (cp, a).
We begin by noting that Sr is close to and depends analyti-

cally on t, a, cp, A, I, u. Also S° expands any cp # 0 to a value larger (in
absolute value) than cp in a finite (positive or negative) time.
Hence it is clear that, fixed cp and given Wstable (s~ u), we can use (6 . 3)

with I P I  0, and to define I((p, ~), A((p, a) for 
and 8 can be taken to be any prefixed small positive number and

ts a suitably long (but finite) time.
And the remarked analyticity of Si together with the analyticity of

see lemma 1.1’ . 2 of section 5, imply the analyticity of 1(.),
A ( . ) in their arguments, at fixed s, u.
From now on, in order to avoid confusion with upper indices u,

indicating stable/unstable, we drop the dependence upon the para-
meters s, u, which in this section will be kept fixed.

Annales de l’Institut Henri Poincaré - Physique théorique



41DRIFT AND DIFFUSION IN PHASE SPACE

Given a hamiltonian in (2 . 9) we write the equations of
motion for the vector (I, A, cp, o)=X as:

and we remark that if cp, 03B1), As(03C6, a), cp, for I p I  P and
for are the equations of the stable whisker, then:

Since in this section we shall mainly discuss the stable whiskers, we
shall also drop the suffix s (for stable) when this does not lead to confusion.

It will be useful to consider also the slightly more general case in which
the variable a is a function of 11:

while the variable cp will be fixed once for all to be the value cp correspond-
ing to the point where f I I is maximal for the unperturbed hamiltonian
[c/~ §4; (p=7c for the pendulum (2 .1 )].

Furthermore if XS (t) is the solution of the Hamilton equations with
initial data a), a), cp, a) then, for large enough t, 
is inside the vicinity of the unperturbed torus I=(p==0 where we
can use the coordinates, described in section 5, (p, q, BJ~).

Actually, by using the analyticity of the flow Sr and the analyticity
properties in p, q, ~ discussed in section 5, one can analytically continue
the functions R (A’, p, q, A(B~, p, q, ~),... in (5.10) to a domain around
the such that pq ~  x2 and around the real ~, so large to cover
a vicinity of the points~=~ q = q, corresponding to I, cp, 
where I, ~ is the separatrix point chosen as the origin. Therefore, after
the analytic continuation, we can write for Im t ~ _~ ~ and ~
small enough [c~(5.10), (5.11) and recall that we are dropping the
parameters s, u from the notation]

and the expression of a, cp in terms of BJ~, p are deduced from the above
relations with ~=0. The constant ~ is, of course, small and cannot exceed
the width of the holomorphy domain of X° (t). The same holds for the
unstable whisker with the obvious changes (i. e. exchanging the roles of p
and q and considering 
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If:

denotes the evolution of the initial point in (6.5), (6.6), on the stable
whisker, it follows from section 5 that a) has the form a)
for a suitable analytic function XS (BJ~; (x) periodic in ~, a converging at
an exponential rate as t ~ oo to XS (~r, oo ; a) periodic in ~ a converging
at an exponential rate as t ~ oo to 00; 0153).

Analogously, if Xks (t, denotes the k-th Taylor coefficient in the Jl
expansion oc~,), then a~) = Xks (~ t, t ; cx).
Note that Xks depends only on the first k + 1 coefficients of 0153~; to stress

this fact we shall sometimes write X~(BJ~;(x~). Note also that
a) is holomorphic in a domain I 1m Bf1 j I  ç, I ~, ~  ~,o, and

arbitrary if ;10 with ;10’ ç small enough and if T is large enough
(for instance so that see lemma 1’).

Recursive expressions for and the Xks (~r, t ; could be deduced
from section 5, however it is more convenient to derive them directly.
To do this we put (6 . 8) into (6 . 4) and introduce the following notations.

. 

If G (I, A, cp, a, is a function and if/?, m = (ml, ..., m2 ~) and k~ are
integers, we denote:

where /~1 if Then, given ä.Jl’ the (6 . 4) can be translated into a
hierarchy of equations for the Taylor coefficients Xks of X (t, o~)=X(~);
it becomes (omitting the stable index s):

where (X~) and the first term in the r.h.s. is separated from
the others being the only one involving X‘‘ with h = k. We write (6.10) as:
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where and Fk = Fks is simplicitly defined by (6.10) and (6 .11 ),
so that: ,

where the zeroes in the matrix L appear because we make use of the form

(2.3) of Ho and all the derivatives in (6.12) are evaluated at the point
X° (t) = (1° (t), A°, cp° (t), Oo + 03C9t + g (t)) and at J.l = 0 (p (0) = cp and g is the
phase shift introduced in section 4. And more generally Fk (t) are defined
by solving recursively (6. 11), using (6. 10).

In fact we will check directly that (6.10) can be solved for every ~ 1
and that, for each ;}C, the initial data:

can be fixed can be fixed) for each ~ 1 so that has the

asymptotic properties dictated by lemma 1’ (in particular that Xk (t) is

bounded).
The check can be done by studying with some care the wronskian of

(6 .11 ), i. e. the solution to the equation:

In fact the solution to (6 .11 ) can then be written:

where we drop the index k on X and F to simplify the notation while
performing the k independent algebra that follows.
As mentioned above, we also suppose, for convenience, that the fixed

(p is so chosen that the solution ÄO) of the separatrix equation
p(Ä9, i, cp, 0) = 0 is maximal for (p=(p, see (4 .1 ).
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The general properties of the wronskian matrix W (t), solution of (6.14),
can be found easily from lemma 0, section 5. Let us write [cf (5.3), (5.2)]:

the canonical map of lemma 0, (and dropped from the
notation), reducing to normal form the free part of the hamiltonian:
E (pq, a) = P (a, I, p) (if the free pendulum is an ordinary pendulum like
(2 .1 ), the (6.16) is the well known Jacobi map, and R, S are suitable
Jacobian elliptic functions, see appendix 9 ; note that here we use a
different order of the variables from that used in § 5).

If we replace: 
_ , ~ ,

the map is still canonical (as (6.17) is the solution of the Hamilton
equations in normal form for the free hamiltonian). Hence its jacobian is
a canonical matrix that can be written:

where the derivatives of R,S, §, d are evaluated at a).
If (p, 0) and (0, q) denote the points corresponding to (p, we denote by

U~), the above matrices evaluated, respectively, at the points
0), (0, in both cases a). Note also

that the entries involving the a-derivatives and all the ~03B4 vanish as t -+ :I: 00
( + for the stable case and - for the unstable one).
The representation (6.18) is symbolic as the 1’s are in fact (/- 1) x (l -1 )

identity matrices, the ~R, are row vectors (or 1 x (/-1) matrices),
the a~ are column vectors (or (/-1) x 1 matrices) while H, ~ are
(l -1 ) x (l -1 ) matrices. Since, however, the notation is (after a moment
of thought) self evident we shall use it also in the following without
describing the obvious meaning of the matrix elements of U (t) and of the
corresponding ones of U (t) -1.
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The inverse of the matrix U (t) is immediately computed (because U (t)
is canonical):

The U (t) is the jacobian of a family of solutions of the equations of
motion, hence it verifies (6.14) except for the initial condition ; so that:

We proceed to investigate the functions X (t) with the aim of finding
explicit conditions which can be used to determine the initial data 
from the boundedness at + 00 of the Xk and, more in general, to determine
recursive equations for the Xk (~, t ; oc).

Let us write (5.10) as:

where (defined in 1) of lemma 1, section 5 will be fixed throughout
the analysis and it will be dropped from the notations. As discussed in
section 5, the functions V are analytic in p, q, BJ~ ~ for pq, Im p, Im q,
Im small, say |pq|03BA2, |Imp|, |Imq|03BA, 11m Wj 1  ç and 1 J.l1  J.lo, for
some ~, K, J.lo suitably chosen as functions of the hamiltonian parameters ;
furthermore the R, S are analytic in the same domain and the V are
divisible by ~.

If we define po (ex), BJ~ (a) as the solution of the equations:

we can remark that the above equations can be solved at ~x = 0 with a
non zero jacobian ap S (p, 0) (because at (p, 0) it is cp = cp and therefore Ï&#x3E;
is, by the above definition of cp, maximal so that (since ~ = 0)
Sp (p, 0)= -(~)~ and 0)=0). The functions po, ~rS will be
analytic in 03B1 for |Im03B1j|03BE, and imagining to redefine ç, 0 so

that they are the same here and in the analyticity domain of V, to avoid
introducing too many parameters.
We shall also use the following notations:
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where the functions are defined as in (6.22) exchanging the roles
of p and q.
Thus we can define:

y’ being the correction to the Lyapunov exponent in lemma 1’ so that

is simply a - 8~ while is a- ~(0, q, ~. Furthermore, all the
functions ~X(~+(D~ t ; a) are orbits on the stable whiskers.
The analyticity in p implies that all the functions X (~, t ; (x) converge

as t -+ oo at exponential rate. The functions X (~, t ; a) are analytic in t, a,
~, ~, in a domain:

for a suitable K (so that the point is inside the analyticity
domain for the X functions), again by lemma 1’ and having once more
redefined K, ç to avoid introducing too many symbols.

If p’, p, ç’, ç are the analyticity parameters of the original hamiltonian,
we shall use, to measure the size of the vectors X = (X +, X ~ , X _ , X 1 ) the
dimensionless norm:

and the above statements can be summarized by the first of:

where v, Yo are suitable constants proportional to I JlI 5) ; the
second bound provides a further property and also comes from lemma 1’ ;
of course, all the above constants can be derived explicitly (if one wishes)
from the dimensional bounds in the proof of lemma 1’ (i. e. the above
statement is "constructive") ; the second inequality is a quantitative bound
on the Lyapunov exponent, also part of lemma 1’.
The above remarks can be used to bound X~ the Fourier transform

with respect to the B1Î variables of the k-th-Taylor coefficient (in Jl) of X,
defined in (6 . 24) ; in fact one immediately gets:

in a domain D defined as in (6.25) by omitting the condition on the 03C8
variables.
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A further consequence of the above remarks is that if we define:

where E is the standard 2 l x 2 l matrix which in block form looks like

~ ~1) and X° X denote as above 0, ~+~0, X 1, t ; a),

then:

for a suitable 1; again here we possibly redefine the constants K. In
the notations of (6 . 8) - (6.12), it is Fk (t) = F (~ t, t ; a,~).
The (6. 30) implies the bounds:

in ~.

If a is replaced by a~, all the above estimates (6 . 31 ), (6 . 28) hold

provided Im 03B1 |  ç for  0 and since Fk depends in such a case only
on the first k - 1 coefficients of a~, the proper notation will be

F~;o~).
Remark. - In the case in which Po (I, A, p) is an ordinary pendulum

hamiltonian the matrix elements of Uo (t), W (t) can be computed essen-
tially explicitly (See appendix 9): they have some remarkable analyticity
and symmetry properties in t ; namely the matrix elements of Uo (t) are
holomorphic in the domain ~Im~(l-8)7T/(2~o). for s&#x3E;0, and are

bounded there by for some u, see (A9 . 8) ; furthermore the W (t)
matrix elements of the block ( + , f)x(+, i) and those of the block
( - , .D ~ ( - , D are even in t while those of the other two blocks are odd.

In general the "rows" of the matrix (6.19), will be denoted

ç+, ç ç-, ç +~, where ~,=(0, e~, 0, 0), ~ ,=(0, 0, 0, e~) with e~ being
the unit (l -1 )-vector with the j-th component equal to 1. The splitting
03BE~+03BE0~ is performed so that all the matrices 03BEj have the last /-1 com-
ponents zero.
With the above notations for X, F, we deduce immediately an

explicit expression for Xk in terms it is with:
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so that one finds:

where the arguments of Fk are T; ~~); when needed we regard m
vectors as 1 X m or m x 1 matrices and use the standard rules for matrix

multiplication (e.g. in the first of (6 . 3 3) ~ + is a ( 1 X 2 l) matrix while Xk
is a (2 l x 1 ) matrix and their product is a scalar) ; in the following formulae
we shall drop the explicit dependence on 03B1 as such dependence plays here
no role. Hence, since the boundedness as of Xk (t) is equivalent
to the boundedness of Yk (t), a straightforward asymptotic analysis based
on the bounds (6 . 28), (6 . 31 ) shows that the latter corresponds to the
following conditions on the initial data for ~ 1:

where to derive the third equality we have used the first identity and the
fact see the comment following (6.18); (.) denotes

average over ~, (~ . a) -1 acts by dividing the v-Fourier coefficient (with
respect toB)/) by notice that it is possible to apply to

F~(., 00) because of the first identity. The first condition must be an

identity, as it does not involve the initial conditions which we suppose to
have already determined for X~ (0), h =1, ..., ~2014 1, (otherwise lemma 1’
could not possibly hold). If one feels uneasy with such a boldly indirect
proof one can check the statement directly (See appendix 12).
The third condition fixes ~ (0), while X ~ (0) has to be by definition,

and finally the second condition fixes ~=X~(0), because X~(0)=0 (by
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definition) and:

and more generally:

where the derivatives are evaluated at X° (t). Notice that w (t) in (6 . 36)
is such that if E denotes the standard symplectic matrix.
Furthermore: 

.

and w (t) is holomorphic in t, for all real values of t: the above statements
reflect the degeneracy of the unperturbed whiskers.

It is also useful to rewrite the vector Yk (t) after the above (6 . 34) are
taken into account, leading to a few cancellations which make clear the

asymptotic boundedness as t ~ 00 of Yk (imposed, indeed, by (6 . 34)). We
find:

where (03C9.~), P, .~ are operators acting on the 03C8 dependence of the Fk-
functions: they multiply the Fourier transforms of Fk ðl;1 *0 and
8~=0 respectively (hence (.) is the average over ~), ð. being the

Kronecker 8. The constants pk, x are:
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where ( . )o means "at t = 0" ; in the cases in which there is no coupling
between the pendulum and the rotators in the free system (~ §4) the pk
and also the coefficients of vk and hk in x vanish.
Note also that, in the case  = ~~, the dependence on the coefficients of
~Jl (as it follows by inspection from (6.15), (6.20), (6.29)) is:

The theory of the unstable whisker is identical, with the obvious changes
which essentially consist in taking Re t negative, replacing oo with - 00
and exchanging the role of p and q and of the components +, - of YB
Note that, in general, the functions FB Xk for the unstable whisker are
not the analytic continuation of those of the stable whisker with the same
initial conditions (which is a fact that would mean that all stable whisker
orbits are also orbits on the unstable whisker, so that the homoclinic
points would be completely degenerate).

, 

As remarked above, see (6 . 37), W (t) (but not U (t)) is analytic for all t

because of the degeneracy of the free system. Hence in what follows we
should append a superscript s or u (or equivalently + or - ) to

F, X, Y, U,Uo depending on whether we consider them for a stable or an
unstable whisker. When, as usual, we do not follow this convention we
shall assume that the functions being considered are associated with the
stable whisker if their time argument has Re t &#x3E; 0 and with the unstable if
Re t  O. Of course we label the initial conditions XG (0) with 0’ = s or 0’ = u,
depending on the whisker to which they refer.
We now look at the homoclinic conditions. The homoclinic points that

we study will be a priori supposed to have the form:

with the series in (6 . 41 ) being at least asymptotic Such points
correspond to initial conditions X~(0)=(r~ 0, (?).
Remarking that the definition of X (~, t ; a, (6 . 23), implies that

X’(~ a, ~)=X~~+~(a~), -00~, I~) with a = ~rs (oc) - ~u (a) and
also FS (~, oo ; a, ~,) = Fu (B~+ o, 2014 oo ; a, ~,) so that for each k:

Annales de Poincaré - Physique theorique



51DRIFT AND DIFFUSION IN PHASE SPACE

we see that, in general, the homoclinic conditions become, (if

which we call "the conditions associated with the A variables" . Note that
(6 . 43) is immediately derived from (6 . 34) in the anisochronous case (i. e.
in the case H is invertible) ; however it is possible to deduce it directly
also in the important case of partially isochronous systems (i. e. periodically
time-dependent systems) associated to hamiltonians of the form:

with To check (6.43) in such a case, consider the second
of (6.38) observing that ~ == X~; add and subtract to the 1.h.s.

X~ (co ~ crt 00) and to the r.h.s. Jo F1 (oo’t, cr, 00) de; take the quasi-periodic
average lim (1/T) . using (6.28), (6.31) and the first of (6.34); finallyJo
use (6.42). Hence we conclude that a unified treatment of anisochronous
systems and of forced systems M 
To derive the other homoclinic condition, we use the (6.35),

(6.36) to find an expression of which is symmetric for the two
whiskers contributi.ons, and, by the second of (6.34) we find:

and notice that w-~0 exponentially fast as ~-~ ±00). We call
the above equation "the homoclinic condition corresponding to the I
variable".

Hence (6.43), (6.45) is the complete set of homoclinic conditions. It is
clear that the l equations in (6. 43), (6 . 45) cannot be independent: and in
fact one can check that either the (6.43) or the (6.45) together with any
l- 2 of the (6 . 43) imply the remaining one: this expresses the fact that
the energy of the two whiskers is the same (because they are asymptotic
to the same torus).
The (6.43) is not yet very explicit, as a recursive equation for a~. But it

is easy to make it clearer.
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We begin by considering £ it for k =1. The function F of order 1,
1 :1:1]    °

where 9~(t) is the phase shift introduced in section 4. And the homoclinic
conditions for the A variables becomes (cf (4.6) 2014 (4 . 8))

where evaluated at (I° (t), a, (p~(~), a° + ~i t + ~ (t), 0) while 

denotes/evaluated at (0, a, 0, 03B10 + 03C9t + 03B8(03C3t ~), 0) if 03C3t=sign t. And we
see that the (6.47) always has at least two solutions, namely the critical
points of the periodic function:

The equality o the whiskers energies then implies that the homo clinic
equation relative to I is also satisfies.

Therefore the equations for k =1 determine the zeroth order approxima-
tion ;0 to the homoclinic point. Let Mo be the jacobian matrix (with
respect to (x) of the l -1 functions in (6 . 43) evaluated at a solution point
a° (equivalently: and assume that Mo is non degenerate,
see (4. 10).
To determine the higher orders ak, k &#x3E;__ 1, we remark that (6 . 40) shows

that the dependence of Fk on ak _ 1 is rather simple. If we call Dk the l.h.s.
of (6 . 43) evaluated by replacing o~ with a~‘ k -1 ~, we see that, by (6 . 40),
the (6. 43) take the form:

Therefore the non degeneracy of Mo, the hessian of (6.48), at the
solution point ;’0 is all one needs to perform the perturbation theory to
arbitrary order.
But the first order calculation is usually sufficient to prove the existence

of the homoclinic point. Its exact equation is in fact:

where is just the l.h.s. of (6 . 43).
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We see that the equation (6. 50) admits, for a on a diffusion path open
for diffusion (in the sense of section 4, see (4.10), a non degenerate
solution for ~=0, by our assumption on o~: furthermore the function in
the l.h.s. of (6 . 50) is analytic in  for I J.11  J.10 by lemma 1’: therefore for
all the invariant tori associated with the diffusion path, by lemma 1’, the
equation has an analytic solution whose Taylor expansion coefficients
have already been determined in (6.49).
We also need some informations about the non degeneracy of the

intersection between the two whiskers at ~. They are provided by the
Taylor coefficients of the expansion in of the functions H (â.)
around In particular the first order coefficients will define a

(l -1) x (l -1) matrix that we call the homoclinic intersection tensor or the
homoclinic angles matrix : it is clear that such matrix is just Mo: hence we
see the physical meaning of the matrix Mo. The name is slightly improper
as the matrix Mo has the dimension of an action and (the trigonometric
tangent of) the physical angles between the tangent vectors to the two
whiskers will not be the eigenvalues of Mo but proportional to them via
a constant bearing the dimension of an action.
We conclude that, at a homoclinic point, uniform lower bound

to the angles between pairs of vectors tangent to the whiskers associated
with the invariant tori of a diffusion path open for diffusion.

