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ABSTRACT. - Generalised Lagrangian and Hamiltonian theories of

dynamics with two evolution directions are presented. The corresponding
evolution problem involves prescribing initial data on two intersecting
surfaces. In the dual-null case, where the initial surfaces are null (or
characteristic), and a certain functional is invertible, the initial data are
the appropriate momentum field on each surface, and the configuration
field on the intersection. The theory is applied to the Klein-Gordon and
Maxwell fields, and the relativistic string.

RESUME. 2014 Nous presentons des theories Lagrangiennes et Hamiltonien-
nes généralisées a deux directions d’evolution. Le probleme d’evolution
correspondant necessite de preciser les conditions initiales sur deux surfaces
s’intersectant. Dans le cas dual-nul ou les surfaces initiales sont caracteris-

tiques, et une certaine fonctionnelle inversible, les données initiales sont
les champs de moments appropriés sur chaque surface et le champ de
configuration sur l’intersection. Nous appliq.uons cette theorie aux champs
de Maxwell, de Klein-Gordon, et aux cordes relativistes.

D. INTRODUCTION AND SUMMARY

A large part of theoretical physics. can be. summarised as the develop-
meat of Newtonmn dynamics through Lagrangian and Hamiltonian

de~ Physique 0246-02 J l
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400 S. A. HAYWARD

dynamics into quantum dynamics. These may all be classified as theories
of temporal dynamics, in that they all describe a spatial world evolving in
time. This emphasis reflects the role of time in human consciousness, but
is not particularly natural in Relativity, which describes the universe in a
four-dimensionally covariant way. Moreover, null (or characteristic) surfa-
ces are more relevant to the causal structure of Relativity than spatial (or
Cauchy) surfaces, and so it is natural to consider null evolution as an
alternative to temporal evolution.
For such reasons, it is desirable to have a formulation of null dynamics

similar to the Lagrangian and Hamiltonian formulations of temporal
dynamics, and eventually to find a representation of quantum theory
which respects null evolution. In this paper, a formalism is developed to
describe dual-null dynamics, which concerns the evolution of initial data
prescribed on two intersecting null surfaces. By introducing apex condi-
tions, the formalism may be modified to describe light-cone dynamics,
where data are prescribed on a light-cone, or on past null infinity.
The starting point is a generalised Lagrangian theory which has two

evolution directions instead of one, and consequently two velocity fields
for each configuration field. At this stage the initial surfaces may have
any signature. In the corresponding Hamiltonian theory, there is an integr-
ability condition for each field which is particularly simple in the dual-
null case, where the initial surfaces are null. This is related to the simplifica-
tion of hyperbolic equations obtained by taking characteristic coordinates.
In the absence of constraints, the initial data are the appropriate momen-
tum field on each surface and the configuration field on the intersection.
The theory is applied to the examples of the Klein-Gordon field, the

Maxwell field and the relativistic string in flat spacetime. The application
to General Relativity has already led to the general solution to the Einstein
equations on a null surface, and a necessary and sufficient condition for
a light-cone to be trapped in terms of concentrations of matter of gravita-
tional radiation (Hayward, 1992). One noteworthy point is that the dual-
null formulation of a physical theory usually has fewer constraints than
the corresponding temporal formulation. In particular, the Einstein gravit-
ational field has no constraints in dual-null form. This is of considerable

advantage analytically, and potentially for a quantum theory of gravity.
It appears that there is no natural canonical quantisation scheme for dual-
null dynamics, but that path-integral quantisation is feasible.

1. STRUCTURE AND NOTATION

The geometrical structures used are defined in Abraham &#x26; Marsden

(1978) or Spivak (1970). The formalism is concerned with a compact

Annales de l’Institut Henri Poincaré - Physique théorique



401DUAL-NULL DYNAMICS

orientable n-dimensional manifold S, of codimension 1 in spacetime for
temporal dynamics, and codimension 2 for dual-null dynamics. Compact-
ness of S is required for technical reasons only, and the dynamical equa-
tions derived apply equally to the non-compact case.
The ring of smooth functions (or scalars) from S to R is denoted by

