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ABSTRACT. - We consider the Vlasov-Einstein system in a spherically
symmetric setting and prove the existence of globally defined, smooth,
static solutions with isotropic pressure which are asymptotically flat and
have a regular center, finite total mass and finite extension of the matter.

RESUME. - Nous considerons le systeme de Vlasov-Einstein dans le cas
d’une symetrie spherique et demontrons l’existence de solutions globale-
ment definies, lisses et statiques a pression isotrope qui sont asymptotique-
ment plates et possedent un centre regulier, une masse totale finie et une
extension de la matiere finie.

0. INTRODUCTION

It is well known that the only static, spherically symmetric vacuum
solutions of Einstein’s field equations are the Schwarzschild solutions
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384 G. REIN AND A. D. RENDALL

which possess a spacetime singularity (or are identically flat). In the present
note we couple Einstein’s equations with the Vlasov or Liouville equation
for a static, spherically symmetric distribution function f of identical
particles (stars in a galaxy, galaxies in a galaxy cluster etc.) on phase
space. This results in the following system of equations:

where

Here the prime denotes derivative with respect to r, and spherical
symmetry of f means that f (A x, A v) = f (x, v) for every orthogonal matrix
A and x, v E 1R3. If we let sin e sin ~, cos 8) then the space-
time metric is given by

Asymptotic flatness and a regular center at r = 0 are guaranteed by the
following boundary conditions:

We refer to [6] on the particular choice of coordinates on phase space
leading to the above formulation of the system. It should be pointed out
that the above equation for f is only equivalent to the Vlasov equation if

f is spherically symmetric.
A brief overview of the literature related to the present investigation

seems in order. In [6] the authors investigate the initial value problem for
the corresponding time dependent system. In [7] it is shown that the

classical Vlasov-Poisson system is the Newtonian limit of the Vlasov-

Einstein system. The existence of static, spherically symmetric solutions
of the Vlasov-Poisson system is established in [3]. Taking the distribution
function f as a function of the local energy and the angular momentum,
which are conserved along characteristics, the problem is reduced to

solving a nonlinear Poisson problem. For certain cases corresponding to
the so-called polytropes it can be shown that this leads to solutions with
finite radius and finite total mass, cf. also [4]. Cylindrically symmetric,
static solutions of the Vlasov-Poisson system are investigaged in [2]. In [10]
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385STATIC SOLNS OF THE VLASOV-EINSTEIN SYSTEM

it is shown that coupling Einstein’s equations with a Yang-Mills field can
lead to static, singularity-free solutions with finite total mass. Static sol-
utions of general-relativistic elasticity have been studied in [5]. A system in
some sense intermediate between the Newtonian and the general-relativistic
setting is the relativistic Vlasov-Poisson system, where similar results as

for the nonrelativistic version hold, cf. [ 1 ]. For further references, especially
on the astrophysical literature, we refer to [9].
The present investigation proceeds as follows: In the next section we

give two conserved quantities, which correspond to the local energy and

angular momentum in the Newtonian limit, and reduce the existence

problem for static solutions of the Vlasov-Einstein system to solving a
nonlinear integrodifferential equation for Il. The fact that the distribution
function f indeed has to be a function of the local energy and angular
momentum (known as Jeans’ Theorem) is rigorously established for the
Vlasov-Poisson system in [3] but not known in the present situation. In
other words, it is not clear whether our ansatz for f covers all possible
spherically symmetric, static solutions. The existence of solutions to the
remaining equation for y is investigated in the third section under the
additional assumption that f depends on the local energy only. Here we

profit from the investigation in [8] when showing that Il exists globally in
r. In the last section we consider a particular ansatz for f corresponding
to the polytropes in the classical case and show that this leads to solutions
with finite mass and finite radius. This is done by treating the Vlasov-
Einstein system as a perturbation of the Vlasov-Poisson system and using
the criteria for a finite radius from the classical Lane-Emden-Fowler

equation.