7. WHISKER LADDERS AND ROUNDS DENSITY

Given a diffusion path we see from lemma 1, section 5, that we can

expect that there are gaps on it, in which whiskered tori are missing
(i. e. ladder segments with no rounds), which are quite large and, in fact
they can be as large as K (5 . 4) and the comment after (5 . 90): so
that c = 7 t.
However the rule is that the gaps are much narrower if the 

not too badly placed in the action space : this depends of course on the
perturbation f The situation is clearest if f is a trigonometric polynomial.
We give the following, general, definition:

DEFINITION. - Given hamiltonian h as in (2 . 3), a region V c 

of the action variables A is free of resonances to order N if it is:

having $ set, as usual, CO(A)=~~(~ 0,0).
If f is a , trigonometric polynomial of degree Nf:
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we say that h and f do not resonate to degree p ln the region V in action

space if the region V is free of resonances to order N = p N f.
Recalling (3 .1 ), (3 . 2), (5 . 4), (5 . 82) we can prove the following lemma:

LEMMA 3. - Let f be a trigonometric polynomial which does not resonate
to degree p with the free hamiltonian h in the phase space domain V. And
let .P be a diffusion path contained in V. Then the set E~ in (5.4) can be
taken to verify:

and all the remaining statements of lemma 1 and 1 stay unchanged.
So in particular, any interval of length 0 (I-J.2) on P will

necessarily contain rounds of the whisker ladder, if  is small enough.
The analysis in section 5 allows us to say that c can be taken, for instance,
c = 7 (l -1 ) hence for p =14 (720141) we have gaps of relative size of (9 (Jl2).

Proof. - The assumptions are just what one needs to perform with no
troubles perturbation theory to order/?. We shall take for simplicity f, A
to be  independent.

Let C be a generating function for a canonical map: it will depend on
variables (A’, ao, p’, assuming to have already done
the first change of coordinates considered in the proof of lemma 1,
section 5, to change I, cp into the more natural (but local ) coordinates po,
qo of the pendulum (and p ~ ~}), see lemma 0, section 5.
We take 03A6 to be a polynomial of order p in :

which we impose to be a solution to order O( p+1) of the Hamilton-
Jacobi equation:

where C, ... , are regarded as unknown.
The equations for 1&#x3E;(1), ..., ~~ p~, h~ 1 ~, ..., generated by (7.5) can

be recursively solved if the non resonance property (7 .1 ) holds for 
in a domain around the diffusion curve. The domain of definition of the
solution can be given the form with K small enough. In
fact, assuming to have solved the equations for i = 1, ... , k and to have
determined I&#x3E;(i), /~B as analytic functions on V x Tl-1 X S#, with I&#x3E;(i)

being a trigonometric polynomial of degree we see that (7 . 5) says:
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where J), go (A , J) and P is a poly-
nomial in the derivatives of f of order ~ k and o in ..., 

..., oh(k) and o its monomials:

must be such that their order verifies:

Hence we see that P ~k + ~ ~ is a trigonometric polynomial of degree
Nk + 1 _ (k + 1 ) N f, and (7 . 7) can be solved, using the notations introduced
in (5. 27), by:

The induction construction will work until as it is clear that ~~k + I a~
h~k + 1 ~ have the same analyticity domains as Ð(1), ..., {J)(k), ..., 

The canonical map generated by 03A6 will have a somewhat smaller
domain V x T’-1 X Sx,, with V’ differing from V and 03BA’ differing from K
only by an amount or order (9 (J..l) (which means that the boundaries of V
and V’ are close within a distance 0 (~)).

This completes the proof of lemma 3 because, in the new coordinates,
the hamiltonian takes the form:

where the difference h’ - h is divisible by J.l and h’, /’ 
‘ 

are analytic in

Under the above circumstances lemma 1 applies: but this time ~ is

replaced by ~,p + 1, and therefore lie, in (5 . 4), is replaced by (p + l)/c.
Lemma 3 above has some rather obvious extensions to the cases in

which f is not a trigonometric polynomial. In such cases, if N is the
maximum value such that no resonance occurs for we can

write/=/~~+/~~ and if and, at the same time,
of lemma 1, see (5 . 90). Hence we can hope to reach the same

conclusion of lemma 3 in various particular cases. But we see that, unless
f is a trigonometric polynomial, the improvement of the density estimate
of the whisker is a delicate matter. Since the ideas are quite clear, we
refrain from formulating precise results on the cases when f is not a
trigonometric polynomial.
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8. HETEROCLINIC INTERSECTIONS.
DRIFT AND DIFFUSION ALONG DIRECTLY OPEN PATHS

We now want to study intersections between stable whiskers of tori
corresponding to some value of s, and unstable whiskers of tori corre-
sponding to a different s value: such intersections are called heteroclinic
intersections. Then, by means of chains of heteroclinic intersections (cf
[A]; see also [D]) corresponding to tori related to directly open diffusion
paths, we will show how one can construct orbits shadowing all the

heteroclinic orbits of the chain. In particular, we will estimate the time
needed by the diffusion orbit to drift from one end of the chain to the
other end.

We consider a line of tori (and corresponding whiskers) with a given
energy E associated with a diffusion line !£ (directly open , for diffusion ;
see definition 2 of section 4. Given !£ the existence of such a line of tori

is consequence of lemma 1 of section 5. We consider also the associated

diffusion sheet 2 (5.8)] and the relative whiskered tori constructed
by lemma 1’.
The equations for the whiskers associated to 2, deduced in section 6,

take the form, at the point corresponding to the value s, u of the diffusion
sheet parameters:

where the function M f is defined in terms of the Melnikov function F,
see (4 . 6), (6 . 48) and [See (6 . 42)] :

In this section " + / - " will mean "stable/unstable" as we reserve the

labels M,  to have the meaning they have in section 5: so that s is a

parameter describing points on Y and u describes the variation of the
quasi periodic motions frequencies.
The results of section 5 show that we can imagine that the functions X,

( are defined for all (s, s2] x [ - u, ü] and for and

 cp and there they are of class Cp where p is any prefixed integer.
Below we imagine to have fixed such an extension with p = 2. Of course
this is just a convenient way of expressing the regularity properties of
functions that are defined on sets with a lot of holes: the values of the

functions in points with (cf 1) of lemma 1, section 5) are not interest-
ing and all that is being said is that the interesting values of our functions
can be smoothly interpolated. At a point with a prefixed cp coordinate,
say cp = cp (as in § 4 and elsewhere) the condition for heteroclinic inter-
section between Wstable(s) and the prefixed energy surface,
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becomes to first order in ~:

where E~ denotes the value of the hamiltonian H on the whiskers W~,
E=Ho(0, AS, 0, 0) (5~ §3) and the remainder R - R (a, s, s’, u, u’, is
a C2 function of its arguments.
We regard (8 . 3) as an implicit function equation determining a, u, u’ at

fixed cp in terms of the parameters s, s’, ~.
Note that finding solutions of (8. 3) means that the whiskers contain a

point with equal a, cp, A coordinates: hence the whiskers have a point in
common as their energy is the same and hence also the I coordinate has
to be the same (notice, in fact, that the derivative of the hamiltonian with
respect to I cannot vanish, at ~==0 and at the cp value that we have
chosen).
Qe fist determine u + (s, Jl) and u - (s’, J.l) so that the energy constraint

is satisfied: that this is possible follows from the non degeneracy hypothesis
(2.7) also the last of (5.23)) and from the condition (5.85). The
precise argument is basically a repetition of the argument used to deduce
lemma 1 from lemma 1’, see (5.83)-(5.85) and we shall not repeat it
here. We then substitute u= u+ and u’ = u - in the first of (8 . 3) and
observe that M~ ( . , 0) = O.
Hence we are interested in the jacobian matrix of the first of (8. 3) at

the non-degenerate solution point s’ = s, M=M’=0. Here, if the diffusion
curve Y is open for direct diffusion (as we suppose throughout this
section), the above (8 . 3) has the solution 9 (~), (p = p), described
in the definition following (4 . 9). In fact by (4 . 9) M=M’==0:

and by (4 .10) the jacobian of (8 . 3) at aS, s = s’, M==M’==0, is:

so that by the implicit function theorem, for  small and cp = cp, we have
the solution as of (8 . 3) when s = s’.

Again, the implicit function theorem implies, giving up control of the
values of the constants (for simplicity rather than by necessity), that there
is a constant G &#x3E; 0 such that for:

and for  small enough, the equation (8.3) admits a non degenerate
solution 03B1(s, s’)=03B1’s+O( ). Here we do not find how the constant G1
depends on dimensionless quantities but, of course, this could be done if
necessary.
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Hence if s, and verify (8 . 6) there is a heteroclinic intersection

Hss, between the whiskers Wstable (s) and at energy level E.

As an application we consider the case in which f is a trigonometric
polynomial of degree N f and we suppose that the path J~f is contained in
a region free of resonances [See definition following (7 .1 )] to order p = 2 c
for the perturbing function/, where c is the constant appearing in lemma 1,
section 5, see (5.4) and the comment after lemma 3 of section 7.
Then by (7 . 3) we can find a sequence so = 03C31  ...  aN = sl with:

provided 1 J..l1 is small enough, i. e. provided J.1  J.1*’ so that the results
of sections 5, 6, 7 can be used to infer the existence of heteroclinic inter-
sections : it appears that J.11- 2, with G 2&#x3E; 0 conveniently chosen.

Therefore for each i =1, ... , N -1 we have an invariant torus

Ti~T(03C3i) with two whiskers Wistable and Wunstable and for i = 1, ..., N-l
we consider the heteroclinic intersections of with Such

intersection contains a curve: it is an orbit "spiraling" onto ~% i as t -~ 2014 00
and onto ~ ~ + 1 as t ~ +00. On each of such orbits we fix a unique point:

with a cp coordinate prefixed and equal to cp (independently of i) as

discussed in the previous sections (in particular cp is distinct from the

equilibrium positions on the separatrix and for the standard pendulum
(2 . 2) it is (p==~).
The motion on the tori is quasi periodic with l -1 frequencies and, by

lemmata 1. 3, we can suppose that the frequencies of such quasi periodic
motions have a non resonance constant verifying (5 . 81 ):

(one can take G4 = (p + 1 )/7 by the discussion of § 7, 5).
We imagine to draw around each of the tori ~% a small vicinity U~ of

radius r, i independent but so small that inside it the tori and their
whiskers can be described by parametric equations, analytic in some

standard coordinates (~,AB~B)/) with: A’ - Ai (o) ~  r, ~ 
where:

where (consistently with the use of the symbol in § 5 we call (s, u, J, ~)
the solution to (5.14) with ho replaced by see also the comment

following (5 . 69) and (8.16) below).
In this section we shall refer to such coordinates as to "normal coordina-

tes". We suppose r so small that the heteroclinic points Hj are outside
the sets Ui. We shall proceed in a asymmetric fashion, treating differently
the stable and the unstable directions (but we could, everywhere below,
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interchange their roles). The following analysis can be followed rather
easily if on tries to draw a picture (which after some thought becomes
not too hard) of the various geometrical concepts that we need and
introduce below.

For i=1, ..., N -1 we fix in Ui a point Eui~Wiunstable which is on the
heteroclinic orbit of H. and with normal coordinates given by:

Here 03C8i is uniquely determined: just evolve with the solution of the
equations of motion, the datum Hy backwards in time until its
q-coordinate becomes (meaningful and ) equal to r/2:

The times T~ are all bounded by some T’ which is i-independent, which
can be estimated at small enough Jl only in terms of r and of the free
part of the hamiltonian: 
We now define the surface element where

is the ball of radius r around H~ and the * signifies that:
1 ) we consider the connected component of the intersection containing

the center of Mr (r, at the moment, is rather arbitrary, for instance take
it so that n UL = 0 and r  r) ;

2) inside the connected component we select the points with (p coordi-
nate equal to cp (i. e. equal to the cp coordinate of the heteroclinic point).
The set 0394si is a (l-1)-dimensional regular submanifold of the 2(/- 1)-

dimensional manifold M1 obtained by intersecting Mr-with the energy level
E (E being the energy of the diffusion curve and, therefore, of the whiskers)
and with the points with (p=(p:

The same is true for the analogous surface element 
Moreover, the nondegeneracy condition (4.10), i. e. [See (8 .1 ), (8 . 4),
(8 . 5)] :

(where Jl) is the locally unique nondegenerate solution of
Aiunstable = Stable whose existence has been proved in section 7, implies that
Ã~ and Ã~ intersect transversally at Hi. This means that any pair of tangents
to the two surfaces form an angle bounded away from 0.
Note also that the determinants in (8.14) are O (~,) so that also the

angle between A~ and Ã~ (i. e. the smallest angle between corresponding
tangent vectors) is bounded below by a quantity of the same order.
We transport the above two surface elements inside the region Ui by

using the hamiltonian flow St, solving the Hamilton equations, as follows.
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Consider a 2(720141) neighborhood, M~, pf E~ , obtained by considering
points with q-coordinate equal to r/2 and having energy equal to E. By
taking r small enough we can construct a (smooth) diffeomorphism, Fi,
of Mj into Mi as follows. For each x~Mi we can find a (smooth) real
function i = i (x) so that S_(~+T)M has q-coordinate exactly equal to r/2
(in particular: T(HJ=0) and then we set F~)=S_(T"+~(~).
Hence we can define A~=F~, and observe that, since

transversality is preserved under diffeomorphisms, A~ and A~ intersect
transversally at E~ (with angle of order ~).

Furthermore A~ and A~ can be represented, in normal coordinates,
as regular graphs over the angles for * varying in some open
(1-1 )-dimensional set, Di, whose size is independent of (J,. For

simplicity (and without loss of generality) we let Di be a (/2014 l)-ball
around ~r~ : D~ - ~ ~ E Tl -1: ~ ~r - ~ri ~  b } for some positive 8. Then the
above construction and lemma 1 of section 5 imply that A~ is simply
~ (p, A’, q, ~)=(0, ~(0), r/2, ~)~eD,}, while 01 will have the form:

for suitable (smooth) functions Ai and pi 8-close, respectively, to 
and 0.
Note that, since the energy E is fixed, the p~ (~) is actually computable

in terms and Ai; in fact the hamiltonian H, in normal coordinates,
takes the form:

with and f~ of (9 (a) and with 100 vanishing, together with all its
derivatives, when A’==~(/~). This is in fact the content of the results of
section 5, see lemma 2 ; therefore [See (2.7) and use J = pq, r==r/2]:

which, by the implicit function theorem, allows us to express p in terms
of A = A (BJ~), provided Õ is small enough.

In fact, recalling that on A~ the energy is fixed, we realize that by
taking the ~-gradient of the relation Hoo (Ã1 (*), ~, p~ (~r), r/2)=E and
evaluating the result at the center ~ [5~ (8.16) and the comments after
it] one obtains: with 03C91 = 03C9s (1+u)~0,

(5.6), (5 . 21 ) ; thus the vector 
and its length is of size 0 (u), see (8 .18).

In the normal coordinates, transversality of A: and ~~ reads simply:

and since such a determinant is of O (~) one sees that there exists a
constant Ge&#x3E;0 such that the set {p=value determined by the energy
conservation ; Ai (~r), contains a (l -1 )-ball of radius which

l’Institut Henri Poincaré - Physique theorique



61DRIFT AND DIFFUSION IN PHASE SPACE

is not too small, namely around A~(B~)=A~(0). This property is
important in the following construction.

Let &#x3E;s~&#x3E;0 and let be a point with ~-coordinate equal to some
!~"~!S/2 and p-coordinate 2 r E1. Let B1 be the set:

It is clear that if Efl ~ Õ/C1, for C1 large enough, and 0 E~ is small enough
and 0 in a suitable " time, denoted 0 and 0

bounded uniformly in i, it evolves into a ’ set containing , the point
~=(~+i(0),X~/~0)e(W~’nU,+i~ (where - connected compo-
nent) as well as a ’ set:

where C2 &#x3E; 1 is a suitable constant of 0(1) (more precisely of order
uniformly bounded in i).

All that the latter statement is saying is that the flow St takes a finite
time to carry a point on the heteroclinic orbit (or close to it) and at
distance  r from the torus to a point close within the same distance
to the torus ~+1. During such finite time nothing bad can really happen ;
all expansions and contractions in phase space being bounded by a suitably
large constant (basically depending only on the size of r).
We take En = 8/Ci, and suppose  small enough: this guarantees

that not only B1 has the above mentioned inclusion property but also
that varies around 03C81 then p1 (BJ/) becomes different from 0 and spans
an interval of O (~) by (8 .17), (8 .18) (thus implying the existence of the
point x 1 with the above properties).
Having constructed B1 and hence B1 we consider the evolution of the

set we shall see that it evolves in time and crosses A:+ 1 at a time Ti
that can be chosen so that its image still contains a set Bi + 1 around some
point 1 described by (8.19) with a suitable 1 and with

Ei .1 + 1 ~i~ such that: .

for suitable constants a, C3 &#x3E; 1 (determined below).
To simplify the analysis we take El exponentially small with respect to

Jl otherwise the above expression for T~ would be more involved

[See (8.29)]. Hence we define E1 by:
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where C2 is the constant fixed above [cf (8.20)J, g is a (i-independent)
upper bound on gi and g and G 11 are suitable constants related to

diophantine properties of the motion on the invariant tori (See below).
Assuming (8 . 21 ), (8 . 22) it will follow that the time of drift can be

N

bounded by T*~03A3 (Ti + 2 To) if To is a i-independent bound on 

Recalling that N~G2 -2, we see that (8 . 21 ) implies (given the choice
of ~1~ and ~1| in (8. 22)):

for  small enough and suitable C4, C 5 .
It remains to check the above recursion in (8.21). Let ~i be the 03C8-

coordinate In B; we consider, for Jl small enough
the points z(~~)=(~~+i(~/2),~~) such

points are indeed in Bi because the function J -+ Ã; + 1 (J) is differentiable
with derivative or order Jl, and we see that, see (8 . 20):

if C2  ~i, i. e. if | | is small enough.
The evolution of z, which for all q, ~ has energy E, is simply (by

lemma 1 5):

with gi depending on  and on the product qr/2, see (5.6). Therefore
we can define T (q) by:

and T(~)20142014~-oo.
~-.o

Let T£ be the time necessary in order that a trajectory on the torus
T~ fills, running quasi periodically with velocity co~ the torus within a
distance E/2, i.e. such that no point of Tl-1 has distance_~~/2 from the
set {(D~O~~T,}. Let ~(s)=~’~~ g are such for

...,N-1.