~ S. The trivial line bundle is denoted by LS, the tangent bundle by TS,
the bilinear (or metric) bundle of symmetric (0,2) tensors by BS, and the
n-form bundle by DS. The module of smooth sections of a bundle is
denoted by a C (for C~~&#x3E;), e. g. CLS = !7 S for scalars, CTS for vector
fields, and for n-forms (or scalar densities). The Lebesgue
measure on S obtained by replacing n-forms with infinitesimals is denoted

by l: fF D S - R. Multiplication by a nowhere-zero volume form f.1 E S

defines an isomorphism from !7 S to !7 D S which preserves linearity and
multiplication by scalars, and hence defines a Lebesgue measure

 y : F S - R.
For a vector bundle Q over S, the dual bundle is denoted by Q*, e. g.

the cotangent bundle T* S. Also needed is the density dual Qó, whose
fibre at a point consists of the linear maps from the corresponding fibre
of Q to the fibre of DS; e. g. the cotangent density bundle Tg S. Multiplica-
tion by a volume form defines an isomorphism from CQ* to CQ§ One
also has e. g. the tangent density bundle TD S. The Whitney
fibre sum of two bundles is denoted by @, and multiple sums by powers,
e. g. In a similar way, TCQ, TgCQ, BCQ etc denote the
tangent bundle, cotangent density bundle, metric bundle etc of CQ.

Variations are defined in the usual way: given q E CQ, consider a smooth
1-parameter family of fields q : I --~ CQ, where I is a real interval around
0 and q (o) = q; then the variation 6 q e CQ of q with respect to this family
is

For a functional f : CQ - f7 D S, variations 8f: S are similarly
defined, and satisfy the chain rule

in terms of the functional derivative E CQg.
An index-free notation has been adopted. A single symmetric contrac-

tion is denoted by a dot ( . ), a double symmetric contraction by a colon
(:), a symmetric tensor product by (x), and an antisymmetric (exterior)
product by A.

Vol. 59, n° 4-1993.



402 S. A. HAYWARD

2. TEMPORAL DYNAMICS

It is appropriate to begin with a brief review -of the standard Lagrangian
and Hamiltonian formalisms for temporal dynamics, roughly following
Fischer &#x26; Marsden (1979), Abraham &#x26; Marsden (1978) and Arnold
(1989). Since much of the structure is similar but simpler in the temporal
case, this serves as an introduction to the methods, notation and problems
to be encountered in dual-null dynamics.

2.1. Lagrangian dynamics

The basic kinematical space is a vector bundle Q over S, the configur-
ation bundle. The configuration fields are the smooth sections q E CQ, and
the velocity fields may be defined as (q, The evolution space is

an interval ~"=[0, T), with evolution parameter (time-coordinate) 
All fields on S are extended to S X J by taking q = dq/dT..
Dynamics are determined by a Lagrangian (density) IE: TCQ -~ !F D S,

which is extended to by invariance on Y. The Euler-Lagrange
equations

are obtained from the principle of stationary action 8 f di = o.

If is independent of a particular velocity ë, then the corresponding
Euler-Lagrange equation is a constraint,

rather than an evolution equation. Thus the evolution of c is not determi-
ned, and it may be described as not evolved. If it is possible to solve the
constraint for c, for instance if 2 is quadratic in c, then c is spurious in
the sense that the Lagrangian may be redefined without it. If c is not

determined by the constraint, for instance if 2 is linear in c, then c must
be specified at every event. In this case, c is a gauge field, representing
coordinate freedom or some other internal freedom of the theory. In

general, the number of evolved fields (and hence evolution equations) is

the number of independent velocities in the Lagrangian, and the number of

gauge fields (and hence constraints) is the number of remaining redundant
velocities.

Annales de l’lnstitut Henri Poincaré - Physique théorique



403DUAL-NULL DYNAMICS

2.2. Hamiltonian dynamics

The momentum fields may b.e defined by (q, q) ~ Tó CQ. The Lagrangian
defines a Lagrange transformation A : TCQ - Tó CQ by

In practice, Lagrangians of interest are quadratic in the velocities q, so
that A is a linear transformation, with rank equal to the number of

evolved fields, and nullity equal to the number of gauge fields. If there is
an inverse A -1 then A is a Legendre transformation, and a Hamiltonian
(density) ~f: Tg CQ -~ S may be defined by

or, with the usual abuse of notation,

In this case the second-order Euler-Lagrange equations are equivalent
to the first-order Hamilton equations