1. CONSERVED QUANTITIES AND REDUCTION OF THE
PROBLEM

As explained above, a key point in our investigation is to reduce the full
system to a nonlinear integrodifferential equation for ji. This is achieved by
making the ansatz that the distribution function depends only on certain
integrals of the characteristic system. In the coordinates used above, the
characteristic system corresponding to the above equation for f reads
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386 G. REIN AND A. D. RENDALL

note that these equations are not the geodesic equations. One immediately
checks that the quantities

are conserved; in the last section the relation of E to the classical local
energy will become apparent, F can be interpreted as the modulus of the
angular momentum. If we take f to be of the form

for some function the Vlasov equation is automatically satisfied. Insert-
ing this into the definitions of p and p we obtain, after a transformation
of variables,

Inserting these into the field equations would result in a nonlinear
system for ~, and ~. However, we are only able to treat this system under
the assumption that

which implies that the pressure is isotropic. In this case the integration
with respect of F can be carried out explicitly to obtain the following
relations:

where

for in the next section we shall give a class of functions p which
lead to well behaved functions and h~. The Vlasov-Einstein system is
now reduced to the field equations in the form

Using the boundary condition at r = 0 the first equation can be integrated
to give
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If we insert this into the second field equation we obtain the desired
equation for ~:

Thus the problem of finding static solutions of the Vlasov-Einstein

system is reduced to solving the above equation globally in r  O. This will
be done in the next section. Once a solution J.1 is obtained, one has to
check whether it leads to a static solution of Vlasov-Einstein with finite
total mass.

2. EXISTENCE OF SOLUTIONS

As a first step we show that the functions g03C6 and h03C6 are well defined
and well behaved for a sufficiently large class of functions ~. More
precisely:

LEMMA 2 . 1. - Let p : ]0, 00 [ ~ [0, 00 [ be measurable with

for some constants C&#x3E;O and a &#x3E; 4. Then Eqns. ( 1 . 1 ) and ( 1 . 2) define
decreasing functions g~, h~ E C1 and

Proof. - The integrals defining g, and h4 exist by the decay property
of #. A transformation of variables shows that

where

Lebesgue’s dominated convergence theorem implies that the functions
i and h and thus also g~ and h, are continuous. For t&#x3E;O and such
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that we have

Obviously, 11 - 0 as At - 0. The term I2 has a limit as At - 0 by
Lebesgue’s theorem. Thus, the function h is left-differentiable with

Again by Lebesgue’s theorem this function is continuous, and a continu-
ous and continuously left-differentiable function is continuously differenti-
able. Similarly, we see that

which is again continuous. Thus, g~ and h; are C~ and obviously decreas-
ing, and a short calculation proves the relation for h~. D
The regularity of the functions and h; being established, we can now

prove the global existence of À and p.

THEOREM 2. 2. - Let p : ]0, 00[ [ - [0, 00 [ be measurable with

for some constants C &#x3E; 0 and a &#x3E; 4 and let g~, h4 be defined by Eqns.
( 1 .1 ) and (1 2). Then for every ~o E R there exists a unique solution X,
 E C2 ([0, ~[) of the Eqns. ( 1 . 3) and (1 4) with

If we define

then p, p E C 1 ([0, 00 [) are decreasing with

and

Proof. - We start by proving local existence in a neighbourhood of
r = O. This is not a completely trivial matter due to the singularity of the
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Eqns. ( 1. 3) and ( 1. 4) at ~=0. Integrating Eqn. (1. 6) subject to the initial
condition Jl (0) = Jlo we obtain the following fixed point problem for ~:

where

A lengthy but straight forward argument shows that T acts as a contrac-
tion with respect to the norm 11.1100 on the set

if 8&#x3E;0 is chosen small enough. This gives the existence of a solution of
Eqn. ( 1. 6) on the interval [0, 8], and on this interval we define À by Eqn.
( 1. 5) and obtain a local solution C 1 ([0, ö]) of (1 3), ( 1. 4). Once
we are away from the singularity r = 0, we can apply standard existence
and uniqueness results to the system ( 1. 3), ( 1. 4) to extend X, p to a
maximal solution on an interval [0, R[. Obviously, the boundary conditions
at r = o are satisfied. The regularity of the functions and h~ implies
that C2 00, R[), and it can be shown that the second derivatives