Then it is clear that as q varies between qmax and qmin there is a value q
such that T (q) verifies:

From the theory of quasi periodic motions it follows that Tt is bounded
above in terms of the non resonance constants Co, i of the frequencies

Annales de l’Institut Henri Poincare - Physique theorique



63DRIFT AND DIFFUSION IN PHASE SPACE

03C9i, see (3 .1 ), by for some G9, G9 &#x3E; 0 (one can take G9=03C4+2).
And in our application it is, see (8 . 9), G3| |-G4, so that:

for suitable 3, G 11 &#x3E; o.
Hence (8.27) implies that:

T~)~v[C,(~,)-T~+~’’log[C,(2sD’’]=T, (8.29)

At this time the trajectory of z(~, ~) is in a point Çi+ 1 which has ~*
coordinate equal to r/2 and Ã coordinate still equal to the original value,
while the p coordinate is:

The set image of Bi has dimensions constant in the 03C8 variables (because
the quasi periodic motion is rigid), while it contracts by at most

e-gTiG12 in the A variables (recall (8 . 29) and that g is an upper bound
for the expansion rates), for some G12 that we suppose &#x3E; 1, and also by
at most G12e-gTi in the p-variables.
The Ai+1-coordinate, being equal to its initial value, has distance

from the point A,+i(BJ~+i)=~+i(0) bounded by (8 . 24), i. e. by
Gg r~/2 ~ Gg s~/2 C2. This is for less Eil/2 C2 if, as we shall
suppose (see below), E1. Hence we can find a point 03C8 such that:

In fact such 03C8 can be estimated by the implicit function theorem by:

provided:

By energy conservation it must be that pi + 1 (B]/) == exp [ T (q)] r/2 is such
that the point (Åi+ 1 (B[/), ~~ pi + 1 (~)~ r/2) will be inside Wf+ 1 and it is such
that the set B~ + 1 defined by (8.19) with i replaced by i + 1, xi + 1--- ~,
p~ =p~+ 1 (~) and parameters:

is contained into Mi + 1 and S-T (q) (Bi+ 1) C B~.
It is now easy to check that letting C~~C~G~/2, ~=C~(&#x3E;3) and

defining the as in (8 . 21 ), (8 . 22), (8.19) we see (inductively) that
for all i’s the second term in (8.29) dominates over the first and (8. 34)
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holds for all i’s together with for , I small

enough ; and, finally, also (8 . 33) will be readily verified for small 
Hence we conclude that drift takes place on a time scale T* bounded

above by (8 . 23).
Clearly instead of trying to go systematically forward along the ladder

of whiskers we could have chosen an arbitrary up/down pattern and found
the existence of an initial datum which would have followed the prescribed
pattern (taking essentially the same time). In this way we can construct a
collection of 2N, N being of the order of of sets of (very small but
positive) measure of initial data collected according to the up/down pattern
that they follow in their evolution along the ladder of whiskers. If we give
equal probability to data corresponding to each pattern and choose one
of them at random we shall see that it climbs brownianly the ladder: i. e.
the existence of what we have called drift and of diffusion are essentially
the same phenomenon.

Finally, we remark that the analysis of this section extends to the case
of forced systems (5.91). Recall from the discussion at the end of section 5,
that one can construct whiskered tori (s, u) for (5.91) (with the right
À-frequency G)) for all s E E~ and u E [ - u, U). The second of (8 . 3) is trivially
solved (as (5.91) is linear in the clock action B) and the analysis of the
first of (8.3) is then carried out as discussed above (of course various
notions, such as the diffusion path, have now to be properly reinterpreted:
see end 5).

9. A CLASS OF EXACTLY SOLUBLE HOMO CLINES

After reduction to normal form, the motion of a quasi integrable
hamiltonian system near a resonance is described by a hamiltonian with
two perturbation parameters [N, BG]:

with :

were 11 &#x3E;0, ~&#x3E;0, the function J is analytic In 11 A, 11; and the functions
Jo, are regular analytic in the variables ~1/2I, ~1/2 A, ~ while  is

generally much smaller than 11 but related to it: e.g. ).1= 11Q with Q large
(in fact as large as wished, at the expense of the complexity of the 
All functions are analytic in the angles on which they depend.

If the model comes from the perturbation theory of a degenerate system,
like a celestial mechanics system or a forced system with clock variables
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(B, À) == (A1, (Xl)’ the (9.1) may contain some additional features and some
variations, see sections 11, 12.

In this section we look at a more special class of systems which we
shall call the even class:

where Jo, g20, f depend, in general, on I, A and v), 
The hamiltonian (9. 3) is remarkable because the homoclinic points at

(p=7r can be, often, computed exactly (namely they are at a = 0, modulo
some convergence questions).
An important class of examples, with /=2. is:

with Jo, go positive constants, ~ _ ~ 1 ~~ 1 ~2 , And for /=3:

with A, 11), Jo, go positive and, typically,
A==9(rt’~). The functions/may also depend on rt, Jl and they will be
supposed analytic in 11, Jl near 0 and in a for Im aj  I  ç, and
averageless and uniformly bounded in this domain (as 11 -+ 0). We make
the identification a 1--_ ~,, Ai=B, where À, B are the clock angle and the
clock action.

The model (9.4) is a classical forced pendulum (compare [La2, HMS,
ACKR, DS, Ge]) and the model (9.5) is a system arising in some celestial
mechanics problems, see section 12.
The determination of the location of the homoclinic point is based on

a very simple symmetry argument. Therefore we present it in the simple
case of (9 . 3) with J, Jo, f", m action independent (i. e. constants) and all the
phases are isochronous (quite simple, of course, but useful for illustration
purposes).
We shall show that for all the models in the even class the homoclinic

equations at (p=7T (6 . 47) can be solved to all orders of perturbation theory
and have 03B1 = 0 as solution. S’ince the difference between the two whiskers at
p = 1t and at any a is analytic in a, ti, by lemma 1’, we see an

actual solution of the equation, as long as  is small enough.
We begin by remarking that from the explicit form of W (t), see

appendix 9, the wronskian can be thought as formed with four l x l blocks
(l is arbitrary): the action-action and the phase-phase blocks are even
functions of t, while the other two blocks are odd functions of t. If p
denotes an even function (of t) and d denotes an odd function, we can
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write symbolically W (t) = r ). Similarly the vectors Fk and Xk in (6.8)
can be thought as column vectors with two / dimensional columns.

Set right away x=0: then the blocks of F1 are of parity ( ), thus we
see that, regarding the initial data for X1 as (constant) even or odd
functions:

and we see that the homoclinic conditions have the form, see (6.43):

because one can see that also the contribution from ~=±00 vanish as F1 1

is even in the phase components. Thus (9. 7) is automatically satisfied. In
this case one sees by direct calculation that /~2014/?2014oo=0.
However in general functions vanish, if constructed in the

way they are in the homoclinic equation. In fact, see (6.43), they are
generated by an odd function which as t -~ ~ oo converges

exponentially to ± (0) in the sense of our functions, so that we can
proceed to computing the harmonics of F via the formula:

which immediately implies that the expression outside the integral in the
homoclinic equations for the A variables,

denoted symbolically p~-p_~ in (9 . 7) does vanish.
The above formula implies also immediately that

so that the integrand in (6.43) is odd and therefore the homoclinic
condition holds.

We now assume inductively that the block structure of Fk and Xk is
respectively d, p and p, d: if so, the homoclinic conditions will be satisfied
to all orders, for the same reason they were satisfied at k =1. Clearly if
the assumption is verified for h =1, ... , k -1 and if we prove that as a
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consequence the Fk has the correct parity property, also Xk will have the
correct parity property.
The parity of Fk is immediately checked by inspection of (6 . 29) i. e.:

where Xk is the order k truncation of X: just observe that the matrix E

inverts parities, that is of type ~) for any and any

function b even in a and cp, and finally that 82 Ho (X°) = p d dp) so that
~2H0 X=(pd).82 

,;’
One easily checks that the argument is neither affected by action depend-

ence of the various coefficients nor by lack of isochrony: in fact the

unperturbed motion is such that the action dependence on t is even and
this is all one really needs: the only change is that not all the matrix

elements of Fk relative to the angle block (i. e. lower) are zero (but they
are still even).

10. HOMO CLINIC SCATTERING.
LARGE SEPARATRIX SPLITTING

The concept of homoclinic scattering arises naturally if one compares
the homoclinic splitting as seen in the original a coordinates or in the
intrinsic coordinate 03C8 associated with the whiskers normal forms of

section 5. The first part of this section is devoted to it.
The second part will deal with the theory of the homoclinic splitting in

systems with more than 2 degrees of freedom: the main point in the
analysis will be that when the unperturbed frequencies depend on a
parameter 11 and one of them becomes large (we shall say fast) as 11 -+ 0
it is not, in general, true that the homoclinic splitting is smaller than any
power in e. the determinant of the intersection matrix is not exponen-

tially small with some inverse power of ~ as ~ ~ 0 (see below for a formal
definition). Unless all the frequencies are fast.

Suppose that there is a homoclinic point at ;=;0’ p = 1t. We can regard
such point either as a point on the stable whisker, or as a point on the
unstable whisker. In this way the point receives, from the parametrization
in lemma 1’, the coordinates p=p0, q=0, 03C8=03C8s0 or/?=0, q=q0, 03C8=03C8u0,
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so that:

with the notations of (6 . 23), i. e. Z is the r.h.s. of (6 . 21) ; of course all
the above functions ( . )o are analytic functions of u.
We can consider the point on the stable manifold with coordinates

p = p,~, q = 0 with p,~ such that:

We can also o consider the point on the unstable " manifold o with coordinates
’ , + ~’ such that: , ,

and lemma 1’ guarantees q03C8 are analytic in ,).1 or  small ; note
that Q6*= qo ~
We shall establish a correspondence between B)/ and B)/, if they describe

the same a, so that:

and we denote it as:

calling the function o the scattering phase shift ; here we think of ~, ~r’ as
functions of the independent variable a. We also introduce the same

function regarded as a function of the common value a of the two sides
of (10 . 4):

If a, ~ are coordinates of the same points. The functions 6 are, by
lemma 1’, analytic on Tl -1 1 and in  for small u, and a(0)=0, a[(Xo]=0,
by definition.
The scattering measures the degree of interaction between the pendulum

and the rotators. If the rotators are not isochronous the scattering is an
interesting homo clinic property: of course if the j-th rotator is a clock

(i. e. it is isochronous) then (as it should because it is a clock).
The equations for the homoclinic point can be written:

or also as:

Hence the homoclinic splitting can be measured as a function of a by
Q (a) or as a function of 03C8 by QO (03C8). Note that if XCJ (t ; a) denote the
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evolutions of the stable/unstable motions with initial angle coordinates
(7c, a), it is a)-X~(0; ;) == Q (;).

Therefore there are two interesting sets of homoclinic angles. One set is
described by the 03C8 derivatives of Q T defined by ( 10 . 8) which we could
call the intrinsic homoclinic angles. The other set is described by the a
derivatives of the Q T at BJ/==0~ or, respectively, at (the latter
derivatives are proportional, via the matrix (close to the identity), to
the ~ derivatives of Q T in ( 10 . 7), phase shift included. The latter will be
called the natural homoclinic angles. Note that Q~, Q + do not appear in
the definitions of the intersection matrix as they can be computed from
the Q ~ , Q T by using the fact that the energy of the whiskers can be

supposed fixed (and equal for both).
The higher a or 03C8 derivatives of Q~, Q T in a respectively, will

define the intersection tensors. The homoclinic angles will be the eigenvalues
of the intersection matrix, i. e. of the matrix of the first derivatives of the

Qt, or Q~.
More precisely the trigonometric tangent of the homoclinic angles is

proportional to the mentioned eigenvalues. The latter have the dimension
of an action and, therefore, a normalization constant with the dimension
of an inverse of an action has to be introduced to really define the tangents
of the angles. A natural normalization could be (Jo I ro I) - 1, see (9 .1 ).

DEFINITION. - In the case of hamiltonians depending on a parameter rl,
e.g. (9.4), (9. 5), we shall say, that the homoclinic splitting is "smaller than
any parameter ~ if there exists c &#x3E; 0 such that when the

perturbation constant  is  = ~c the determinant of the intersection matrix
tends to 0 -+ 0 faster than any power in ~. Likewise in the same
situation we say that the homoclinic splitting is "exponentially the
determinant 6~ the intersection matrix is asymptotically equal to the determi-
nant of its first order approximation (in Jl) and the latter tends to 0 as an
exponen tial of some inverse power o, f ’ the parameter rl .

If l = 2 the results of [Nei] imply, for the model (9 . 4), that the scattering
phase shifts are smaller than any power, together with their derivatives at
the homoclinic point. The same holds if /&#x3E;2 and all the angles rotate at
fast speed (i. e. with co as in (9 . 2)). The intersection matrix and all its
derivatives are, under the same conditions, smaller than any power.
The relationship between the two notions of homoclinic angles and their

connection with the scattering phase shifts is outlined in Appendix All.
If /&#x3E;2 with mixed fast and slow rotators, like (9 . 4), (9 . 5), more analysis

is necessary to understand such cases.
In the remaining part of this section we study some more detailed results

concerning:
1 ) The relation between the intersection tensors in the two systems of

coordinates (a or ~). In fact we shall prove that for even hamiltonians all
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the odd derivatives of a [a] vanish at the homoclinic point a=(Xo=0.
Hence the homoclinic angles are the same in the natural and in the intrinsic
coordinates (in general even models).
The even derivatives do not vanish, in general, but they are bounded in

a useful way only if /=2 (or if /&#x3E;2 and co has non resonant and large
components, see (9.2) and take 11 small). In such cases, as mentioned
above, in fact the homoclinic splitting is smaller than any power in ~ and
therefore (by the discussion in appendix All) on can see that generically
the scattering phase shifts turn out to be also smaller than any power.

2) We consider even hamiltonians, depending on a parameter 11 &#x3E; 0, of
the type (9 . 3) or (9. 4), (9 . 5) and the vector co will be supposed to have
one of the two forms:

and to verify a diophantine condition v I -1 ~ ~ -b Co for some b,
Co, T&#x3E;0: in the first case take b =1 /2 and coo diophantine with constants
Co, T; in the second case let (002’ ..., verify a diophantine condition
with constants Co and T&#x3E;/-2, then given a &#x3E; 1 /2, it is easy to see that

there exists a set Ql c [00, (0) with:

such that if 03C91/~~03A91 then the above estimate I holds with

b=a-1/2.
We shall study the whiskers of an invariant torus run quasi periodically

with rotation spectrum co.
The first of (10.9) will be called the fast rotation case and the second

will be called the mixed fast-slow case. The angles whose rotation velocity
is O(~-1/2) will be called fast angles or fast modes ; the others slow. Thus
in the first of the cases in ( 10 . 9) all the angles (or modes) are fast while
in the second case the first angle a 1 is fast and the others are slow.
We shall usually add the hypothesis that/is a trigonometric polynomial

of degree N in the ä.’s. The results a), b) below will be derived under the
additional assumption that go, Jo, J,/depend on the parameter 11 and are
unformly bounded and holomorphic in:

while the results c), d ) require the same properties for go, Jo, J but put on
f only the requirement of boundedness and holomorphy in A, I as above
and for 
The above 11 dependence will be recorded by appending a subscript 11

to the hamiltonian as in H,~.
The hamiltonians we are considering are even in the sense of section 9.

Therefore if co is as above, the invariant tori constructed by using lemma 1’
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of section 5 will have, for Jl small enough (depending on 11, in the ~
dependent cases), whiskers homoclinic at cp = 1t, a = 0.
The following theorem summarizes our main results about the homoclinic

splitting for even models:

THEOREM 3. - a) The odd derivatives of the scattering phase shifts vanish
at the homoclinic point. Hence the homoclinic angles will be the same in
both systems of coordinates (hence smaller than any power in the fast
rotation cases, i. e. if l = 2 or if l &#x3E; 2 and ro is given by the first of ( 10 . 9)).
This shows that the difference between the two notions of splitting of the
whiskers (at the homoclinic point) is a higher order effect.

b) In the fast rotation cases, i. e. if l = 2 or if l &#x3E; 2 and 03C9 is given by the
first of ( 10 . 9) all the even derivatives of the phase shifts and the odd
derivatives of the homoclinic splitting are smaller than any power.

c) The jacobian determinant of the derivatives of the scattering phase
shifts are not, in general, smaller than any power in the mixed cases, (i. e. if
l &#x3E; 2 and ro is given by the second of (10 . 9)). The same can be said of the
jacobian determinant of the derivatives with respect to a or to  of the
homoclinic intersection tensors.

d) If l &#x3E; 2 the second order value of the determinant of the intersection
matrix is not smaller than any power as ~ -+ 0, in general, for the mixed
rotation cases.

Remark. - Hence one should not be led erroneously to believe that
the homoclinic splitting is, as a rule, exponentially small when there is

one or more rapidly rotating angle (unless all of them do rotate at fast
speed). This is particularly striking in the case d).
Here we prove: a) the part of the statement b) concerning the connection

between the homoclinic splitting and the homoclinic scattering is briefly
discussed in appendix All while the statement about the size smaller than
any power is not analyzed here as it is well known ([N], [Nei]) and we do
not really need it; the proof of c), d) is an explicit check and, to set

an example, the calculation is performed in appendix A 13 for the

statement d).

Proof. - We shall take J, Jo, g0&#x3E;0 constants and f depending only on
oc, cp. Most arguments being based on symmetry properties, the general
case is identical. We make the above simplifying assumptions only to have
a lighter notation and to exhibit the essence of the argument (as we did
in the analogous situation in § 9).
The wronskian matrix for such a case is simply related to (A9 . 8):
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where i, j =1, 2, is the matrix in (A 9 . 8). And we shall write. 

where and c, c’ are constants and the C

functions are analytic in x at ~=0. The radius of convergence of the series
defining Ci’ is 1, but all the above functions of x can be perfectly
continued beyond, as their singularities are poles at 
As function of t the Ci’ are holomorphic in t with poles,

at most double, at i (2 n + where n is an integer.
We shall consider functions of t which can be represented as:

with s  oo, 03C8) holomorphic, at 03C3 fixed equal to + or - , in the x-
plane in a strip |Im xI  1 except, possibly, for a polar singularity at x=0.
We restrict also Mj to be trigonometric polynomials in the 03C8 variables.
We call ~~ such class of functions. We call the class obtained by
requiring that no ~) in ( 10 . 14) is BP and x independent: i. e. we

"quotient" ~~l with respect to polynomials in t.

Note that a function M (t) can admit at most one representation like
( 10 . 14) with the above mentioned analyticity properties: i. e. given M (t)
one can compute ~, o). In fact, assuming for simplicity that

x -+ BJ~) are analytic at x=0, then:

where we write M! = " M! vxk ei 03C8.03BD; to compute substitute in

the above equation M"(~) with (M~M-~M, ~~~")~~; and so on:

having computed M03C3s(x, 03C8) repeat the procedure with s replaced by 
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We define a linear operation P on the functions by defining
its action on the monomials:

with h, k integers, 9=0, 1, p= ±1 and ~±zo.v~0:

Note that the P is not defined on the polynomials of t, cr, i. e. if

and co.v=0 (so that no exponentials are present in the monomial
defining M). ,

The operation V yields, at fixed 03C3 a special primitive of M, in fact:

A few further features of P are the following:
1 ) If M is odd in t then .J M is even ; if M is even then M is odd.

2) If M is analytic in t and odd then Y M is analytic and even.
3) If M is analytic in t and even then V M (t) can be continued analyti-

cally from (or to a function P+M(t) (or, respectively, to

~ - M (t)) defined for all t’s is odd (or, respec-
tively, J- M(0) is odd ). In general P+M(t)~P- M(t) unless
J+ M(O)=O M(O)=O). In the latter case P+M(0)=P- M (0) = 0.

4) The function is defined for Re R large
Jooo

enough and it admits an analytic continuation to Re R  0 and:

5) If M is such that a) for some M (~, o) defined on
the torus, then:

and P M is analytic if M is analytic in t and the functions P M and M
have the opposite parity, if M has well defined parity in t.

7) If M depends on other l -1 dimensional angles a as a linear combina-
tion of monomials:

with 9, 9’=0, 1 and cos03B8’y = cos y if &#x26;’=0 and cos03B8’y=sin y if 9’= 1, the
JM has the same form. We shall say that M is time-angle even if
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9+9’= even for all monomials of M. If, instead, 9+9’= odd for all

monomials we say that M is time-angle odd. It then follows that the time
angle parities of M and P M are opposite (when either is well defined).

8) y does not change the trigonometric degree of M: i.e. if ~, 0-)
had a maximum trigonometric degree N in the 03C8 variables also the

functions representing P M will have trigonometric degree ~ N. And the
operator P does not increase the degree in t.

9) We extend the operation P to M by setting 
the above parity properties remain valid. Property 4) holds for

in general. Property 8) changes as the degree in t of
the "non exponential" monomials of the form is increased by 1.