The initial data are then (q, q) on So = S x {0}.
If A is not invertible, a reduced Hamiltonian is defined on the constraint

submanifold A (TCQ) of T*DCQ using the invertible part of A, and a
reduced set of Hamilton equations is obtained by considering the non-
invertible velocities as Lagrange multipliers. In practice, if variables

q = (e, c) are found which separate gauge fields c from evolved fields e,

i. e. if ö2jöë vanishes and b~/~e has maximal rank, then the reduced
Hamiltonian ~f: A (Tö S is given by

and the reduced Hamilton equations are

The initial data are then (e, ë) on So satisfying the constraints, with c
being prescribed over the whole neighbourhood S In general, the
constraint is not automatically preserved, so that

is an independent constraint. However, the constraint is automatically
preserved if 1%° is a contraction Jf = c (~) of c with a functional f (e, ~),
as occurs for the Einstein field.

Vol. 59, n° 4-1993.



404 S. A. HAYWARD

The more general definition of Hamiltonian dynamics on a symplectic
manifold appears to have no useful analogue in dual dynamics (§ 3 . 7).

3. DUAL-NULL DYNAMICS

Dynamics with two evolution directions, or dual dynamics, is essentially
analogous to dynamics with one evolution direction, but requires addi-
tional consideration of integrability conditions. For each configuration
field, there are two velocity fields, and consequently two momentum fields.
The initial surfaces are two intersecting surfaces of codimension 1, S + and
S’, and their intersection So, defined subsequently. The basic theory of
dual dynamics may be applied to any surfaces S + and S’, but the

integrability conditions take a particularly simple form in the dual-null
case (§ 3. 3). This is related to the simplification obtained by taking
characteristic coordinates for hyperbolic kinetic-potential systems (§ 3.4).

3.1. Lagrangian dynamics

As for temporal dynamics, the configuration bundle Q is a vector bundle
over a compact orientable manifold S, which is now of codimension 2 in

spacetime. The configuration fields are the smooth sections q E CQ, and
the velocity fields are (q, q+, The evolution

space is a product of intervals ~ x 1/ = [0, U) x [0, V), with evolution
parameters 03BE ~ U and ~ ~ 1/. Fields on S are extended to S X f by
taking q + = and q - = aq/arl .
Dynamics are determined by a dual Lagrangian 2: (TCQ)2 -+ IF D S,

extended to S by invariance on 4Y x ~. The principle of stationary
action gives
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and for variations ðq vanishing at the boundaries of S x 0/1 x iT, the dual

Euler-Lagrange equations

are obtained.

3.2. Hamiltonian dynamics

The momentum fields are (q, q, q) E (Tó CQ)2 = Tó CQ~T*D CQ. The
Lagrange transformation A : ~TCQ)2 --~ (Tó CQ)2 is given by

If A is invertible, the dual Hamiltonian Jf: (Tó CQ)2 -+ ff 0 S is given by

or, with a useful abuse of notation,

The dual Hamilton equations are

The non-invertible case is more complex than tor temporal dynamics,
and is treated in § 3 . 5. The other qualitatively new feature of dual

dynamics is that the above Hamilton equations do not by themselves give
the full first-order field equations, but need to be supplemented by an

integrability condition. A simple example is given in § 4. 2.

3.3. Integrability conditions: the dual-null condition

Because of the way the evolution space ~ x 1/ has been defined, the
evolution derivatives commute:

Applying this identity to q and using the Hamilton equations yields the
condition

Vol. 59, n° 4-1993.



406 S. A. HAYWARD

which expands to

using the Hamilton equations again. This is an integrability condition for
the Hamilton equations, relating the four derivatives of q and q along ç
and 11 in terms of the momentum fields (q, q, q). The character of the
integrability condition is critical to the evolution problem, as follows.
Bilinear functionals d, 28 and : (Tó CQ)2 -+ Bó CQ may be defined by

Inspecting the integrability condition, note that the derivatives 
and lillq already occur in the Hamilton equations, but that and

do not. The presence of the latter terms makes it difficult to
formulate an evolution problem, since there are not enough equations to
determine all four derivatives uniquely, and yet it would be unnatural to
give such derivatives as initial data. Consequently, attention is restricted
to the case

which is the definition of the dual-null condition. The condition is not as
strong as it might appear, since all Hamiltonians of interest are quadratic
in the momenta, and consequently the condition reduces to the vanishing
of the appropriate coefficients of the quadratic, as is shown in § 3 . 4. For
spacetime examples, these coefficients are precisely those which vanish
when the initial surfaces and S - = S x {0} x ~ are null
in spacetime, as in the examples of § 4.