continuously extend to r = 0 and ~(0)=~(0)=0. Finally, if R  00 then

or

To prove that R = oo we therefore have to exclude these two possibilities.
Defining p (~) ’ * g§ (y (~)) and p (r) : = h~ (~, (r)) for r E [0, R[ and using
Lemma 2 . 1 we obtain the following system of equations on [0, R[:

Note that since p and p are strictly decreasing on their support, we
could write p as a function of p so that we are in the situation of [8], i. e.
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the matter model is that of a fluid body with a not explicitly known
equation of state. Thus, the analysis is now very similar to [8], and we
only indicate the main steps for the convenience of the reader. If we
integrate Eqn. (2.1 ) and introduce the functions

we obtain the equations

note that WE C ([0, R[) n -C1 QO, RD. Now we use x : =.,2 as radial variable
and by abuse of notation use the same names for p, .p etc. as functions of
x. Then Eqs. (2 . 4) and (2.5) read

From the Eqns. (2.6) and (2. 7) p can be eliminated which yields

Since g, is decreasing and ji is increasing, the function p is decreasing,
and thus

This implies that w is decreasing as a function of .r as well as x, and
thus Eqn. (2.8) yields

Together with Eqn. (2.4) this implies the estimate

Annales :de l’lnstitut Henri Poincare - Physique théorique
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and thus, by the monotonicity of z,

Now assume that R oo. Then

where the latter constant is positive or our solution is trivial and therefore
global. Without loss of generality we obtain the existence of a constant
C&#x3E;0 such that

Together with the monotonicity of p and. p this in turn yields the
estimate

Therefore, ~ is bounded on the interval [0, R[ as well, and together with
Eqn. (2.10) this contradicts the maximality of R. Thus, we have shown
that R = ~.

It remains to prove the asymptotic behaviour of p and p at infinity. By
the monotonicity, the limits exist in R. Assume that 03C1(~)&#x3E;0 and thus

for rO. Then

for sufficiently large r, a contradiction to the above. Furthermore,

and the proof is complete.

Remark. - ( f : _ ~ (E), À, ~) is a static solution of the Vlasov-Einstein
system in the sense that f is constant along characteristics and leads to
functions ([0, oo [), and the field equations hold classically. More-
over, since ~,’ (0) = 1J’ (0) = 0 we have by abuse of notation ~, pe C2 (1R3)
and p,. p E C1 (1R3). If 03C6 is continuous or continuously differentiable then
in addition f has the same regularity, and in the latter case satisfies
Vlasov’s equation classically.

Vol. 59, n° 4-1993.
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3. THE PROBLEM OF FINITE MASS AND FINITE RADIUS

In order to decide whether a solution obtained in the previous section
has finite total mass or whether p (r) vanishes for r large, one has to have
rather detailed information on the behaviour of the function Jl. Due to
the complexity of Eqn. ( 1. 6) we have not been able to decide these
questions directly, even for simple examples of ~. However, it is possible
to show that the solutions obtained above converge to solutions of the

corresponding Newtonian problem as the speed of light tends to infinity.
It is then possible to use the results on finite mass and finite radius which
are known in the Newtonian case for the so-called polytropes to obtain
solutions with the same properties for the Vlasov-Einstein system.