After the above remarks we make the inductive assumption that a)
has action components ( + , T), denoted symbolically d, of odd time-angle
parity in the above sense (different from the one used in § 9) and angle
components ( - , J.), denoted p, of even time angle parity. Opposite parity
assumptions will be made for a). We shall write:

dropping the label 0- from F and X. In fact the main goal of the above
formalism is to treat simultaneously the stable and the unstable whiskers:
for it is a = 1 and F‘‘, X‘‘ represent Fh+, Xh+ while for ~0, a== -1
and Xh represent Fh-, Hence we can symbolically write:

with suitable 03C3-independent coefficients 03B4,03BE and for the

( + , i) components and odd for the ( - , !) components in the case of X,
and with reversed parities in the case of F.

Remark. - It will be useful to use also complex notation: in this case
the (t, a) parities reflect into (a, v, ~) parities. More precisely if y is either
Õ or ç and if À= (~, ~1) we can rewrite the r.h.s. of (10 . 23) as:

where 03B3~R and 03C1g’-03BB=(-1)g’ yf ; here, as usual, we use the convention the
sum over Â runs over vectors with non-negative first component (so as
not to repeat identical terms). From ( 10 . 24) it follow immediately the
usual parity rules: p.d=d and p.p=d.d=p; p~time/angle even,

d= time/angle odd.
Explicit expressions of X in terms of the P operators can be found in

appendix A 13, see (A 13 . 3) - (A 13 . 5), for the cases J, Jo, go, Iv constant.
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Having set the above definitions we deduce immediately from the

(A13.3)-(A13.5) and from the above property of P that X’’ will have

the opposite structure to F’’ (i. e. if F’‘ = (dp) then X’’ = D )-
The above remark and (6.10) imply that if Xh’ has the structure (dp)

for h’ h then F’’ has structure. And since it is obvious that F1 has

( ) structure, the ( 10 . 22) follows by induction.
To establish a connection between the above remarks and the

scattering theory (and to prove theorem 3) we consider the functions
a)=X"(0, a, t), see (6 . 24), defined in section 6 and describing the

7 whiskers orbits with initial data at angles 1t a). We can write:

for suitable /?(a), and + y’), see (6 . 23). We write ( 10 . 25),
at t=0, for the ~ components as:

where 03C803C303B1 are coordinates (see lemma 1’) of the point on the 0’-

whisker with angle coordinates (7c, a). Then the lemma 1’ statement that:

with’! analytic in its arguments small ) and ( 10 . 26) imply that:

Hence:

and therefore we conclude that:

The scattering phase shifts o[a]=BJ~-BJ~=~-~ by ( 10 . 26), ( 10 . 28)
will be:

and "all it remains to do" is to find expressions for ç via ( 10 . 30). Note
that ( 10 . 30) and ( 10 . 31 ) are quite general and could be used also for non
even hamiltonians. But we keep concentrating on the even case, for

simplicity.
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To find more concrete expressions we use ( 10 . 23): if we set ~=0, x =1
we find in fact 03B6~ (p (a), 0, when a = + and 03B6~ (o, q (a), 03C8u03B1) when a = -
from the! components of X.
Hence we see that only the terms with ~==0, g =1, g’=O can contribute

to 6 [a] as the time-angle parity must be odd (and as the monomials in
the expansion of X have no discontinuity Therefore:

where the -1 has been introduced recalling the convention that o[0]==0.
Hence in the even models the odd a-derivatives of the scattering phases

shifts vanish, at a = 0 (i. e. at the symmetric homoclinic point), More
general expansions for the scattering phase shifts and for the splitting are
derived in appendix A 13 .
Although we have always referred to hamiltonians like (9.3) with

J, Jo, go, constants, we have only used parity properties which remain
unchanged if J is allowed to depend on A and if Jo, go, are allowed to

depend on I, A, 1- cos po The only difference will be a more complicated
wronskian, still with the even time parity properties for its action-action
or angle-angle matrix elements and with odd parity for the action-angle
and angle-action elements. The matrix elements will still have the property
of being expressible as power series in t and 03C3 gt with o indepen-
dent coefficients up to some parity fixing factors a as in ( 10 .13), and Ch
will be expressed in terms of Fh via the P operations through suitable
extensions of the formulae in appendix AI3.

This proves a) of the theorem 3 showing the coincidence of the homo-
clinic angles in the intrinsic coordinates 03C8 and in the natural a coordinates.
Part b) is a simple corollary of the results in section 9, (we allude to its
check in appendix All).
The proof of part c), d) simply consists in exhibiting an explicit example

as we "just" have to show that in general the homo clinic splitting is large
if/~3.

It emerges, from the example, that for the /=2 systems it is possible to
think that the homoclinic intersection tensors are all exponentially small
because in such cases a special property holds. Namely that an expression
like ~ eo is either 0 or it is necessarily ~ 

i

This property is no longer true if /&#x3E;2 and we can obtain slow non zero
velocity 03C9.03A303BDi, much smaller than (Ûl, even by combining modes 03BDt which

i

have fast velocity (unless of course all the angles rotate at fast

velocity).
It will be sufficient to show that, in a model, the second order contribu-

tion to the first derivatives of the homoclinic splitting Q t (a) (which respect
to a) define a matrix (called above the intersection matrix) with determinant
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which is not exponentially small. This means that it is not bounded by an
exponential of an inverse power of the parameter 11 in ( 10 . 9), as ~ -+ 0 at
second order (it is easy to see that if ell is the fast angle then, to first

order, one still has exponentially small splitting at least in the al direction).
The analogous analysis for the scattering phase shifts is essentially

identical and in appendix A 13 we only derive the expression of the second
order phase shift without actually computing it. In fact we shall not really
need, in the application analyzed in section 12, the homoclinic angles in
the intrinsic coordinates and, therefore, we shall not really need the part
of theorem 3 concerning the phase shifts.
As a final comment we point out that the inductive check of ( 10 . 23)

yields a somewhat stronger result if one examines it more carefully. In
fact one can check, inductively, that the terms with k = 0 have k’ = 0 as
well and furthermore: the terms with have k’ __ 2 (h -1 ) for Fh and

and, of ±) yield (different) parametrizations of the
invariant torus.

11. VARIABLE COEFFICIENTS. FAST MODE AVERAGING

Let /=3 and consider a hamiltonian A, cp, oc ; 11) dependent
on a small parameter 11 having the form:

where A=(B, A), a=(~, a) are canonically conjugated variables ; v=(v, n)
is an integer vector ; and where J --- (h") -1, Jo, are not constants. In
fact we shall allow Jo, go, fv to be functions of 111/2 A, 111/2 I, 11 (cos cp -1).
We shall can J, Jo, the values of such functions at zero arguments,
assuming them to be #0. This implies that when Jo, J, go are replaced by
their values at 0 in ( 11.1 ) (i. e. they are given the barred values) then the
theory of section 9 applies. It is not restrictive to suppose that J is I

independent and that Jo is cp independent and we shall do so. Here, the
choice of the origin 111/2 A = 0 is arbitrary and in fact, later, we shall replace
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the center of the rescaled action variables as an arbitrary point on the

difficsion path (of course ~1/2 I = 0 is instead fixed, being related to the
unstable equilibrium of the pendulum).
The 03C6-dependence of J-10I2 can be put together with the Jo go (cos cp -1 )

part of the pendulum hamiltonian ; and the I dependence of J can be
removed by shifting the origin of the I variables by a suitably chosen, A

dependent, quantity G: this can be achieved (up to corrections in

(l-cos p) that can be included in the go) by a canonical transformation
generated by:

and we can take G (a) --_ - 1 2 r~ 1 ~2 a2 Jo (a, 0)~J’~, Thus, we shall

consider (11.1) with J, Jo functions of (r~A, ~~1) and functions

of (p-1)). Such functions will be supposed analytic
in their arguments and admitting holomorphic extensions "by po" in the
variables (for I near 1=0 and for A near a real interval

~=~-1/2~ and "by angles. The functions will be suppo-
sed to admit upper bounds uniform in ~ as ~ -+ 0 (this is only slightly
more general than the assumption that they are in fact fixed functions of
111/2 I, 111/2 A, which is what we really need). In fact we could, in most of
what follows, permit a 11 dependence on the bounds of f proportional to

for some &#x26;~0: but we require boundedness to simplify the formulation
of the results, occasionally commenting on extensions of the latter type.
Uniformly and positive lower bounds on go, I will be

supposed to hold, as well.
The f will be supposed a trigonometric polynomial in the a angles with

degree ~N for some N&#x3E;0. In fact if we want I-independence of J we see
from ( 11. 2) that f cannot, without loss of generality, be considered a
trigonometric polynomial in the cp variables even if the original/in ( 11.1 )
was such.

The above hamiltonian ( 11.1 ) is taken as an example because of its
relevance for the applications of section 12: and essentially all the results
of section 10 extend to the cases of variable coefficients (in the above
sense).
The dependence on the action variables through their values scaled by

a small parameter 111/2 is natural. At least if one thinks that ( 11.1 ) arises
from the change of variables a = r~ 1~2 A, i = ~ 1~2 I, b = r~ 1~2 B accompanied
by a multiplication of the hamiltonian by a factor 11-1/2 (which is a

transformation leaving the Hamilton equations invariant) followed by a

recaling t= rl -1~2 t of the time (which divides the hamiltonian by another
factor 111/2: here t is the time for ( 11.1 ) while t is the unscaled time for
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( 11. 3) below)), and starting from a hamiltonian HJ1:

with h analytic in a (and A"~0); Jo #0 analytic in a, i ; ~~0 analytic
in a, i, 11 (cos (p -1 ) ; and f; n analytic in a, i, r~ (cos cp -1 ) and vanishing
if for some N; O.

The ( 11. 3) is a natural form in which the hamiltonian appears after

the first basic approximations, in many Celestial Mechanics problems, as
the three body example discussed in section 12.
We call ro an admissible velocity vector if (Ûl = 11-1/2 (û and 0)2E111/2 [00, m]

varies in an interval covering the values taken by as A varies

in the interval a2) around which H is defined, see above.
The set A(C) of the A’s such that has relative measure

&#x3E;(1-K~-1/2C-1), for some suitable K &#x3E; 0 and ~ small ; (such a straight-
forward bound, obtained, as usual, by summing up over all the

resonant intervals of length ~ (C 111 v 1 ) -1, could be improved by taking
into account that the centers of the above resonant intervals have to be

in A: this observation leads to a relative measure &#x3E;(1- K’ 111/2 C-1) with
any for a suitable C).
We fix (Û2) admissible and verifying a diophantine condition,

for some C &#x3E; 0 and we consider the invariant torus

constructed by lemma 1’, section 5, with rotation velocity ro, (when exist-
ing).
A precise description of what we have in mind by saying "constructed

via lemma 1’" is as follows.

We are in a situation considered already in the corollary to lemma 1’
described in section 5, see (5.91) and following. The parameters in (5.96)
are, of course, 11 dependent in the present case. And we easily see that Ço
(hence ~o)’ can be taken 11 independent, while Eo, 110’ po. Eo can be

taken proportional ,~ -1, 1, 11- 1/2, 1 respectively.
Then (5.96) shows that we shall be able to construct a family of

invariant tori with rotation velocities 03C9 and Lyapunov exponent g’ with
with the second angular velocity given by for

A in A (Jl-l/7), i. e. for a set of a’s with relative measure (1- K Jl1/7)
if:

I JlI  Jl* == B* [[(11-1111/2111/2)7 (11-1/2)1411]7 (11-1)]-1  B* 1192 ( 1 1 . 4)

where 92 is what comes out of a blind application of the general results
of section 5 [See (5. 96)].

This constant can be greatly improved by taking into account the special
properties of our particular case. Already by using more carefully the
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estimates of section 5, i. e. using the weaker (but sufficient) conditions
(5 . 76) and (5 . 85) with one would obtain a condition like ,

I JlI  B* 11-(16+60) with the set having relative measure I
&#x3E;(1-K~s).
However, for simplicity, we shall use (11.4). If f is supposed to be

bounded proportionally to r~ - b, for some instead of being uniformly
bounded, the results of the theorem change by suitably increasing 92 to a
(linearly b-dependent) new constant.
The above invariant tori for the hamiltonian (11 . 1) are run quasi

periodically with angular velocity co and Lyapunov exponent g which have
the form:

(Ûl = 001 11-1/2, (Û2 = 002111/2, (11. 5)
with y’ -+ 0 as 11 -+ 0, 002 E [o, 00].

Given any admissible co verifying a diophantine condition 
with C  I JlI- 1/7), there will be an invariant torus run quasi periodically
with angular velocities co, if ~ is small enough and if Jl verifies (11.4).

In what follows we suppose that 11 is small enough, that  verifies ( 11. 4)
and study one of the above invariant tori, with prefixed angular velocities
and Lyapunov exponents given by ro, g like in ( 11. 5). And we want to
estimate the whiskers splitting at the symmetric homoclinic point (p=7t,
a=o.

Remark. - It is convenient to fix as the origin of the
unscaled variables so that co~ --- aa h (a) (obviously the condition on  will
not be affected by such a choice and we shall assume that the associated
invariant torus is persistent). Hence, the values of J, Jo, are now the
values o. f’ the corresponding functions evaluated at r~ 1~2 A = a, T~~~I=0.

Consider first the case In this case one can perform an elementary
discussion of the separatrix quadratures. For instance if Jl=O and the
pendulum and rotators are independent in the sense of section 4 (i. e.
Jo, go are A independent) one finds:

One can check that the pendulum wronskian matrix elements verify, for
11 small:

Here the constants K, u have to be taken large enough, depending on the
functions J, Jo, go. Furthermore the functions admit expansions
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(10.13) : this is now true also for the components that were zero in the
cases considered in sections 9, 10. In appendix A9, part 4, we have studied
the full wronskian in a rather general pendulum system. Also the parity
properties in t of the full wronskian are the same (i. e. even in the action-
action or angle-angle blocks and odd in the other, mixed, blocks). The
above "large" domain bounds ( 11. 7), are useful in the fast rotation cases
(i. e. when both frequencies have size of 0(rt’~), or co2=~(rt’~)),
discussed in section 10 but they will not be really necessary in what follows
(boundedness in a finite strip being sufficient).
The parity properties and the analyticity together with the bounds

( 11. 7) are the only ingredients necessary to perform the analysis of
sections 9, 10 as we have repeatedly claimed and as it is easy to check.

Therefore the same conclusions about the homoclinic angles at the
symmetric homocline a = 0 hold. In particular we consider the intersection
matrix to the lowest non trivial order (i. e. to the lowest order that makes
its determinant not exponentially small as 11 -+ 0, (namely the second)).
By the final result of appendix A 13, see (A 13 . 22), (A 13 . 23):

is the leading part 0 the intersection matrix (0) -+ 0 and at
second order inp); see section 10, ( 10 . 7), for the definition of Q; 03B4
denotes here the 812 = Õ21 of appendix A 13 ; ro is defined in ( 11. 5), y is a
constant at fixed w2 and the first matrix element is exponentially small
(to second order) ; are defined by the integrals in (A 13 . 21 ),
(AH. 23) ; and, finally, see the remark after ( 11. 5) for the values of

go.
The ( 11. 8), therefore, shows that generically 8=(9(~r~), and hence

(consequence of (11.5)) this leads over the terms of order 3
and higher and the splitting is not exponentially small as ~ -+ 0, but of
the order of det M = - b2.
The Õ in ( 11. 8) has to be multiplied by ~1/2 if one wants to regard it

as the intersection tensor for ( 11. 3), (the reason being that with our
definitions the "homoclinic angles" have the dimensions of an action and
scale as such upon coordinates rescalings).
A more formal statement of the above conclusions is:

LEMMA 4. - Consider the hamiltonian (11.1) near the segment A where
varies, as A~0394, in an interval ~1/2[03C9,03C9] with 03C9&#x3E;0. There is c&#x3E;O

such that then (11 .1) admits invariant tori which, if ~ is small

enough, have whiskers with a "homoclinic splitting" ( - determinant of the
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above intersection matrix aa Q? 1 of O «113/2 Jl2)2) as 11 -+ 0, provided the
sum in (11.8) does not vanish accidentally.
As a second 0 important extension of the results of sections 9, 10 we

consider a situation also 0 met in some " applications, (e.g. see § ’ 12). Namely
a hamiltonian obtained 0 by adding j to HJJ in ( 11.1 ) a further perturbation:

where F is analytic and in (cos (p- 1) but it is not small.
We suppose that F, which by assumption contains only harmonics that

are multiples of a given mode Yo, depends on the fast variable À == cx1: 
03BD01 ~ 0. We say that F is unimodal on a fast mode, with mode Yo.
Hence the hamiltonian that we consider is:

depending on whether we regard it as a function of A, B, I or of a = 111/2 A,
~1/2~=~1.
We shall refer to the above two equivalent representations of the same

mechanical problem as the scaled representation (H) and as the unscaled
or natural representation (H).

In the case ( 11.10) we cannot apply directly the results of sections 9, 10.
But one can remark that the angle a . Vo is a "fast angle", i. e. it rotates

(if unperturbed) at speed ~-1/203C91 compared to the speed (Û2111/2 of the
"slow mode" 

The idea of the averaging method is just the remark that quickly 
ing perturbing forces of order 1 can, in fact, for many purposes, be treated
as small. However the method does not consist in the brutal setting of
F = 0, so familiar in heuristic treatments, but rather consists in treating F
as a perturbation by putting a formal parameter P in front of the total
perturbing terms and by taking as many orders in P as it might
be necessary to match the precision required, when P= 1 (and eventually
setting p = 1).
We consider the ( 11.1 ) perturbed by ( 11. 9) i. e. we consider ( 11.10):

where we have expanded h (A) = ~1/2 w2 A + 11 - for a J analytic in ~1/2 A

(J (0)#0) and with the functions J, Jo, go, F,/having the analyticity and
boundedness properties described above around a line:
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In addition F, f will be supposed to be trigonometric polynomials of
degree _ N in (a, cp), allowing also an analytic dependence of the Fourier
coefficients on the variable z -_- 11 ( 1- cos cp).

In the present case we show that the method allows one to establish
the existence of the invariant tori and to compute the leading order
expressions of the homoclinic angles, as ~ -+ 0, ( _ ~c, with c &#x3E; 0 large
enough.

LEMMA 5. - Fix x &#x3E; 0 and 0  a  1 /2. ~’here exist constants 110’ B * &#x3E; 0
such that if i JlI  ~~, c &#x3E; 10, and I ~ I  B* ..,-CJ then one can construct a

holomorphic canonical map casting the hamiltonian H ( 11.11 ), for all
011  110’ in a form:

with J, g, 1 (depending also on 1 bounded and holomorphic in the complex
domain:

for suitable. ~-independent K, 03C1, 03BE&#x3E;0. The smallness condition on 110 can be
taken to be ~1/20 log ~-10Dx for a suitable D&#x3E;0.
The reason for the validity of ( 11.13) is simply that in Ho F, see ( 11.10),

no strong resonances occur with v 1 _ O (~ -1), all denominators being
bounded below by O (r~ 1~2). Hence we are in an essentially better situation
compacted to that in section 7, as we can proceed to perturbation theory
of much larger order, essentially O (~ -1 ~2), after taking advantage in the
first step of large denominators (of order O (r~ -1 ~2)) to reduce the size
of F.

The method used to deduce ( 11.13) is the usual method developed in
the Nekhorossev resonance theory. Note, however, that in ( 11.13) the
angle a are in the remainder term (while, perhaps, one would expect them
to remain of order the mechanism for this is essentially the same as
the one used in section 7.