In the dual-null case, the integrability condition and the final Hamilton
equation are simultaneous equations for oq/oç and ~/~~ as functions of
the momentum fields (q, q, q). These are uniquely solvable for and

~/~~ if and only if 8l has an inverse 8l-1: BDCQ. In this
invertible case, the dynamical equations - Hamilton equations plus integra-
bility condition - are equations determining and ~/~~
as functions of (q, q, q). Thus the inital data are q on 
q on S’, and q on S +, and the evolution equations may be expected to
determine a solution in a neighbourhood S x ~.

In the non-invertible case, ~ may be decomposed into an invertible part
and a zero part, with the integrability condition for the zero part being a
constraint. The constraint may be trivial or non-trivial, but either way the

Annales de l’lnstitut Henri Poincaré - Physique théorique
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evolution problem is now different, since one of the corresponding
momenta must now be prescribed everywhere. For examples see § 4.

3.4. Kinetic-potential systems

The natural selection of the dual-null case is most easily seen for kinetic-

potential systems, where the Lagrangian is the sum of a kinetic term

quadratic in the velocities and a potential term independent of the veloci-
ties. To define quadratics requires a configuration metric (density)
h* E BD CQ for the .configuration bundle Q, defining a linear operation
* : CQ - CQg denoted by q* = h* (q), with the inverse metric h* E Bó CQ
defining a linear operation * : CD:; -+ CQ denoted by p* = h* (p). If Q is a
sum of tensor bundles over S, the metric h E CBS on S induces a natural
metric h* on Q, e. g. for a vector s e CTS, it is natural to take h* (.y) == ~. ~
where ,E S is the volume form of h. Using this structure, a symmetric
kinetic-potential Lagrangian Ef : S is one of the form

where a, b, c and the potential V depend only on q, i. e. 

and a, b, c : CQ - EF S. The only other quadratic structure which occurs
in practice is an antisymmetric quadratic form induced from the alternating
form associated with 2-dimensional h, which gives non-standard dynamics
(§ 3 . 5).
The dual Euler-Lagrange equations

may be written as a quasi-linear second-order partial differential equation
for q:

where f : (TCQ)2 -~ CQ, so that f is first-order in q, and it is assumed that
h* is either included in the configuration bundle or fixed. The system may
be classified as hyperbolic, parabolic or elliptic as b2 - ac is positive, zero
or negative respectively. For the hyperbolic case, the linear transformation
freedom in (~, 11) may be used to select characteristic coordinates (ç, 11)
for which a = c = 0, so that the equation takes the canonical form of the
wave equation:

Vol. 59, n° 4-1993.
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which may be taken as the definition of the dual-null case for such systems.
The Lagrange transformation A : (TCQ)2 -+ (TÓ CQ)2 is given by

and if b2 i= ac then A is invertible and the Hamiltonian
Yf : (Tg CQ)2 -+ ff D S is given by

Thus the bilinear functionals defined in § 3 . 3 are given by

so that the definition a = c = 0 of the dual-null case in terms of characteristic
coordinates agrees with the general definition ~ = ~ = 0, with invertibility
of B following from the symmetry assumption. A simple example is

provided by the relativistic string (§ 4.4).
The dual-null condition puts the Lagrange transformation in the canoni-

cal form

so that (q, ~)= "~(~ , q + ) * . This is just the canonical form of a kinetic
quadratic which is hyperbolic.

3.5. Constraints

If the Lagrange transformation A is not invertible, there are constraints
on momentum space (primary constraints). For dual dynamics, this does
not necessarily mean that the corresponding Hamilton equations reduce
to constraint equations (secondary constraints) for the remaining fields on
S, since the two conjugate momenta need not both be zero; instead,
there are intermediate possibilities of evolution equations with a different
structure.