To carry out this program we introduce the parameter 03B3: = 1 c2 where c
denotes the speed of light, define v : = 1 03B3 , and recall from [7] that the Vla-
sov-Einstein system with y inserted in the appropriate places reads

where

The conserved quantity E now becomes

but in order to obtain the correct limit as y - 0, we rewrite our ansatz
for the distribution function in the following form:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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As in Section 1 the Vlasov-Einstein system then reduces to a single
equation for v, namely

where

so that

For the Newtonian case the corresponding ansatz

reduces the Vlasov-Poisson system to the equation

where

Let us define

and fix VQ0. Clearly, the results of the previous section apply so that
for every y&#x3E;0 Enq. (3.2) has a unique, nontrivial, global solution with
v (0) = vo. On the other hand, Eqn. (3 . 6) has a unique, nontrivial, global
solution with U (0) = vo. Furthermore, this solution has the property that
U (R) = 0 for some R &#x3E; 0 which means that the corresponding density

go (U (r)) vanishes for r~R and the total mass 4 x Jo r2go(U(r))dr is

finite, cf. [3]. We shall now prove that v converges to U as ~y ~ 0, more
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precisely:

LEMMA 3.1. - For ever~ ~ &#x3E; 0= there exist constants C&#x3E;O and 10&#x3E;0
such that for every y E ]0, yo] the solution v of (3 . .2) with v (0) = vo. satisfies
the estimate

1 iw ~~~~1 ~~.., f ...- -...

where U is the solution. of (3 6). with U (0) = vo.

Proof. - We have the estimate

where

Since both v and U are increasing and ~ (~) _ © for E &#x3E; 0, it is easily
seen that

~~~ ~ (v (r))~ C, (v M) ~ ~0, y E ]0, 1],

where the constant C depends only on f and vo. Thus, for R &#x3E; 0 fixed
and r E [0, R] we obtain the estimate

for y E ]0, yo] and ]0, 1 such, that 1- yo &#x3E; 0. Next we estimate

y (v ~r)) - go- (U ~r)) ~ I ~ J 1 + J 2 + J 3’
where
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Here we have assumed that e03B303BD-1 03B3 ~ U (r), the other case being comple-

tely analogous. Obviously,

and

To estimate J3 observe that

where

Now on the domain of integration we have

and

whereas distinguishmg the cases and immediately
yields

Vol. 59, n" 4-~993.
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Collecting all estimates we obtain the inequality

and thus, after integrating,

where the constant C depends on p, vo, and R. The usual Gronwall
argument completes the proof.
From [3, 5.4] we know that the Newtonian potential U has a zero,

which is also the radius where the density vanishes. Since by the assump-
tion Vo  0 the solution is nontrivial, U has to strictly increase so that
there exists R &#x3E; 0 such that U(R)&#x3E;0. The above lemma then tells us that
for all y&#x3E;0 sufficiently small, v (R) &#x3E; 0 which by the definition of p and
Eq. (3.5) implies that p(r)=p(r)=O for r &#x3E;_ R. Thus we have proved the
following theorem:

THEOREM 3.2. - Let ~ be defined by Eq. (3. 7) and take vo  O. Then for
all y &#x3E; 0 sufficiently small the corresponding solution v has a zero, the density
p and radial pressure p as defined by Eqs. (3.5), (3.3), and (3.4) have
finite support, and

i. e. the solution is nontrivial with finite total mass.
Final Remarks:
1. In this section we have obtained solutions of the static Vlasov-

Einstein system with y &#x3E; 0 small. However, v is such a solution
then Y - 3~z f (,~ -1 ~2 ., ,~ - l l2 .)~ ~ (,~ - ll2 .)~ ,~v (Y - l2 ~) is a solution of the
system with y = 1, which again has finite radius and finite total mass.

2. If 03C6 is defined by Eq. (3 . 7) then at least f ~ C1 (supp f ), and f E C (1R6)
if k&#x3E; 0 or k&#x3E; 1 respectively.

3. The finiteness of the total mass implies that À (r) - 0 as r -~ 0 and v
and ~ have a finite limit as r -~ oo . Since only the derivatives of these
functions appear in the equations, we may add some constant to obtain
the limit zero also for v and ~., thus satisfying the condition for asymptotic
flatness as stated in the introduction.

4. Our solutions are not only global in the coordinates which we used,
but are singularity-free in the sense that the corresponding spacetime is
timelike and null geodesically complete.
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