The estimates leading to (11.13) are carried out in detail in appendix
A 10, using the scaled variables form H F of the hamiltonian.
Once the hamiltonian has been put in the above form we are in a

situation in which the theory of section 5 becomes applicable, at least if c
and x are chosen large enough. Assuming that the value c = 92 (i. e. the
value dictated by the "blind" bound discussed above: see ( 11. 4)) is also
large enough for lemma 4 to hold, and taking = llc we see that the
methods of section 2 -:- section 8 are applicable.
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In fact we see that for a set of A E 03A3~ ci A of relative mea-

with K being a suitable constant, it is (if
~2=~(A)=~~+~Ah~/(~(~)L see also the definition of

"admissible" after ( 11. 3)):

and for each such A there is an invariant whiskered torus run quasi
periodically with angular Thus if lemma 4
holds and if x &#x3E; 2 597 (so that the round is larger than
the "homoclinic splitting" ~ () ((~ 3/2 ~2?2)) we see that drift and diffusion
take place along 2.

Remark 1. - Thus we see that along the line 2 there is a whiskers
ladder with very small rounds spacing, as ~ -+ 0: i. e. of order (9 (~x/7).
We see that this is no in spi te of the presence of F (which is of (9(1)) and
of  f (which is smaller than F but still very large, of ~(T~)=(9(~),
compared to the spacing in the ladder).

Remark 2. - The holomorphy and uniform boundedness in P is very
important: it allows us to conclude that the tori equations as well as those
of their whiskers can be computed as power series in P. And since 03B2=1 is
inside the radius of convergence (B* 11-CJ) we get immediately that the
various orders in P, (note the distinction between orders in 03B2 and orders

or in 11), give contributions to the whiskers parametric equations or
to the size of the homoclinic angles whose size decreases with the order k
in P as at least. Hence if to some order some contribution has a size
of some power of ~ it becomes a matter of a calculation to finite order to
check if it is the dominant contribution to the quantity being calculated.~ See
remark 5) below.

Remark 3. - All the above invariant tori will have whiskers homoclinic
at cp = 1t, a = 0 because all the above hamiltonians are even in the sense of
section 9 (it is easy to see, although not necessary, that all the canonical
changes of coordinates that we use (in appendix A 10) to perform the
perturbation theory construction of f do not change the even nature of
the hamiltonians). Hence it makes sense to ask about their homoclinic

angles or tensors.

Remark 4. - The above analysis shows that if we introduce an artificial
parameter P that we put in front of both 11 F and 11~.t: then for 11 small,
we can compute the whiskers for P= 1 in power series of P. In other words
we can apply perturbation theory to compute the intersections tensors.
We have to push perturbation theory up to an order n (in P) such that
the exactly computed terms are larger than the remainder (which is of
order r~ -n~2). In concrete cases this might mean just the second order
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(never the first as we have seen that to first order the intersection tensors
are degenerate).
Remark 5. - And drift or diffusion will follow along the line J~ by the

theory of section 8, for most choices of P around ? =1 (and possibly 03B2
exactly equal to 1 ), provided there is an order at which one sees that the
homoclinic intersection tensor is not exponentially small. Because in this
case the rounds spacing in the ladder of whiskers is, by the averaging
phenomenon, always faster than any power (being 9 (r~x/’) for a prefixed x,
if ~ is small enough) and the splitting cannot be exponentially small unless
there is a cancellation between finitely many orders in P on a segment of
order 0(1) of ~f. By the analyticity in P, this can only be for exceptional
values of P. Of course in a given problem one has to exclude that P =1 is
not an exceptional value (unless P happens to be a natural parameter in
the problem and one is just interested in showing existence of drift or
diffusion for some values of P). The check of the latter property is reduced
in general, by the above analysis, to a finite order calculation which, in
concrete cases, could be conceivably performed with the help of an elec-
tronic device.
The analysis is thus concluded and one can try to apply it to some

concrete problem. This is better than trying to continue proceeding in
general because in this way we can avoid formulating too abstract results,
and apparently unphysical hypotheses on the perturbations.

12. PLANETARY PRECESSION.
EXISTENCE OF DRIFT AND DIFFUSION

Imagine a planet ~ as a homogeneous rigid body with cylindrical
summetry. The body surface will be described in polar coordinates by
p=Rh(cos 9) for some R and some h, R&#x3E;O, 0/x~l, for a rotation

ellipsoid with equatorial radius R and polar radius R/(1 + 211)1/2 it is

/!(z)=(l+2r~)’~.
We suppose the planet center T to revolve on a keplerian orbit

t -+ ~.r (t): the orbit plane will be called the ecliptic plane and k will denote
its unit normal vector which sees the planet rotating counterclockwise.
The longitude ÀT of rT on the ecliptic will be reckoned from the major

semiaxis of the ellipse ; hence ÀT = 0 is the aphelion position i. e. when

I is maximal: rT (0) = a (1 + e), a being the major semiaxis of the
Keplerian ellipse and e its eccentricity.
With these conventions, rT and 03BBT are related by the focal equation

e.g. [G], p. 304):
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~n this section we shall always denote by e the eccentricity of the orbit
and to avoid confusion with the Neper constant we denote the exponential
of a number a by exp oc, while e0152 will denote everywhere the 03B1-th power of
the eccentricity e.

Kepler’s law, 03BBTr2T = const, and ( 12 .1 ) imply that if Iv is the keplerian
average anomaly:

then:

and the motion is where 203C0/03C9T = 203C0a3/2g-1/2N is the year of
the planet, Newton’s constant and mT, ms are the
masses of the planet and of its star.
The unit vector i pointing from the focus towards the aphelion will be

used together with k and a third vector j to form an orthonormal triad
(i, j, f) of fixed directions in space.
A comoving frame (T ; ~, i2, i3) will be attached to the planet with

i3 axis coinciding with the symmetry axis (polar axis) of the planet and
~ is arbitrarily chosen on the equatorial plane, (i. e. the plane orthogonal
to i3).
The position of (T; i1, i2, i3) referred to (T ; i, j, k) will be determined

by the three Euler angles g, (P, Bj/ with g being the angle between k
and i 3, cp being the angle on the ecliptic between i and the ecliptic -
equator node n, while Bj/ is the angle on the equator between n and i1,
(drawings with the above and the following notations can be found
in [G, p. 318-321]).

In the coordinates (3, (P, the motion of the planet 8 is described by
the Euler-Lagrange equation associated to the lagrangian:

where J3, J 1 =JZ are the inertia moments of mT its mass, ~ ~ ~ its volume,
ms is the mass of the heavenly body keeping the planet ~ on its celestial
path, t -+ and k is Newton’s constant.

Very remarkable is a theorem by Andoyer-Deprit, see [G, p. 3182014321],
which produces canonically conjugate variables casting the Hamiltonian
corresponding to 2 in a simple form. To describe such variables we
consider the unit vector k parallel to the angular momentum 
M =! KT| and call angular momentum plane the plane orthogonal to k. We
define the angle 8 and g between k and k and, respectively, k and i3, so
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that the components of the angular momentum on k and on i3 will be,
respectively:

We also associate with KT two more remarkable angles: in fact the
angular momentum plane has a node m on the ecliptic plane and one n
on the equator plane. We call ’Y the angle on the ecliptic between m and i
and cp the angle on the angular momentum plane between the node m and
the node n. Finally we let 03C8 denote the angle between n and i1.

Deprit’s theorem states that the variables (K, y), (M, cp), (L, Bf1) are
canonically conjugate for the hamiltonian H associated to 2, and that H
in such variables takes the form:

where V is the integral in (12.4) changed in sign, and (B, À) is a fourth

pair of canonical coordinates with À being the average anomaly of the

planet in its revolution about the ellipse focus, see (12.2). The pair (B, ~)
has been introduced in order to eliminate the explicit time dependence
from the hamiltonian.

It is convenient to bear in mind that 03C9T B has a simple physical interpret-
ation : it is the energy stored in the device providing the external force
that keeps the heavenly body ~ on its keplerian celestial path, ~ -~ 
By symmetry considerations it is clear that V is a function of the angle Â.

(or of ~r), and of the angle a between the position vector rT and the axis

~ of the planet. In fact, it is easy to find out an expression for V=V((x, ~).
Recalling the relation between the Legendre polynomials P~ (z) and their
generating function (1 + x2 - 2 1/2, one finds:

and the above expression can be used to compute the series expansion of
the potential energy in the eccentricity.

If we perform the calculation neglecting the terms in (12.7) which come
from /~4 (which roughly means neglecting compared to 1, with
R being the planet radius and a being the major semiaxis of its orbit,
because the odd orders in l vanish by symmetry), it is well known,

(See [L]), that the only properties of the rigid body that matter are the
inertia moments. It is also clear that the hamiltonian must be expressible
in terms of the physical quantities that establish the orders of magnitude
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of the problem. Thus we expect the hamiltonian to be a function depend-
ing, besides on the angles and their conjugate moments, on the daily
rotation of the planet 03C9D, on the yearly rotation 03C9T and on the inertia
moments Ji. The physical periods are introduced into the problem through
the initial data, which we denote K, M, L, around which we want to
set up a perturbation theory. Denoting T1’=(J~-J~)/J~

cos io=KM-1 (the cosine of the planet inclination io over the
ecliptic), and:

it is a classical calculation to check that the exact form of the hamiltonian

is, to order k in the eccentricity e and denoting [.]~~ the truncation to
power k of a series in e:

The model thus obtained will be called the 
model. The reason for the above definition [especially ( 12 . 8)] is that -~03C9
has the physical meaning of the average angular velocity of precession of
the equinoxes, as it appears also from the following analysis: for more
details see appendices 6, 7 where we discuss this celebrated result of
d’Alembert using canonical formalism.

Concerning the approximations involved in passing from ( 12 . 6) to

( 12 . 9) we note that the terms of 0(~(R/~) are believed to be really
negligible for all practical purposes in many astronomy problems while,
for the truncation approximation, d’Alembert did not have data on the
Moon mass accurate enough to wish to consider orders k &#x3E; 0 in his theory
of lunisolar precession. Here we consider only the case k = 2: but it is
clear that what follows does not really require neither the truncation nor
neglecting the higher orders in ~ (R/a)2. Considering such more general
problems would only lead to some (minor) modifications, except in the
case A;=0, where the result is simply false (i. e. no drift or diffusion can
take place) and the case k = 1 which cannot be decided by a "lowest
order" perturbation theory as, instead, the cases ~2 are, (at least if the
initial data are chosen as we are going to do).
To compute the d’Alembert hamiltonian ( 12 . 9) we have, of course,

to find how cos203B1 depends on the canonically conjugated variables

(K, M, L, B, y, (p, ~, ~).
Simple spherical trigonometry arguments, see appendix A8, lead to:
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where:

Hence we see that ( 12 . 9), as well as the full ( 12 . 7), does not conain 03C8.
Therefore L is a constant of motion and it will be regarded as a parameter.
It has the physical interpretation that v = (1 - L 2/M2)1/2 is the angle
between the spin axis and the symmetry axis and in the theory of nutation
it is called the eulerian nutation constant, at the initial epoch, i. e. at a

prefixed reference time, when M, L, K, (p, y are the values of the
canonical variables.

Therefore setting:

and 0 0= an 0 using:

one finds that:

where are suitable coefficients depending on M, K, listed in
appendix A 14. For instance:

Thus, setting E=D2014 and dropping from ( 12 . 9) the additive constant
K

11’ L 2 /(2 J 3)’ the full ("order 2") d’Alembert hamiltonian, in the canonical
variables (y~Ko)=(y-~K), (~Mo)=(~M), (~Bo)=(~K+B~,
takes the form:

where:

with 2yo. Xo. and (.) denotes aver-
age over the angles.
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Note that, taking into account the coefficients calculated in appendix A 14
and neglecting terms o,f’ O (V2), the integrable part of the hamiltonian
becomes : Co = cr2/2 = (1- KÕ/MÕ)/2 leading to the standard "d’Alembert

equinox precession" ~ = -11(û, see ( 12 . 8) and appendix A6, A7.
To analyze the motions of the d’Alembert hamiltonian we shall consider

particular regions of phase space that we single out also for convenience
and for the sake of concreteness. Fix M, K&#x3E;O, such that K/M ~ 1 /8 ; the
hamiltonian ( 12 .16) will be studied in the vicinity of the set:

where M, K are values around which drift or diffusion will take place ;
the role of Bo is trivial: see, however, end of section 5 [especially (5.95)]
and the final remark of section 8. From now on (, v, K, a) denote the
functions in ( 12 .11 ) evaluated at (K,M)=(Ko,Mo). The condition

~K/M~l/8 implies that, on To, ~K~l/4, so that a is well defined and
15/16~0~1.
The physical meaning of a drift along To is a variation of K at M,

L fixed: hence it represents a change in the inclination of the spin axis,
see section 1.

Furthermore, the hamiltonian ( 12 .16) is holomorphic in a complex
neighborhood of To. To be more precise, let L = L be such that 15/16~1,
(~=L/M), let Po &#x3E; 0 and define:

Then, we can choose e01/4, 03C10&#x3E;0 and an arbitrary Ço such that
(12.16) is holomorphic on:

{B,eC}xT~~x{(y,,~~)~S~}x{~~~}x{~~~}, (12.20)

with Sn03BE = { 0152 E C": exp ( - ç)  |exp i03B1j 1 exp ç} being the standard complex
neighborhood of T", and so that, for Mo) E ’)’0, p~, one has:

If we suppose that 11 = 0 and that for some

integers po, qo, the set To is clearly a resonance for our hamiltonian if ~ = o.
We shall fix, in the example that we treat here, qo = 2 ; thus we

set so that 
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The condition i. e. a day/year simple resonance 2 : 1, is a

condition far from the ones relevant for the Earth nutation, but it might
be more realistic for other situations (e.g. for Mercury there is a similar
simple resonance which is relevant, namely the 3 : 2). In Celestial Mechanics
there is however a rather general feature in the data: usually the bodies
are almost spherical and the symmetry axis and the spin axis are very
close. In fact the angle between such axes, measured by 
is usually much smaller than the parameter 11 (in the Earth case v  112),
as it has to be according to various models of planet formation by
accretion. But, unfortunately, we must require also that the initial value
of L, which is a constant of the motion, verifies v~v&#x3E;0 for some vo, no
matter how small 11 is. This is a feature that makes our model somewhat
unrealistic: it is a necessary requirement to guarantee that the function
v==(l2014L~/M~)~ does not become singular in the domain in which we
consider it (note that the Mo derivative causes problems even in writing
down the equations for xo, if we do not impose that v stays away from
zero). With our choices above, we can take 3/4.
We shall perform a few (trivial) changes of coordinates and rescalings

to put the hamiltonian in a standard form to which the theory of section 11
can be easily applied.

Because of our selection of the resonance, the harmonic (2 ’Yo + Xo) will
be the angle of the pendulum-part of the hamiltonian. Therefore, we
perform the following linear (canonical ) change of variables,

defined by Bo = Bo - (Ao - ao), with ao = ~ " 2 M and:

where the shifts have been introduced so that the unstable point of the
pendulum is ~-close to (Io,(po)==(0,0) and so that the initial datum

(K, M) corresponds to (Io, Ao)=(0, 0). The hamiltonian ( 12 .16), in the
canonical variables (Io, cpo), ao), (Bo, ~o)? takes the form (up to a
neglected constant):

where h = h (Ao, 10), g = g (Ao, Io) and the functions are simply defined
in terms of the functions above evaluated in the new coordinates
with being derived from V 0 - Co by extracting from it the J1g2cos03C60
term which we call the "pendulum term". Using the appendix A14 one
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sees that:

where:

Analogously, one finds:

and a simple calculation yields the values of the coefficients B"=B"(Ao, Io)
in terms of the functions in ( 12 .11 ) evaluated at Ko = 210 - Ao + K and
Mo = 10 + M. The results are in appendix A 14, where all the coefficients
are derived. Here we just remark that all the non-trivial modes are fast
i. e. r ~ 0 (See § 11 and below) with the only exception of the two slow
modes:

This is the reason for having $ kept the second order in the ’ e-expansion.
The initial datum (K, M) becomes, in the new variables, (Io, Ao) = (0, 0)

so that the resonance " To gets mapped o into:

and we can easily find a such that ( 12 . 23) is analytic on Y 1, Pl 1 X S~ 1
and the image of such domain under the canonical transformation ( 12 . 23)
is contained in 
To see that ( 12 . 24) can be put in the form ( 11. 3) so that the theory of

section 11 can be applied, we perform a change of variables setting the
unstable equilibrium of the pendulum exactly in the origin. Let:

with h 1 analytic and define (via the implicit function theorem)
G (A’, I’ ; /!i (A’, I’) + ~ (r;) as the solution of:

Then it is easy to check that the canonical transformation (Ao, oto),
(Io, cpo) -+ (A’, a~), (I’, (p’) and (Bo, ~o)=(B’, ~), generated by:
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transforms the hamiltonian ( 12 . 24) into a hamiltonian like ( 11. 3), 
into:

where [cf ( 12 . 25) = ( 12 . 27)]:

with and o 

being ’ analytic functions of their variables A’, I’, z --- r~ (cos(p- 1), ~ and:

Furthermore along the resonance Ti 1 [see (12.29) and replace (Io, Ao) with
(I’, A’)] one has:

where ( 12 . 26)]:

To conform with the analysis of section 11 we use also the scaled form of
( 12 . 3 3) ; setting:

and o multiplying j the hamiltonian by a factor 11- 1 [See remark before
( 11. 3)] we get from ( 12 . 33), introducing also the auxiliary parameter /3 l
(eventually to be set equal to 1 ):

where go and vh are now evaluated at a’=a, ..., I’ == 111/2 I: see (12 . 38).
Note that the "fast" term F in ( 11. 9), ( 11. 10) corresponds here to vo

with N = 6 and vo = 2 (1, 1). Given the final form (12 . 39), we fix a diffusion
curve ~-close to the resonance [cf (11.12)]:

We take with c large enough to apply the theory of section 11

(e.g. c &#x3E; 92). If we check that the determinant of the intersection matrix

given by the generalization of ( 11. 8) is not exponentially small as
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11 -+ 0, then it will follow that the homoclinic angles are not exponen-
tially small but have the size of a power of 11, while their spacing has
exponentially small size (by the averaging properties discussed in sec-

tion 11: see remarks 1 and 5). Recall that on a portion E~x~l=0} of
the diffusion curve, with 03A3~ of relative measure ~K ~-1/2 ~x/7 [See the
discussion around ( 11. 2)], the diophantine property ( 11.15) holds (with
Oi = 03C9T and aA ho (111/2 A)).
We write the leading terms which can arise only, in the second order of

perturbation theory in the auxiliary parameter P, from the "interference"
between vo and v2. Recall that such a perturbation theory has a radius of
convergence with a s arbitrarily close to 1/2 (here s corresponds
to the constant cr of lemma 5 of § 11 ), so that its term sizes decrease with
the order p at least as 112 s. With the notations of (11. 8) (but note
that here v-~(/~)) we see that jl fast corresponds to p ~ 0 and that
v slow corresponds to p = o, ~0; thus the definitions in section 11

[cf. ( 11. 8): - ~2 - leading term of the determinant of the intersection
matrix (0)] and the computations in appendix A 14 yield to leading
terms -+ 0 with e = 

where [,S’ee also ( 12 . 36), ( 12 . 3 5), (12.25)] ~2 --_ aa ho {a), go - g2 (a, 0) and
the coefficients Bh are computed on the image of the diffusion curve .5f:

On the basis of the results of section 11 we know that the order p
contribution to the intersection matrix (in the expansion in the auxiliary
parameter P) will be bounded at least by (9(r~): but they might be much
smaller. In fact if p = 1 they are essentially exponentially small in 11-1/2 as
11 -~ 0. If p= 2 we see from ( 12 . 41 ) that they are of order r~ 3~2 e2.
To order p we can get non exponentially small contributions only from

terms like or by terms involving at least vf or v1 v2
which contribute corrections of size e3 at least (hence negligible with
respect to ( 12 . 41 )): this can be seen directly by inspection of the Fourier
transform structure of the vo, v~, v2 in appendix A14. But the terms

or contribute where the last 111/2 arises because
if 002 = 0 we would have corrections smaller than any power coming even
from the above terms (note that the order p is analytic in 002 and in e2).
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Hence we can set 03B2=1 and the leading term is actually ( 12 . 41 ), if it
does not vanish: and the determinant of the intersection matrix is of order

~4=~3+4c
It is easy to check that the sum in ( 12 . 41 ) does not vanish on the

diffusion curved: in fact from ( 12 . 41 ), (A14.10), (A 14 . 6), ( 12 . 37),
( 12 . 36), ( 12 . 3 5), ( 12 . 25) it follows immediately that on Y it is, to leading
order in ~ and up to a factor [1 + O (v)]:

where a ~  M/8 ; a (a) is defined analogously to K [See (12 . 37)] ; 9 is
defined in ( 12 . 5) and ia is defined here and represents the planet inclination
over the ecliptic [cf ( 12 . 8)]. Equation ( 12 . 43) holds, of course, for values
of the coordinate a in ~1l (i. e. for all points outside a family of gaps of
size smaller than any prefixed power see comment after ( 12 . 40))
where the appropriate diophantine inequality holds. One could also check
that ( 12 . 43) holds uniformly on paths 2 with A [See ( 12 . 40)] replaced
by any closed interval such that K(~)~ iL 1 or equivalently ~0, 7t (which
means that the spin axis is not parallel to the normal to the ecliptic).