The procedure for dealing with momentum constraints is the same as
in temporal dynamics. A reduced Hamiltonian is defined on the constraint
submanifold A (TCQ)2) of (Tó CQ)2 using the invertible part of A. The
reduced Hamilton equations then follow by considering the non-invertible
velocities as Lagrange multipliers of the constrained momenta.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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The example which occurs in practice is that of a kinetic-potential
system where the kinetic term is an antisymmetric quadratic,

for configuration fields (~, Thus there is only one inde-

pendent momentum ~=~~~’)*6CQ~ with the other three
momenta constrained: §= §= §+§= 0.The reduced Hamiltonian is of
the form ~ _ ~ (~ + - ~ - ) - ~, with a total Hamiltonian

.ie T = Yf + BJ/ (p) + ~ (6) +())+ (t) containing Lagrange multipliers p, a
and T E CQ. The Hamilton equations for Yf Tare

which, on eliminating the multipliers and applying the constraints, reduce
to

In this non-standard case, the integrability condition is got by applying
the commutator to the momentum B[/, the dual-null condition is

and it is possible to solve uniquely for and if and only if

is invertible. In this case, the initial data are 03C8 on So, (j) on S 
+ 

and B)/ on
S - . In the non-invertible case, a constraint is obtained, and either ()) or Bj/
must be specified everywhere, and so may be interpreted as a gauge
variable. The Maxwell field (§ 4. 3) provides an example. Note that this is
equivalent to a standard system with (q, q, ~)==(~ -~ ))).

If both momenta c and c of a field c vanish, then the corresponding
Hamilton equation is a constraint,

and c may be interpreted as a gauge variable. There are three types of
constraint: constraints on So, which involve only the initial data on So,
and are preserved along ~ and r~ constraints on S +, which involve the

Vol. 59, n° 4-1993.
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initial data on S + and are preserved along r~; and similar constraints
on S-.

3.6. Numerical considerations

One approach to evolution problems which appear to be analytically
intractable in general is a programme of numerical integration of the
equations. The dual-null evolution problem has certain advantages over
the Cauchy problem in terms of numerical methods, which will be briefly
indicated here.
A numerical model for a dual-null system may be constructed by analogy

to the familiar grid model for the Cauchy problem. The neighbourhood
S is modelled by a Cartesian grid for U x V, and a grid for S
which represents some coordinate system. The fields (q, q, q) are replaced
by their values on the grid, and the equations are modelled by finite
difference equations along the grid lines. In the standard invertible case,
where there are no constraints,. the initial data are the values of q on So,
q on S +, and q on S’. There are three integration routines to perform:
integrate q and q in the 03BE-direction up S+; integrate q and q in the 11-
direction up S-; and integrate q and q in the 03BE-direction and q and q in
the ~-direction into S x 4Y x "f/.

This gives two estimates qi and q2 of q at each point. The double
estimate has no analogue in the Cauchy problem, and has two noteworthy
advantages. Firstly, by simply taking the average of the two estimates, a
more accurate estimate is obtained. Secondly, this provides a good error
measure

in terms of the configuration norm II defined using the

configuration metric of § 3.4:

Alternatively, the dynamic (energy) norm II R given by

may be used to define an error

A’nnales. de l’Institut Henri Poincare - Physique théorique
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provided that H (q, q, q) is non-negative. This has the status of a

positive-energy condition for the field considered, with H being a measure
of the energy of the field q on S. By comparison, the existence of II q ~~~
depends only whether h* is positive-definite, which follows if h* is derived
from a positive-definite metric h E CBS.

Constraints C (q, q, q) = 0 may be treated similarly to constraints for
the Cauchy problem, though there are now three types of constraint.
Constraints may also be used to give more accurate estimates, though in
a considerably more complicated way than that provided by double estima-
tes. Given an estimate (q, q, it is required to find the closest solution
satisfying the constraint, in terms either of the dynamic norm or the
kinetic norm ~ Ilk (Tg CQ)2 -+ R given by

This itself is a difficult problem. The minimum distance gives some sort
of measure of the accuracy of the original estimate, but does not provide
a good error measure since there is no natural scaling in general., corre-
sponding to the fact that an estimate of zero is being calculated.
One other important advantage of a dual-null approach over the Cauchy

approach is that in the latter, radiation propagates only approximately at
light-speed, due to numerical error, whilst in the former the correct null
propagation in the normal directions is forced by the structure. Thus a
dual-null numerical model may be expected to be more accurate for
radiation problems. It is difficult to formulate a precise com.parison, since
the initial surfaces are different.