This implies that on the diffusion path 2 the homoclinic angles are
much larger than the whiskered tori spacing, so that we shall have (by
the analysis of § 8) heteroclinic ladders along which Arnold’s drift and
diffusion will take place on a time scale proportional to for
suitable positive constants b, d.

APPENDIX

AI. Resonances: Nekhorossev theorem

Let h (A) be an anisochronous hamiltonian (i. e. analytic
on VR X Tl, where VR = {A = (A 1, ... , A1), j R } and holomorphic in:

see [BG], p. 296: it is convenient to regard h as defined on W even though
it is independent on the angles 

Let and let ~ be the line parallel to v 1 ; define the resonance
surface ~~ as: There is no
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loss of generality if one takes (0, 0, ..., 0, 1 ), (See [BG] proposition 3
and p. 303, for the obvious change of coordinates).

So we suppose that is defined by:

and rename F = (A1, ..., Al _ 1), S = A" and cp, 6 the conjugate angles ;
the notation is motivated by the fact that a is a slow angle (indeed on the
resonance cr (t) does not move at all) in opposition to cp which is f’ast as
it evolves on a time scale of order 1.

Let/(S, F, a, p) be a perturbation and consider the hamiltonian:

We shall assume that on ~ and let be the

equation for E~, (i. e. ~(F))=0).
Let ~ll ~ be a resonant region of order 1 with parameters

b, cr 2’ Â~, ~2, defined by:

where, see [BG], (3 .1 ) % (3 . 6):

where the max and min are considered in the holomorphy domain, (Al. 1 ).
Let W,=W(~ ; p’, ç’) be a vicinity with:

Then, see [BG] proposition 2, (ii ), if ~ is small enough, (e.g. with

Ec defined in (3 . 6) of [BG]), for all 1 _p _ E-b/3 one can find a change of
coordinates changing the hamiltonian into:

where the new (F, S, cp, cr) coordinates vary in Wt and describe at least
all the points which are in in terms of the original coordinates.

Furthermore the change of coordinates is analytic and in the whole
domain Wt:

where ’ f . is the average of lover both (p and 0 o and 0 S, cr, E) is the

average of f-f over (p alone.
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Finally if one is interested in a fixed, ~-independent, value of p then
one can fix p’ in (A 1. 6) to be E-independent, see also the following
appendices A 10, All.

A2. Diffusion paths and diophantine conditions

Here we prove the claims in section 3. Fix E and Ao such that

h (Ao, 0) = E ; see (2 . 3) and assumptions 1= 3 of section 2. We simplify
the notation in this appendix by replacing h (A, 0) with h (A). We consider
first the case h (A) = A2/2, so that (A) = A. We consider a small
vicinity Ut of Ao with diameter E. Given A2 in UE we define the curve

where icl, ..., are the natural basis in Rl-1. Without loss of general-
ity we suppose that A 1 and A2 have different corresponding coordinates:

At every point of 2 0 the derivatives of AS of orders 1, ..., k -- l -1
span a k dimensional space, i. e. the curve has "full torsion".

No codimension 1 plane can have a contact with 20 of order higher
than l -1. Therefore, given v E Zl, the set of the values of s for which

a measure that can be bounded by const ~ r~ "I 10l -1 ~. It
follows that the measure of the set of values of s for which vi  11;1 ( v (
will be bounded by const E ~ ~ ~ ~ 1 ~~~ -1 ~.

Thus, if we choose ~"~ =1 /C ~ v ~~~ -1&#x3E;2 + 1 it is:

on a set X of values of s with measure of order:

Thus the curve s -&#x3E; A (s) has the property (3 .1 ), (3 . 2), but it does not

necessarily verify h (A (s)) = E.
Therefore we modify J~o into 2 defined by: ~~A(~)+~(~-). We deter-

mine the correction b (s) together with an auxiliary parameter y (s) by the
equations:

with A=~(~).
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the latter equations, in linearized torm, look like:

of A, h - E at least if the size E of Dt is small enough. Hence also the first
property of the diffusion paths holds for 2 which is therefore an example
of a (short ) diffusion path.
The general case in which h (A) is not A2/2, but still det can

be reduced to the above by changing variables 
and by drawing the curves in co coordinates.

If one gives up full constructivity one can produce a somewhat different
class of examples: they are even better, as far as the exponents in (3 .1 ),
(3.2) are concerned. But they are constructed with the help of measure
theoretic lemmata and, therefore, are not really constructive examples.

A3. Normal hyperbolic coordinates for a pendulum

Here we prove lemma 0 of section 5. Although the following proof is
elementary, we report it here in detail to establish the values of several
constants needed in the main text. The proof is based on a iteration
method in the style of section 5, but it is clear that softer methods could
also be used.

Let P (I, p) = P (I, A, cp, Jl) be a pendulum hamiltonian holomorphic for
I I I  p’, e-~~ see (2 . 3) and assumptions 1,2 of section 2. We
fix and we regard A,  in:

as parameters, which often will be omitted from the notation. The follow-
ing analysis is local (near (I, (p)=(0, 0)) therefore we shall consider only
I p 1 ç’.
By assumption 1, section 2, (I, (p)=(0, 0) is an unstable equilibrium

point ; 0) = 0 and the matrix M==~P(0, 0) can be put in
a off diagonal form via a canonical transformation R~R(A, ):

with the derivatives evaluated at (I, A, (p, )=(0, A, 0, in fact R is one
of the matrices with determinant 1 (and hence symplectic,

since we are in dimension two) that diagonalize EM where E == (~ ~ 1 )
Poincaré - Physique théorique
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(given one of such matrices one obtains the others by right multiplication

by (03C3-10 cr’ for any cr # 0). We select one among the above canonical
maps as follows. Let:

1(2 == (16) -1 . [area enclosed by the two separatrices swings] (A3.3)
this is a natural unit of measure for the pendulum action I (~. for the
standard pendulum (2.1) it is K~=Jo~) ; define the "dimensionless energy"

~2)=P(~i~ ~)/(~) and Mo=~Po~,~)=(o,o)~ so that:

Now let:!: Â.:t 1, ~&#x3E;0, be the eigenvalues ofMo (recall that det M = - g2 so
that det Mo = - 1), and let U, V be the unitary matrices with determinant 1

that diagonalize, respectively, Mo and (01 10):

then it is immediate to check that [See (A3.4)] :

We also set:

(to check last equality, note that UvT is unitary so that the sum of the
squared absolute values of the entries is equal to 2).
We define a first canonical map via:

For instance in the case of the standard pendulum in (2 .1 ) it is 

and:
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For later convenience it is useful to write explicitly the generating function
of (A3 . 8):

provided:

(clearly (A3 .11 ) can be achieved, by taking p, ~ small enough, if

~22 (a, 0)~0. otherwise we would have to choose different independent
"mixed variables" ; see [G] for general informations on canonical trans-
formations).

In the new coordinates p, q it is clear that P (I, p) becomes:

where Qo, Go are holomorphic for suitably small:
to guarantee that the image under (A3.8) of the complex domain
{  Ko } is contained in  p’~ 1 P  ~, we can take [See (A3 . 7)]:

The Taylor series of Qo starts at third order:

and Go (J) is holomorphic for I J 

Suppose that:

where II. II;: == 11.11;:, p, i! denotes the maximum in Wx (or whichever
makes sense) times ~, see (A3 .1 ). Let §~=8o/2~ 8o=(l/18)log~, be a
convenient sequence of positive numbers. We define a canonical map
(p, q’) via a generating function:

The function Oo can be bounded, together with its derivatives, in

by:
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if B 1 is a suitable constant (e.g. h - k ~ -1 e - s ~h + xo2~..ro
Õ 

estimate the domain of definition of the map generated by i. e. defined

by the relations:

we use the implicit function theorem. The latter tor instance,
[G, p. 490]) will guarantee that G0 and G-10 have a domain containing

with images contained in provided:

for B2 large enough (we simply use that the image of the boundary of a
set under a holomorphic map is the boundary of the image ; this gives,
for instance, B~= 16BJ. Notice that ~ 0’ ~o 1 have the form: identity + se-
cond order polynomial (in the p, q variables). Assuming (A3 . 20) valid we
can write the hamiltonian (A3 .12) in the new coordinates, writing it as:

where d is defined in terms of ’:

by setting:

The estimate of the size of 0 can be performed by taking j into account
that , has been chosen so as to verify the first order Hamilton-Jacobi
equation:

so that, using (A3 .16) and 1, we find, for a suitable B :

Therefore for a suitable B4:

This, in turn implies, for a suitable B~:
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Hence if we suppose (See (A3.20), (A3.27)), that for some B6 large
enough it is:

we see that both conditions in (A3 . 20), (A3 . 27), are satisfied ; and the
hamiltonian K 1 is defined in terms of the functions G1, Q 1 which can be
bounded as in (A3.16) with constants E1, yl, which can be taken
as given bv:

Hence if we disregard (A3.28) and define E~, K~, E~) by iterating
(A3.29) we see that, if yo Eo is small enough, the sequence verifies:

This allows us to infer that (A3 . 28) with j replacing 0 will be automati-
cally verified for all but a finite number of values of j if Eo yo is sufficiently
smaller than 1. Therefore, under a condition like:

with B7 suitably chosen, we see that (A3 . 28), with j instead of 0, is verified
for Thus we conclude that ~-~ identity very fast with all its

derivatives, in the slightly smaller domain with

00

The composition:

is clearly a canonical map casting Ko in the form K ~ (po, qo), for a
suitable function and defining normal hyperbolic coordinates. Finally
we remark that in our case, since Qo has a third order zero it is not
restrictive to suppose that:

hence ’ ~A3 . 31 ) can be tulfilled 0 for Ko small enough, i. e.:

It is clear that this conclusion is what we need to establish the claims
from which this appendix is called. In fact the map R  we are after (See
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(5 . 3)) is given by:

where (p, q) is as in (A3 . 32) and po q + ~ (po, q ; Ao, Jl) denotes the gener-
ating function associated to ~.
The above condition (A3 . 31 ) can be easily used to infer explicit values

po, Ko, Ço which are needed in the first step of the proof of lemmata 1.1’.
From the definition of F, (A3.10), and the fact that [See (A3 . 7)] :

it follows for a suitable constant B g &#x3E; 1:

where we have used that m &#x3E; 1 and (A3 .11 ). Thus if ~’ is defined as in
(A3 .1 ) with p replaced by p/2 (so as to be able to perform dimensional
bounds) we obtain easily:

for a suitable constant Bg&#x3E; 1 (we have also used Eo yo  1 in view of

(A3 . 31 )). Thus we see that we can take:

provided Ko satis.f’ies (A3.13), (A3.34) (or (A3.31)) and:

a condition that guarantees that if then [See
(A3. 38)]. As already pointed out, the choice of po allowed us to perform
dimensional bounds and get (A3.38).
As an example consider the case of a standard pendulum hamiltonian,

~~(2.1), with g, Jo being A independent. Then, K = ~, ~ _ ,~Z,

Vol. 60, n° 1-1994.



104 L. CHIERCHIA AND G. GALLAVOTTI

and we see that:

where the subscript 5~ means that the expansion of the binomial has to
be carried out omitting the terms with pk qk. So that settings:

where the restriction x  1 /4 is imposed to simplify the analysis, we easily
find that we can take:

(e.g. ~==cosh~/2, ~2 ==4&#x26;~ b3 = 2). The condition (A3 . 31) becomes sim-
ply : for a suitable b4 &#x3E; 1 and to match also (A3.13), (A3 . 34) we
see that we can take po = p/2, Ço = ç/2 and:

(Note that in the present case 03B4 is actually identically zero and in (A3 . 45)
one can drop the third argument in the minimum).

In the A, ~ dependent case, if and 
with the extrema evaluated as A, Jl vary in ~, the (A3.45) is replaced by:

and we can still take po = p/2, Ço = ~/2.
In general it is possible to express more explicitly the conditions (A3 .13),

(A3 . 31 ) and (A3 . 40). Note that the domain of definition of the dimension-
less energy defined before (A3 . 4), is xl ~  p’/K2, ~ cp I  ~’.
Recall the definitions of m, K ((A3 . 7), (A3 .11 )) ; define the parameters
~, r, m by the following suprema in the latter domain of definition times
~[~(A3.l)1: :

and observe that from the construction of the map G it follows [See
(A3.35), (A3.2)]:
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Set and introduce the following parameters:

and observe that [See (A3 .7)]:

(where (I, q) and the suprema are taken over the usual domain
.@). Then one check easily that, for a suitable constant B 10 &#x3E; 1 the

parameters in (A3 .16) can be taken to be (cf (A3 .47), (A3 . 33)):

provided:

a condition which is needed in bounding in terms of r. Finally
we see that all the smallness requirements on Ko (i. e. (A3 .13), (A3 . 34),
(A3 . 40), (A3 . 52)) are enforced by taking, for a suitable B &#x3E; 1:

determining the range of Ko in terms of the analyticity radii, p’, p, ç’, ç
and the parameters r, m, K defined in (A3 . 47), (A3 . 7), (A3 . 11 ).

This means that the map ~_(A3.35) can be defined in a domain
po, Ço, ~, a) with Ko, po, Ço as in (A3 . 39) and a Ko verifying

(A3 . 53) ; moreover such a map satisfy on W the bounds [See (A3 . 50),
(A3 . 39), (A3. 38), (A3 .49), (A3 . 53)]:

r/ , . 

A4. Diffusion sheets. Relative size of the time scales

The following 1 ), 2), 3) are the estimates needed to construct the

diffusion sheet discussed in the proof of Lemma 1’. The 4), 5), 6) describe
the relative size of the various time scales involved in lemma 1’.
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1 ) We write (5 . 8), if A = A, + J and M, = aA--ho (A,, 0, 0) as:

or J=~(?), with m (a) defined as applied to the term in square
brackets.

Hence, using the holomorphy of ho and Cauchy’s theorem, we see that
if p~ po/2, we can bound the mas:

Fixing B large (~. B &#x3E; 20 /~) and:

we see that u  1 /4, pPo/4 and for The

constant B can be taken depending only on the dimension l because
see item 5) below).

Thus the equation a = m (a) has a solution with ( a ~  p  po/4 because
4~~p"~l. The implicit functions theorem used here is the essentially
obvious argument "on the image of the boundary": it is the same used in
appendix A3, see (A3 .20).

2) The (5.14) can be similarly written, setting as a = n (a)
with n verifying:

Hence if:

we see that, possibly readjusting B, it is 4 p -1 ~ ~ n ~ ~  1. Therefore, there is
a solution with  p  po/4.

3) Considering (5 . 16) and recalling that 0, 0) (defined
after (5. 9)) we see that:

and a similar argument yields also r 0 Eo ~ 1. The relation Eo Co &#x3E; Eo r 0 is
simply our assumption (5. 33).
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5) From finds:

6) From [(~2Ah0)-103C90.03C90]-1[(~2Ah0)-103C90. 03C90] = 1 one deduces go 
Hence we can take 

A5. Divisor bounds

If k - h = 0 the denominator in (5 . 31 ) becomes, using also (5 . 21 ), (5 . 23)
and a dimensional bound (recall also that 03C9su = ~Ah0 (Ão (s, u, 0, Jl) by the
definition (5 . 14) of A° (s, u, J, ).1)):

valid o if |A. 2014 0 (s. . J. 0 , verifies;

If k - h = p = is a non zero integer, then, assuming gs &#x3E; 0 for definiteness,
and recalling that 03C9su is real and go (A, J, ) ~ (1 + u’)gsu, see (5.16), (5 . 30):

as, recalling (5. 20):

so that (5 . 34) follows (for I J  Ko, i. e. if the above quantities make sense).
Note that (A5.3) holds trivially in the case v = 0 ; hence:

for 

A6. The equinox precession

Consider the d’Alembert Lagrangian ( 12 . 4) and the associated hamil-
tonian (12.6)2014(12.15). Suppose that the eccentricity of the planet orbit
is neglected (i. e. that the orbit is taken circular with radius a equal to the
major semiaxis of the keplerian ellipse), then the average of the hamiltonian
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H over the angles y, over 

with an error of order (9 (r~ e).
Suppose also that M = L (i. e. neglect the non alignment between the

planet axis and the angular momentum), so that y=(p. And, furthermore,
assume that the hamiltonian H can be replaced by Hp for the purpose of
evaluating the average motion over many periods of revolutions (See
Ch. 5, of [G], §10201412 for a more rigorous treatment). Then the precession
angular velocity would be aK H p:

A7. Application to the Earth precession

From (A6. 2) and neglecting the small variations of the average inclina-
tion, io, of the planet axis and denoting cop is the angular velocity of the
daily rotation, and T the period of revolution, the solar precession rate
is:

having used the third Kepler law to eliminate the gravitational constant
(i. e. having used that T = 7r (2 a)3~2 (2 kms)-1~2) ~ the fact that the precession
is negative is often referred as a retrograde precession. This shows also
that the period of precession, is T~ = - 2 7C/~ = T T cos or since
T =1. year = 375 581495 003, T~-7.9410~ years.
A rough analysis of the lunar precession can be made assuming that

the Moon is on the ecliptic and that its orbit is circular. One easily checks
that the solar precession analysis can be applied to the Moon influence
and that the lunar precession would be, if mL, aL denote respectively the
Moon mass and the radius of its orbit:

so that, taking also into account that the Moon orbit forms an angle iL
with the ecliptic and that the orbit eccentricity eL is quite large, the total
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luni-solar precession would be:

where the eccentricity corrections are obtained by remarking that the
above theory with has taken (a/rT)2 =1: but 1 + (3/2) e2 is the actual
average of over the period with a time evolution based on the Kepler
laws ; in a similar way one takes into account the inclination of the Moon
orbit to found the second correcting factor. Of course one could do also
the latter corrections in a less empirical way by using the canonical
formalism, but we do not reproduce the details.

Using the data:

the total rate of lunisolar precession in the above approximation gives,
after a small correction for the Moon inclination over the ecliptic is taken
into account, Tp ~ 2 . 51 104 years, or a yearly precession of the equinoxes
of ~ 51 " per (sidereal ) year. So that only 1 /3 of the luni-solar precession
is due to the Sun.