3.7. Formal developments

The notation may be compacted by combining the velocities and
momenta into single quantities q = (q+, q-) and p = (q, q), and the evolu-
tion derivatives into a single operator d = t~/~~, The dual Euler-
Lagrange equations are then

the Lagrange transformation is given by

Vol. 591 n° 4.-1993.
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and the dual Hamilton equations are

A symplectic form J must be introduced in order to state the integrability
condition:

However, in practice this approach is not particularly advantageous, since
the velocities or momenta must be separated to make sense of the initial
data.

These seems to be no useful generalisation of Poisson brackets for

dual dynamics. This is because, in the expansion of the derivative of a
functional,

the term in oqjoç is not determined by the field equations, but is part of
the initial data. Consequently, evolution derivatives cannot be expressed
solely in terms of the Hamiltonian, because there are always terms

explicitly dependent on the initial data. Thus there seems little hope for
a canonical quantisation scheme for dual-null dynamics. Path-integral
quantisation is still possible, as for example for the relativistic string
(Green, Schwarz &#x26; Witten, 1987).

4. EXAMPLES

Although the main aim of the dual-null formalism is to provide an

approach to General Relativity, it also provides a convenient formulation
of other physical theories. The examples of the Klein-Gordon field, the
Maxwell field and the relativistic string have been chosen partly because
of their intrinsic interest, and partly because they illustrate the key features
of the formalism.

4.1. Fields on flat spacetime

For a flat spacetime (M, g), a dual-null basis (u, v; e) may be taken in
which the metric geCBM is given by

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where u, v E CTM, e ~ (CTS)2 is a basis for the flat 2-surface S, and 03B4 E CBS
is the 2-dimensional Kronecker delta. For consistency with the general
theory, S is a torus rather than a plane, though this is irrelevant to the
equations. The evolution parameters 03BE~U and are given by u = ~/~03BE
and The initial surfaces are 
and The coordinate derivative V on M decomposes
into the coordinate derivative ~ on S and the evolution derivatives ~!;
and 

The fields must similarly be decomposed into fields q on S. The space-

time action 1= L .P 0 should then be converted to the form .

which may involve removing total divergences.
For any theory on a fixed spacetime background, the distinction between

functions ~ S and n-forms ffDS in the dynamics is no longer necessary,
since the area form ~FDS is fixed. Consequently, in s.uch cases it is.
sensible to modify the general theory of § 3 by omitting the subscripted
Ds, and omitting ~, from f£. Also, index raising (CT* S -+ CTS) and
lowering (CTS -+ CT*S) with the identity metric 8 is trivial, and will not
be denoted.

4. 2. The Klein-Gordon field

A simple example is provided by the Klein-Gordon scalar field ~, defined
by the spacetime action

where v is the volume form of the metric g. The dual-null configur-
ation bundle is just the line bundle Q=LS, with field and the
dual-null Lagrangian (TCQ)2 -+ $’ S is

Vol. 59, n° 4-1993.
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in the dual-null basis of 4. 1. The Euler-Lagrange equations give the dual-
null form of the Klein-Gordon equation:

where fØ2 = ~ . ~ is the Laplacian on S.
The momentum fields are

and the Hamiltonian Jf : (T* CQ)2 -+ ff S is

The Hamilton equations are

and the integrability condition

is invertible and gives

Thus the first-order equations are

and the initial data are ()) on So, ~ on S~ and f on S - . This illustrates
the standard structure of the dual-null equations and initial data.

4.3. The Maxwell field

A more interesting example is the Maxwell electromagnetic field, defined
by the spacetime action

Annales de l’lnstitut Henri Poincaré - Physique théorique
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in terms of the covector potential AeCT*M, with the current vector
JeCTM being regarded not as a dynamical field, but as a fixed back-
ground field. The physically measurable quantity is not the potential A,
but the electromagnetic field tensor F = 2 V A A.