Even assuming that Jupiter gravitated around the Earth on a circular
orbit its contribution to the precession would be much smaller (as, with
obvious notations, it would be a fraction of the order of 
i. e. O (10-5) of the solar precession).
A more fundamental formula is obtained if the Earth is not supposed

an homogeneous ellipsoid, but is supposed only to be rigid. In this case
one finds that (A7.3) remains the same if ~ is defined in terms of the
inertia moments the analysis is unchanged and
the constant 11 thus defined is called the and it is

independent on the Earth shape and mass distribution, as long as it can
be supposed rigid: hence it is this quantity that can be really deduced
from the observed rate of the precession of the equinoxes, and it is

~=1/304=0.0329, (while the observed polar radius of the Earth is by
0 . 003 5 shorter than the equatorial radius, showing that the ellipsoidal
model is, to some extent, not satisfactory).
The above calculation, due to d’Alembert (who did not use the canonical

formalism) [L]: vol. II, book V, § 6, fourth formula to the last, where
l = ~, p, m = = = ~ ~ = (a/aL) 3 and eT, eL, iL are neglected )
was in fact used to determine 11 from the known precession rate, in terms
of the masses of the Sun and of the Moon.
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A8. Trigonometry of the Andoyer-Deprit angles

We refer here to Figures 4.11, 4.12, 4.10 of [G, p. 321-323] and to
the well known spherical trigonometry identities:

sin A sin B sin C
sin a sin P sin y

cos A = cos B cos C + sin B sin C cos a (A8 .1 )
sin C cos P = cos B sin A - sin B cos A cos y

cos A cosy= sin A cot B - sin y cot P
the inversion can be actually performed via the relations:

~ K, L 
cos6=2014, cos g = -

A A

(A8 2)

which follow immediately from the definitions, see [G, p. 323], and the
result is, after some algebra ( 12 .10).

A9. Determinants, wronskians, Jacobi’s map

1) Consider [See (5.92) with (I, (p)=(0, 0)]:

Then, setting 03C9~~Ah and assuming for i = 1, ...,/-2, one has:

as it follows by multiplying, for i =1, ...,/-2, the first row by and
subtracting it to the i-th following row: this proves (5.93). Furthermore
the following general identity is valid for any n x n matrix H and row
vector co:

where if H is not invertible the right hand side has to be interpreted as
- (ro. a 00), with of determinant
of the matrix obtained by deleting the i-th row and the j-th column.
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2) The standard pendulum: has a separa-
trix motion ~ -+ cpo (~) which is easily computable. One finds, starting at
p = 1t at ~=0:

(A9. 4)
cos cpo (~)/2 = tanh cos po (~) = 1 - 2 (cosh ~o ~T ~ J

A further elementary discussion of the pendulum quadratures near E = 0,
allows us to find the E derivatives of the separatrix motion and leads to:

exhibiting the analyticity properties in the complex t plane that are useful
in discussing the size of the homoclinic angles. The (A9.5) allows us to
compute the wronskian matrix of the above separatrices, i. e. the solution
of the pendulum equation, linearized on the separatrices:

and we get:

where the E derivative is computed by imagining motions close to the
separatrix (which has energy E=0) and with the same initial (p=7c. This
becomes’

We are also interested in the matrices of section 6. If we
write cp = S (po, 0) and if p is the value of po such that S (p, 0) = 7c, we see
that:
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and it can be seen that so that, noting that at 
E = 0 it is ~q = p0g0~E at po = const:

and, similarly:

3) The theory of the jacobian elliptic functions shows how to perform
a complete calculation of the functions R, S, see [GR] (8.198), (8.153),
(8.146), (8.128), (8.197). The result (a celebrated theorem by Jacobi,
and a strongly instructive exercise in Mechanics) is reported here for
completeness and is discussed in terms of the pendulum energy:

where the origin in cp is set at the stable equilibrium, to adhere to the
notations in the theory of elliptic functions.

Setting where E is the
~ dimensionless energy so that E =1 is the separatrix, and:

One sets, using whenever possible, the standard notations for the jacobian
elliptic integrals except for x ( . ) which is usually denoted q ( . ) but which
we would confuse with the canonical variable q of lemma 0:

In terms of the above conventions we have, directly from the definitions
(i. e. from the equations of motion):

which yield, changing at this point the origin for cp to the unstable point
to conform with our notations (i. e. obtaining cp (t) = 2 (am El/2) + 7t/2)):
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which, using also to evaluate S

from R, imply immediately the Jacobi map:

with~-=~.
Note that gJ depends on k, and so k: hence the coefficients of

the first and of the last two of (A9 .17) are also functions of x = pq.
Furthermore the (dimensionless) energy becomes a function of x = pq

defined by inverting the map:

and the point corresponding to (p=7t and to a dimensionless energy E,

has coordinates:

(a rearrangement of the above series showing the convergence for p =1

and x I  1 is exhibited below).
However the derivative of the energy with respect to pq is not propor-

tional to g, defined above: this would mean that the map (A9 .17) between

I, cp and p, q would be a canonical map. The above implies, nevertheless,
that the jacobian determinant qJ)) with respect
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to the (yet unknown) canonical coordinates of lemma 0 is a function
of the x variable identical to the determinant of the jacobian matrix

p) = D (x) (which has to be a function of x and can be

computed from (A9.17)).
To be precise, (/?j, qJ) denote here some canonical variables which

transform the pendulum hamiltonian into a function of the product (/?j qJ)
(but clearly there is a large ambiguity in the construction of such variables
and therefore (/?j, qJ) need not coincide with the variables constructed in
lemma 0). It is easy to check that with the above definitions it is:

which (using (8.197) of [GR]) yields at once D(0)=(32Jo~o)~’
Setting we see that the jacobian determinant

Hence, if f is the solution of the
differential equation:

regular at x=0, then the map (I, (p)-~(~j, qJ) is canonical ; in fact, one

Therefore a canonical Jacobi map is, in terms of the Jacobi map
(A9 . 17), simply obtained by substituting p, q with /?j, where

xJ ~ pJqJ and is implicitly defined by i.e.

In lemma 0 we did not use dimensionless p, q coordinates: it is easy to
check that with the conventions of section 5, and appendix 3 the p, q
coordinates above are related to canonical (dimensional ) ones, which we
henceforth denote po, qo, coinciding with the coordinates constructed by
lemma 0 up to first order in po, qo, by:

so that po, qo have the dimension of the square root of an action.

The above (A9 .17) is written in the form in which it is easily recognized
in the elliptic functions tables. However, once derived it, it can be rewritten
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in the following form:

exhibiting some of the properties of the Jacobi map in a better way.
5) In general the wronskian W in (6. 14) [and hence the solution of

(6. 15)] can be computed quite explicitly. It is however convenient, for
computational purposes, to rearrange its rows and columns by writing
them in the order (I.. p" A, ;) instead of (I.. A, p" (x) used in section 6.

Consider the equation for FP(A, !B (pB 0) = o and let 1’ = i (A, o, q/) be
a solution. Then define the functions 1&#x3E;(1" o) and I (t, o) = i (A, o, 1&#x3E;(1" o)),
with A, o regarded as parameters, solutions of:

The above functions 1 -+ o), 1 (t, o)) will be a family of motions of
the pendulum with energy o close to the separatrix motion. (~==0). The
functions:

verify the equations of motion linearized around the separatrix motion:

here Ho=/?(A,0)+P(A,!.(p,0) and all the derivatives are evaluated
at the point X~(/) and also (6.!2): note that.

0, (p)= 0, p))&#x3E;0.
. 

Furthermore S12 (0) = 821 (0)=0: in so that S~ 2 (0) _-- 0, and
d)(0)=0 (because !(0. 0)=~/(A~ (p)==0 by our choice of(p as the point
where i has a maximum), hence S21 (0) = 0.
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Hence the matrix VV (t) = (S 1 (t), S2 (t)) verifies the equation:

and we realize that W is the wronskian for the separatrix motion of the
pendulum h (A) + P (A, i, cp, 0), with For the standard pendulum
it is given by (A9 . 8).
The wronskian W (t) can be expressed in terms of W as follows:

where x, yare 2 X l -1 matrices and R, H are (/2014l)x(/2014l) matrices:
we shall think x, y as rows of 2-vectors

with being j column 2-vectors ; or, alternatively, a one " column of two

l 1 vectors: x=(x1x2), y=(y1y2); by the matrix multiplication rules we
have:

The conditions that (A9 . 28) verifies W = LW, W(0)= 1 are:

because L can be written:

and asdetW=L and cr2= -1. Hence:

where ~ (t) is defined by the second equality in the first line of (A9 . 32).
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It is important to find the asymptotic expansion of W, x, y, z as

t -+ + oo . It can be derived from the expansion of S 1 (t) and from:

where g is the Lyapunov exponent of the selected unstable equilibrium
point of the pendulum (to be consistent with section 3 we should replace
everywhere below g with Kg). The expansions of S1 and S2 are deduced
from the corresponding quadratures ; for instance that of S 1 is derived
from the quadrature:

by differentiating with respect to e and setting ~==0.
For suitably chosen constants y, Yo~ y’ Yo one easily finds:

where cr 11’ cr 12 converge to Yo, yo at speed 
Therefore, see (A9. 32):

where, setting _ . ~ - f; 2 - 9t + J: 3 - 2 9t + ... and 0 (t) _ - y’ y 1 (t) + ~ 2 (t):

and we shall enote 03B6 the (/-1)-vector with components 03B6i, i =1, ... , l -1,
thinking also, see (A9. 29):

Therefore the complete wronskians W(t) and are:
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respectively, the inverse matrix being computed by the general formula:

and one finds for W (t) W (i) -1, shortening (H (t) + R (t)) into (H + R)t:

A10. High order perturbation theory and averaging

We consider the hamiltonian, see ( 11.11 ):

(AI0.l)
2 Jo

where Jo depends on A and I
while go depends on A, I, z=(cos(p2014 1); possibly such functions depend

. also on 11, . The parameter 03B2 is an auxiliary complex parameter that will
be eventually set equal to 1.
We assume that each function in (A 10 .1 ) is holomorphic for B111 

and in a domain obtained by complexifying, by an amount
Po = 11- 1/2 P (p being some given positive action) the actions and by an
amount Ço the angles, around the real domain:

(AtO.2)

for some A, A, 0  A  A, and we call the latter domain Y (po, ço). As usual
we suppose for simplicity that all ç variables are  1 (no loss of generality).
The functions will be supposed to verify uniform bounds (with respect
to 11) in the above holomorphy domain.
Note that the "large" size, O (r~ ‘ 1~2) of the analyticity domains in

the A, I variables simply reflects the assumptions in section 10 that the
dependence of J, Jo, F, f on the A, I is This assumption
implies, together with the boundedness assumption, that the rotation

aA h (~ 1~2 A)) is a vector 0153 = «(Û1’ (02) with (Û2 varying
between ~1/2(03C9, co) as A varies in the interval [Ã, A]: which we assume
to exclude the origin (this takes into account the fact that (AIO. I) has to
come from ( 11. 3) with ro2 &#x3E; 0)..

In the following discussion the assumption that the functions F, f depend.
i. e. that they have a large analyticity domain in the z variable is
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not necessary (although it is part of the assumptions of lemma 5, to

simplify the formulation).
We also assume that the functions f, F, whose Fourier transforms will

be denoted by affixing a label v, n, are trigonometric polynomials in
the CX2)=(À, ex) variables: i.e. their Fourier transforms vanish if

for some N&#x3E;0: this hypothesis, as we shall see, is not really
necessary and is done only for simplicity.

Finally we suppose that F has zero average in the a variables and that
it contains only harmonics multiples of a fixed Vo (e.g. Vo==(l, 1)) which
is a "fast mode", (i. e. 03BD01 ~ 0, see (11.9)j. _, 

,. 

, 

.

We shall show that, if c.is a large enough constant, f~r any x&#x3E;O and

any 0ol/2 there exist constants K, p~ ~&#x3E;0 such that, for all T~&#x3E;0
small enough, in the domain: , . 

~ 
. 

~ ~ ~ - 
~ 

_-

there exist functions ô, R, S, A, 0, E, A holomorphic in (A 10 . 3) defining
a man: .

with the J.l, 11, P dependence of the above functions not explicitly shown,
and with A, E, A, 0 of order P )11. The functions are uniformly bounded
in ~i ~  B* ~ -~. And the map is canonical and changes the hamiltonian
(A 10 .1 ) (up to a trivial constant ) into:

with J, q, f depending on 11, ).1, P. The size of p, ç, K and how small should
T1 be depend on x can be easily deduced from the proof below. The
constant c can be taken a suitably large number (e.g. c =10 is proposed
in the proof).

Proof - We begin by performing the (generalization of the) Jacobi
map of lemma 0, section 5. This gives a canonical map defined on
W(Ko, po, Ço, ~o) for some Ko, Ço, ~o &#x3E; 0 (where we use the
notations of § 5) like (A 10 . 4) with A, E, 0, A = 0, and we take for simpli-
city KÕ == p. The parameters Ko, po, ... are larger than the corresponding
barred ones in (A 10 . 3).
The map transforms the original hamiltonian into:
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where F, ~‘ are evaluated at (p, q, A, o~. The various functions depend
also on 11, J.l and are analytic in the above domain and for ~
small enough.
The variables in (A 10 . 6) should be primed as they are different from

the original ones, but we do not do so.
The main property of F is that in the new variables it is still a

trigonometric polynomial with the same modes in a as F (i. e. only finitely
many multiples of a given fast mode), hence with zero average. This
happens because the variation of a in the transformation of lemma 0,
section 5, is ~-independent, see (5. 3).
As a preliminary step we apply perturbation theory to remove the F by

performing a perturbation expansion to first order in the auxiliary
variable P. This leads to the Hamilton Jacobi equation 

where J) = O (r~ 1~2), see also (5 . 31).
The hypothesis that F, hence F, has only one fast mode is easily seen

to imply that 0 exists, is holomorphic in a suitable domain and it generates
a canonical transformation, close to the identity within on a

domain W (Ko, po, for some J.lo &#x3E; 0, ~&#x3E;0. Of
course this holds if is small enough.
The finite modality of F is not really necessary: it gives easily the

property that the divisors found in solving (A 10 . 7) cannot vanish even
for complex phase space points (which could in general happen as discussed
in appendix A5). But such divisors can arise only (with

vanishes for some p, v different from zero: this is impossible for
11 small as one can easily check that if v and p do not
vanish.
The canonical map transforms (A 10 . 5) into:

as the largest "second order term" comes from F itself and therefore it
has size 9(jMD)=0()~r~).
Note that the fact that Ð has size of order 9(pr~) is a consequence

of the fast mode assumption on F, forbidding the appearance of divisors
of order 111/2 or even of order 1, in the solution of (A 10 . 7), see also
(5.31). But what said so far would hold rather generally if we only
assumed that F contained just fast modes, not necessarily parallel to a
fixed one vo.
We proceed by remarking that the assumption that F contains only

modes parallel to Vo has the simple consequence that also F and F have
the same property. The F might have non zero average over the angles a
by a further canonical change of coordinates of the type of lemma 0,
section 5, we can transform (A 10 . 8) back into a hamiltonian of the same
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form with F with zero average (and new h, g). In this way we see that we
can assume that the canonical map transforms (A 10 . 6) into (A 10 .10)
with F unimodal, fast, and with zero average over the a angles.

The latter properties would fail if F had not been assumed unimodal (but

Hence we can repeat the above argument and further reduce, in suitable
new coordinates the size of F to p2"~(2"-i)/2 after n steps. No small
divisors problems can arise, again by our unimodality assumption (which
makes the system, for the purposes of the present discussion, effectively
one dimensional). If p, _ ~~ we continue until 2n -1 &#x3E; 2 c. At each step we
must put a requirement on the size of in order to solve the implicit
functions problems that arise at each step in passing from the generating
functions 03A6 to the actual map. However, see the remark 1 after lemma 1’,
section 5, we could continue indefinitely and build a canonical trans-
formation casting (A 10 . 6) into the same form with F - 0. The quadratic
decrease of the size of F is such that the successive conditions on the size
of or the decrease in the analyticity domains (i. e. of the constants
measuring their size) become essentially negligible: but it is sufficient to
stop when the size of the new F has become of order 11c for all [i I ~ 1~2
small enough. This happens if one considers an order no such that

However, we shall prefer, in order to
have analyticity in P, to consider a smaller domain, say, 
with 0ol/2, in which case it will be sufficient to take

At this point we have put the original hamiltonian in the form (A 10 . 6)
with F = 0 and a new], as Jl ~ 11c is supposed to hold. However the 
will in general have all harmonics (i. e. it will no longer be a trigonometric
polynomial in the a).
Thus we see the "averaging" phenomenon: the problem of casting the

(A 10 .1 ) into the form (A 10 . 4) is equivalent (if is small enough) to
the same problem with F=O, ~, = r~~ and (another)fwith the same
analyticity properties and with the (minor as we shall see) difference that
it is not a trigonometric polynomial but analytic in the a
variables with some ço.
Hence we look at the same problem with F==0, P== 1, and at first with

f being a trigonometric polynomial of degree N: and we perform the
Jacobi map to put the hamiltonian in the form (A 10 . 6) ; this time with F
and P=l.
We denote Ao, po, R’o, (Xo the canonical coordinated describing our prob-

lem after the Jacobi map and in a domain W (1(0’ po, Ço, ~), with ~ _ ~~.
By the assumption that f is a trigonometric polynomial we can fix Ço
arbitrarily, (~1); and po is of order ,,- 1/2.
The hamiltonian will be written H=Ho+sjc with with &#x26;

being a formal parameter to be set eventually equal to 1.
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The function be treated perturbatively up to order s (to be
fixed later), at least formally, in the sense that one can define:

recursively so that, if H = Ho + s x, it verifies in the sense of formal series
ITt P

with suitable functions H~ up to order ~ in powers of E.
The (AIO. 10) gives the following set of recursive equations

(;’0 == (Ào, cxo»:

for A:=l, ..., s; here 

~=~(A, pqo) and the D superscript denotes the "diagonal cut" operation,

defined for any function/(/?, q) = 03A3 frsprqs as the map:

By assumption comment following (A 10 . 2)) cõ has the form

(,0 - ~~2 w, ,~1~2 r~’) with 0(Da/(D in the real part of the definition
domains.

If we label with ~===1,2,3,4,5 the five variables conjugated to

(A, p, go, cxo, ~o) (~~’ p, A, is, with the notations of (6 .10):
 m. B

where 2 means that m3 &#x3E; 1 if r=0 ’ and 0 ~3~ 1 for ~ 1.
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The key remark is that the above equation can be solved recursively,
producing ~k, xk which are trigonometric polynomials of degree for
all provided so is such that |03C9.03BD|&#x3E;~1/203C9/2 for 
Since cÕ = (~-1/2 00, ~1/2 002)’ with 03C9  0)2  00 by assumption, this holds if
s0 = 00/(2 N 1100) = b/NT1.
We need, however, also some bounds on ~k, Hk, XC, for We set,

for b &#x3E; 0 to be chosen later:

and p~=p~-i/2, ~=~-1/2. ~=~-1/2. so that etc.

To simplify the analysis we shall often replace, in the following, po
with Ko, in spite of the fact that po = 0 (~ -1/2) while Ko = 0 ( 1 ).
Note that, for k =1 and suitable Dx, DH, Dø it is (xl = p,~:

Possibly reducing by a factor 2 the size of the original analyticity
domains, (an operation which we may and shall assume as unnecessary,
possibly by redefining the analyticity parameters Ko, ço), we see immedi-
ately that in our case we can take, for some y’&#x3E;y&#x3E; 1, 
We can also take for some ~y" &#x3E; y. This is because, in

general for can bound a~ in terms of x by (~S) T 4 ~ ‘ 1 /2
if K &#x3E; 1 is a suitable constant and if 8 denotes the analyticity loss in the
domain of C with respect to that of x (i. e. if K, p, ç are the analyticity
parameters of x and K ( 1- 8), p ( 1- õ), ç ( 1- 8) are those of ~).
The point being that for the smallest divisors are bounded below

by O (~1/2) and the sum giving 03A6 runs over four integer indices, see (5.31),
so that ð0152 Ð requires a bound "of dimension" 4 (in fact there are only
two angle variables and we could get a better bound of the order ç - 3 Õ - 4 ;
but here and below we do not do so, for simplicity).

Suppose also that for 1 ~/~A;2014 1 it is:

for a suitably chosen B. This holds for h =1 (with any B) by the above
comments.
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Then we see that (A 10 .13) can be used to find a bound on xk in
W ’ ’ ’ ,

where the factor d is a numerical constant arising from various bounds
(for instance from bounding from below ð/2 and ( 1- e - ~o s~4) by a constant
times 8 and Ço ð, respectively, in the dimensional bounds leading to

(A 10 .17)) ; the term with in the third line of (A 10 .17) is bounded
here by the first line (having absorbed numerical constants in the definition
of d).

This implies that xk ~04. ~~. x4, u~ is bounded above by:

Let y &#x3E; 1 be fixed large enough so that the diagonal cut of the function
x can be bounded by yo - 2 times (A 10 .18) on the smaller domain

Kk~ Note that the function ~k can be bounded dimensionally
in the domain ~k, Kk, by 2~K(~8)’~’~ times the bound
(A10 .18) of xk in the domain We shall proceed by
choosing B so large that (1 and so that each of the
three term in square brackets are bounded by ~o SZ)2/(3 e).

This is achieved if we suppose that 8= 1/4 ~ so that ~&#x3E;~o/2. for /!~4,
that y &#x3E; 24 K and if we impose: .

and:

We see that:
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Giving up explicit control of the constants (for simplicity of notation)
we see that (A 10 . 20) can be implied by the stronger conditions, having
chosen Õ =1 /4k for an arbitrarily fixed k, and replacing D~ by Dx y" 11- 1/2,
DH by y’).1 and Dx by y).1 (see the comment after (A 10 .15):

for some co&#x3E; O.

Therefore, we see that B can be taken B = Bo k6 ~,~ -1 for some
constant Bo&#x3E; 1. And also, recalling that y’, y" have been chosen larger
than y, that y2 &#x3E; 24 K and (A 10 .19) we see that:

~4 v B

Hence the inductive proof works and we set:

for some Bo, C1 being constants depending on the maximum of the
coefficients in F, f, J, Jo, go in their analyticity domains as well as on the
sizes po, Ço of the domains.
We see that the above results (A 10 . 4), (A 10 . 5) follow immediately,

under the present assumption that f is a trigonometric polynomial : and in
fact we get a better bound as the remainder will be of order 

(recall the definition of b in the comment after (A 10 .13)) i. e. much

smaller than what declared in (A10 .10). This is obtained by pushing the
perturbation analysis up to an order The remainders are esti-

mated via the analyticity. They are of order if ~, = r~~ and

But we still have to relax the trigonometric polynomial assumption. We
follow the usual cut off technique to exploit the fast decay as |03BD| ~ 00
of the Fourier transform, which allows us to regard f "almost" as a

trigonometric polynomial.
More precisely let No be a cut off parameter so that if f is po, Ço

analytic then:

for a suitable constant c3.
We fix, therefore, and apply the above argument to the

hamiltonian with replacing f Then we can perform perturbation
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theory up to so = b/No r~ = b r~ -1 ~2 . We construct in this way a canonical
transformation casting the hamiltonian exactly in the form
(A 10 . 5), provided and 

The same transformation will cast the total hamiltonian (i. e. with f
rather than/~~) in the form (A 10 . 5) with a remainder which will be

by (A1Q.25). This yields (A 10 . 5).
Therefore we see that the above analysis can be carried out if c &#x3E; 10

and if [3 ~  B* r~ - a, 0al/2 (which was necessary in the first part of
our discussion).

Thus, by the analyticity in P, the invariant tori and their whiskers,
constructed for (A 10.1) via lemma 1’, can be expanded in powers of?
and, if P= 1, the power series terms are bounded, at order k, proportionally
to (b r~ - ~)k, for some b &#x3E; 0. The round spacing in the whiskers ladders will
be smaller than r~’’ for some y &#x3E; 0 provided x is large enough: and by
taking x large enough and ~ small enough we can make y larger than
any prefixed amount.

In other words the F in (A 10 . 1 ) can be regarded as formally of order
111/2( actually r~" with and along the line A] the
whiskers form a ladder with round spacing that is smaller than any power
of ~ as 11 ~ 0.

All. Scattering phases shifts and intrinsic angles

In this section we show that if the homoclinic splitting is exponentially
small, also the scattering phase shifts are such. A fact checked, for some
even models, by explicit estimates in section 11.
To express the homoclinic angles in the intrinsic coordinates, we consider

the derivatives of Q, see ( 10 . 7), with respect to a at a==0. This means
that we consider:

where and all the
derivatives are evaluated at B~=(~
The above (All. 1) is written symbolically: various indices are omitted

as the contraction rules are obvious.

For instance the derivatives with respect of the QO functions, which
give what we have just called the intrinsic angles, are given by (All. 1 )
with a=0. The second line in (A 11.1 ), with j=0 can be studied by
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remarking that ( 10 . 2), ( 10 . 3) imply:

rhrmr ...

we set:

Denoting ~.Z|p the derivatives of Z at q = o, 03C8=0 and 
the derivative at q=qo, add and subtract terms and use

(A 11. 4) to transform the part of the second line in (A 11 . 1 ) not containing
the terms proportional to into:

which simply are the derivatives of the above introduced functions QO
instead of the Q.
We can remark that ~S = ~u, at t = 0, because we are at a homo clinic

point. Furthermore the denominators in (A 11. 5) are ( - 2 g) for j~==0,
hence they are bounded away from zero is small enough. And the
derivatives and ~qZ are small of order ).1 ~ 0 (as they vanish

Hence we see that the derivatives of the homo clinic equation in
the a coordinates are related to the derivatives in the 03C8 coordinates by
terms proportional either to the 03C8 derivatives of the scattering phase shifts
or to the ~ derivatives of the splitting itself multiplied by 0 (a).
We see that this implies that if ~~(0)=0, as in fact we show in

section 10 for even models, and if the intrinsic intersection tensor is

exponentially small then also the natural intersection tensor is exponen-
tially small. One can, likewise check that also the converse holds: in

general, for even models and to leading order in ).1, the two notions of

angles coincide.
We can also deduce, in general, from the knowledge that the splitting

is exponentially small for all a, as it is the case in even models if /=2 or
/~3 and all rotations fast, as shown in section 11, that the scattering
phase shifts must be exponentially small (as we can "compute" them by
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difference from (All. 1), and as we can infer, by dimensional bound that
exponentially small in a implies exponentially small (because the a
are analytic in the 03C8 and viceversa).

A12. Compatibility. Homoclinic identities

1 Here we want to check directly that Fr 00 has vanishing mean value,
which is a crucial fact in the derivation of the main equation of section 6.
More precisely, assume that, for 1 _ j __ k - l, X’ (t) in (6.11) has the

form t), with X~, t) periodic and at X’ (~, t) con-
verging to 0 exponentially fast as t ~ oo and recall that, if a is the point
over which we construct the whisker, then X° _ (I° (t), cp° (t), A, a + 9 (t))
so that:

(the limit J(oo) being reached at an exponential rate). Then, for 1 

which is defined in terms of the X‘, [see (6.10)], has also
the form pj (t) (03C8+ 03C9su t, t) (with at pj (03C8, t) ~ 0 as t ~ oo exponentially
fast) and the limits X’ (~r, oo)=~(~) and F’ (~r, oo)=F~(~)
(1 ~~~) are well defined.
We then show that from the above assumptions it follows that:

(recall that the subscripts ( . ) +, (.)-, (.)~ ( . ) ~  denote projections onto,
respectively, I, cp, A, a-coordinatcs). The argument is adapted from the
similar argument in [CZ].
From the definitions of section 6 it is clear that the function F~ (a) is

given hv

where [ . ]k denotes the k-th order coefficient of a power series in Jl;
a - H = Ho + ).1 f is the hamiltonian and the sums are the arguments
of the functions H.

k- 1

On the other hand the function Y(B)P)= ~ is such that
;=o

verifies the Hamilton equations up to order A;- 1 in  i. e. if D

is the operator (where, of course, ~ stands now for 

up to order k-1 (A 12 . 4)
where a = (aI, a~, and E is the obvious symplectic matrix (so that
E2 = -1 ): is aH evaluated at Y (~r) and DY as well as Y are
evaluated at ~, 
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We rewrite (A 12 . 4) as:

and we note the identities:

valid for any periodic function Y (~) of ~; hence in our case they are
valid to all orders in ).1. They are trivial consequences of the periodicity in
BJ~ of Y (BJ~) and of the peculiar structure of E or, in the case of the second,
of the remark that the integrand is just the a of H (Y (B)P)).

Therefore we have:

to all orders in J.l. We shall write it explicitly to order k: remarking that
Y has order k -1 and that (A 12.5) holds up to order this gives:

but [Y(~)]0=(0, 0, Ä, so that (A12.8) becomes simply (AI2.2).
2) In fact, the above method can be used to prove other interesting

identities, namely:

where F~=(F~i, ... F~_~), and is defined in (6.36).
To check this identity we use that (x)=X(~+D~) descri-

bes for all BJ~ a motion on the stable whisker and in particular satisfies the
Hamilton equation:

which, performing the t-derivative and using the arbitrariness of 03C8, can
be rewritten as:
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k-1

Similarly to above, let Y(~, t ) --_ ~ t ), then by (A 12 . 6) we see
j=O

that :

to all orders in ; and taking the order k in , using (A 12 .10), (A 12 .11 ),
one recognizes:

fr2014 1

Finally one integrates the latter identity between 0 and 00: the integral
can be performed by parts first in t and then in Wi and, after changing j
to k-j and using ET= -E, the (A 12 . 9) is easily obtained.
The second identity is obtained in the same way by multiplying

by Y (t) the expression which vanishes up to order

k-l, and by integrating from 0 On obtains the variation

H(Y(~)-H(Y(0)). Writing the above identity to order k and using that
the energy H (Y) is conserved up to order k -1 we get:

We can write the Hamilton equations in the form so that the

above relation is (using and (6 . 36) and 
and 

(which would hold even without the averages over BJ/). Hence, using
and the second of (6 . 34) and (6 . 36) [which tell us that

w(0)Xk(0)= -~0(w(03C4)Fk(03C4)] we get (A 12 . 9). In the special case consi-

dered in section 9 it is ~(i:)=0, w~(r)=0, 
and we get:
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A 13. Second (and third) order whiskers and phase shifts

1 ) Here we prove ~) of theorem 3, section 10.
Consider the hamiltonian:

with 03BD=(n, v), 03BD~0, Jo, g0,fv constants and J -1 being a constant diagonal
matrix.

Then F ~ vanish identically and:

where cp in cos cp, sin cp is see (A9 . 5), i. e. it is the

unperturbed separatrix motion.
To compute the X‘‘ we define the operator P as in section 10 and we

introduce the following operators:

Vol. 60, n° 1-1994.



wherc thé notation of (10.13) is used, and o=sign (~). Then :

X~)=w~)X~(0)+w~) .

*t

X ~22 (ï)F~ (ï)~T- ~2~)
~t

X (ï)F~ (T)Jï
/*f

= ~21 (C oo ~22 M F~- (ï) ~T - ~22 (C ~ (A13.4)

X ~~ (ï)F~ (T)~T=~ F~ (~)
X~=W~(~) r~ ~22MF~M~-~12~)t (TOC

X ’W~(T)F~(T)~=~+F~~)
XK~)=J-~F~(~ X~(f)=~F~M .

where we used thé boundedness criterion of section 6 to eliminate thé

exponentiatty, or linearty (in thé case of X ), divergent terms and to find
thé initial conditions.

In fact (A 13.4) ca~ ~ immediately generalized fo arbitrary 

X’L(~)=PF~(~ X~(f)=(P+F~ -)

X’K)=J-’~F’;(~ X’;(f)=~F~~)J A i 3 . 5&#x3E;

More explicitly:

XL=~(-~/). X~=J~~(-~/)

X2=~~-~sin(p(X~)~+9(-~/X~-~/.X~ ~ (A13.6)
X~=J-~(-~/X~-~-/X~)

leading to:

X~~)= -J~ 
X~(~)= -~~/~~- 

~13 7.-~(~/J-~~(~/J-~~(~/))) ’ ’ ° 

-y(~/J-~’(~/0(~/)))

-~(~/J-’~(~/)J-~’(~/))
-~(~/J’~’(~/)~(~/))

-~(~/~/)~/))
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. We shall see that, setting E~ (t) == with À = ± 1, the splitting
and the phase shifts can be expressed in terms of the matrices:

where ).1 = (m, Jl) each of the addends above arises from a corresponding
one in (A 13 . 7): if we label 12345678 the addends in (A 13 . 7) then they
generate the r.h.s. of (A13 .8) in the order 46537128.

In fact one finds:

Note that the Q I functions are naturally expressed in terms of the 03B1
variables in (A 13.9), and the 03C8 variables of the definition ( 10 . 7) do not
appear explicitly.
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The scattering phase shifts are related to the time average of - X~, see
(t0.30),(10.3t),sothato’’[at=-J’~(~F~)(0")a:

G

To study the H matrices we introduce:

with En, y~201420142014~0 faster than ~ ~~~ by And we see that:
t ~ ± oo

Also is given by:

where S2 is the same expression evaluated at J ~ = 0.
If
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(with and see ( 10 .13) and (A9 . 8)),

It is easy to see that the above expressions (A 13 .13), (A 13 . 14) are

symmetric in the exchange Àv ~ P).1. Furthermore the terms with are

slightly improperly written as the P operation is not exactly an ordinary
integral as such terms contain quantities which oscillate at oo . To write
them correctly we introduce Recalling that
w22 =1/cosh gt and setting we see that the (four) just
mentioned terms can be written as:

and o the last row can be explicitly computed o in terms of the coefficients of

the series: (1-x2)(1+x2)-1~03A3tkx2k:
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The above formulae show that, if l = 2, is exponentially small
if M -+ oo . This, together with the results of section 9, implies immediately
that also are exponentially small, see also appendix All.

If /=2 the homo clinic splitting has first derivative exponentially small
to all orders and higher derivatives exponentially small at least to second

order ; the same holds for /&#x3E;2 if 0 is given by the first of ( 10 . 9). In fact,

by section 9 this holds to all orders.
Before proceeding to a higher order calculation we examine a case with

/&#x3E;2 and co given by the second of (10 . 9): i.e. a mixed case in which Mi

is fast and 1 are slow.

wP f!v rmr attention on the simple model:

which has only two modes v : ( 1, 0) and v=~2=~2 (0, 1 ) .
In the latter case, assuming WI = 001 11-1/2, (02=~2~~~~ g = ~ ( 1 ), we

study the first derivatives of Q T (o~) to second order.
If we study the a 1 derivatives of Q (a) we see that we must consider in

( A 13 . 9 ) only modes jl, v such that Â. v 1 + pj~i ~0. Since the case v = ~ = B)1 1
has to be discarded because it gives exponentially small contributions to
the (A 13 .14) we see that the only terms that are not obviously contributing

exponentially small quantities are pairs V, ~ with v . ~ 0.
So that only the part ~2 can contribute to the a derivatives of Qf (a) in
(A 13 .14), at a =0.

If we consider (A 13 .14), (A 13 .15) we see that many terms are exponen-
tially small as 03C91 ~ oo if ÀVl + 03C1 1 ~ 0. The part of Li2 of 02 which is not

obviously exponentially small as 0)1 ~ oo corresponds to:

We look for and we sec that (A13.18) contri-

butes, taking into account the parity properties of the integrals,

~ 2 - Z 4 i Hence for /! = 1 it must be l = gt and v= gz, otherwise
we see that (A13.18) contributes exponentially small quantities. Therefore
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up to exponentially small terms b 12 is given by:

where and the equalities holds up to exponentially small
terms as Oi -~ oo except the last which holds up to a factor

l+(9(~/o)i+M2/g), and:

The symmetry 8~ is a direct consequence of the symmetry remarked
after (A 13 .14) above ; the asymptotic analysis is made easier if one remarks
that :

where the last two formulae are useful in the applications of section 13.
The above formulae show that, if /=2, a~Qf (0) is exponentially small

if o --+ oo . This, together with the results of section 9, implies immediately
that also are exponentially small, see also appendix All.

If /=2 the homo clinic splitting has first derivative exponentially small
to all orders and higher derivatives exponentially small at least to second
order ; the same holds for /&#x3E;2 if ro is given by the first of ( 10 . 9). In fact,
by section 9 this holds to all orders.

Before proceeding to a higher order calculation we examine a case with
/=3 and co given by the second of ( 10 . 9): i. e. a mixed case in which 001
is fast and 002 is slow, but we do not suppose the orthogonality between
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the slow and fast modes. More precisely we assume that 
~2 = ~2 ~11 ~2, g = O ( 1 ) ; we shall also assume here, for simplicity, that f is
a trigonometric polynomial i. e. 0 if I v &#x3E; N for a suitable N &#x3E; o.

Calling ~={~:~.M=(9(rt’~~)}="fast modes" 
= 0 (111/2) } = "slow modes", the above formulae yield easily that the terms
in (A 13 .13) (A 13 .14) with J.1, v both fast give an exponentially small
contribution and that the leading contribution to °12 is given by:

where c = (2 ~o Jo) ~, and:

Note also that ~ 11= 0 up to exponentially small terms (in the general
case). This proves c) for what concerns the homoclinic splitting. The check
concerning the phase shifts is a similar calculation (and it works for the
above considered example, (A 13 .17)), but we omit the details.

Since the first order yields exponentially small contributions to the

03B11-derivatives of both components of QT as well as to ~03B12 Q1, we see that
(A 13 . 22) gives that the intersection matrix determinant is, to leading
order, equal to -§12821 and this proves c~.

2) We study, now, the third order for the simple model:

with the purpose of performing an instructive calculation showing quite
clearly one among several cancellation mechanisms behind the smallness
of the homoclinic angles when l= 2.
We shall study the contributions to A3 (~) of order J- 2 as J ~ 0. Note

that 03 (oc) is a polynomial of degree 2 in J -1.
We see from (A 13 . 8) that in this case we must consider:

Each EJ. is split plus and each addend in (A 13 . 25) generates
eight terms. To considering improper integrals we shall consider
only the terms obtained by operating the first three second choices.
The same mechanism, once understood applies equally well to the other

seven terms (and actually it is more convenient not to separate them and
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to operate with the improper integrals). We hope to examine the general
theory elsewhere.

Setting and omitting writing the summation symbol over
Àl, ~2~ À3, we get a contribution denoted C3 given by:
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and, computing ¿ 0’ Cg = C3 up to terms giving, obviously, exponentially
small contributions as ~ --+ 0, we see that C3 is given by:

and we easily see that only the cases À1 + À2 + À3 == J= 1 can give non
exponentially small contributions to C3. But in such cases the sum of the
second, third and fifth terms vanishes identically (exhibiting the mentioned
cancellation mechanism) ; while the sum over the À’s of the first and fourth
terms is also exponentially small.

A14. Development of the perturbatrix

We study here the perturbation V in the d’Alembert model of section 12.
We set, for a general angle x, cx~cos x and:

and, dropping £ everywhere below the subscript 0 from the angles, we
have see n2.3~:
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up to 0 (e3). It follows immediately that if:

it is (again up to (9 (e3))

More explicitly we find:

Defining cj=cj(K0, M - U), M.) by:
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we see from (A 14 . 4) that:

so that (up to order 9 (e2)):

and, reinserting the lower index 0:
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and the coefficients (cf ( 12 .14)) vanish unless they belong to the
following list where ! /!  2:

Next, after the linear change of variables (12.22), (12.23) one gets (12.24)
with the vanishing unless they belong to the following list where

and where are the functions in (AI4.6) evaluated at

Ko = 2 10 - Ao + K, .
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