Using the dual-null basis of § 4.1, the potential and the current are
decomposed into

and so the configuration bundle is Q = S, with fields q = (~,
w; a)ECQ, and the background bundle is with fields

(p, a; j) E CP. The dual-null Lagrangian 2: (TCQ)2 -~ ~ S is found to be

The independent momenta are

and the momentum constraints are

Using the result for antisymmetric constraints (§ 3. 5), there is a reduced
Hamiltonian A -+ ff S of the form

and reduced Hamilton equations of the form

Explicitly, these are

and

The integrability condition

Vol. 59, n° 4-1993.
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is invertible and yields

and the integrability condition

is non-invertible and gives charge conservation

which is to be regarded as a consistency condition on the background
fields, and in the absence of sources in trivial.

Recalling that the physically measurable quantity is the field tensor F,
the potential a is replaced by the 2-form so that F is
given in the dual-null basis by

The dynamical equations then become

together with charge conservation. These are the Maxwell equations in
dual-null form.

Thus the electromagnetic initial data are b and B[/ on So, â on S +, and
a on S’. For sources, one can prescribe j and a everywhere and p on S’,
or j and p everywhere and a on S + . The 2-vectors a and â may be
interpreted as encoding the electromagnetic radiation propagating in the
u and v directions respectively, since they constitute the free data on S -
and S + . The fields and b represent respectively the components of the
electric and magnetic fields normal to S. Note that there are no constraints,
which constitutes a significant advantage over the classical temporal form
of the Maxwell equations in terms of the electric and magnetic fields.

4.4. The relativistic string

In the previous examples, the dual-null case was selected at the outset
by coordinate choice. This is not possible if the variables encoding the

Annales de l’lnstitut Henri Poincaré - Physique théorique
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coordinate freedom are also included in the dynamics, as occurs in Relativ-
ity. In this case, all variables must be retained in the Lagrangian or
Hamiltonian, with the Lagrange or Hamilton equations being evaluated
for the dual-null case, since otherwise dynamical equations will be missed.
The simplest such example is the relativistic string (Green, Schwarz &#x26;

Witten, 1987), defined by the string action

where xP are coordinates and gPQ is a flat metric on spacetime N, and hab
is the metric on the string M, with covariant derivative ~ and area form v.
This string theory is different to the preceding spacetime theories in that
the dynamical arena M is the string itself, and the variables x which are
usually interpreted as spacetime coordinates are just fields on the string.
For dual dynamics, S is just a point, and the evolution vectors .u and

V e CTM provide a basis (u, v) for the string, in terms of which the string
metric h E CBM can be decomposed as

Thus the configuration bundle is where V is a vector space
with the same dimension as spacetime, and the configuration fields are
q = (a, b, c; The dual Lagrangian 2 should satisfy

where M==~/~ and Since the Lagrangian
2 : (TQ)2 -+ R is found to be

where the flat (~) denotes index lowering with the spacetime metric
gE’CBN..
The independent momenta are

v ~

where V* is the dual of V, and the constrained momenta are

so that a, b and c are gauge variables. The reduced Hamiltonian
A ((T* Q)2) -+ R is of the form
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and the reduced Hamilton equations are of the form

Explicitly, the Hamiltonian is

where the sharp (#) denotes index raising with the inverse metric
and the Hamilton equations are

where only two of the three original constraints are independent, indicating
that one combination of a, band c is irrelevant to the dynamics, corre-
sponding to the Weyl symmetry of the string.
The integrability condition

is in general rather lengthy, involving all ten velocity fields. However, the
cordinates may now be fixed by taking

which is dual-null in all the senses of § 3: it means that the evolution
directions u and v are null in spacetime; it means that x explicitly satisfies
the wave equation

and it means that the integrability condition is invertible and simplifies
dramatically to

Thus the dual-null equations are simply
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and it is to be noted that b has disappeared from the equations. Apart
from the constraints, which indicate that S + and S - are null is spacetime,
this is just the first-order dual-null form of the wave equation for x, this
being the archetypical hyperbolic equation. The initial data are x on So,
x on S + satisfying x . x# = 0, and x on S - satisfying ~.~==0. Interpreting
the variables, x and x represent the wave profiles moving in either direction
on the string, which propagate unchanged, with the general solution being
just a sum of the initial data. This may be compared favourably with the
temporal formulation. The main lesson is how the evolution problem
simplifies in the dual-null case, which also occurs in Relativity.
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