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ABSTRACT. - This paper is devoted to a precise description of the
properties of the supercooling field of a superconducting film submitted
to an external magnetic field. Semi-classical analysis is introduced in order
to give very accurate asymptotic behavior of the supercooling field as the
thickness of the film tends to 00 .

RESUME. 2014 Dans cet article nous decrivons precisement les proprietes
du champ de retard a la condensation d’un film supraconducteur soumis
a un champ magnetique exterieur. Nous utilisons une analyse semi-classi-
que pour demontrer des comportements asymptotiques fins du champ de
retard a la condensation quand 1’epaisseur du film tend vers l’infini.

(*) On leave of the university of Paris-XI.
Current address: DMI-ENS, 45, rue d’Ulm, 75230 Paris Cedex, France.

Annales de l’lnstitut Henri Poincaré - Physique théorique - 0246-021 1
Vol. 58/93/02/189/45/$6,50/(0 Gauthier-Villars



190 C. BOLLEY AND B. HELFFER

0. INTRODUCTION: GINZBURG-LANDAU EQUATIONS FOR A
SUPERCONDUCTING MATERIAL

Let us consider a superconducting film whose thickness is d

(i. e. ] - d/2, dj2[ x [R2) and which is submitted to an external field He
parallel to the surface of the material.

In the study of the Ginzburg-Landau theory concerning the different
states of superconducting materials whose temperature is sufficiently small,
we meet the problem to minimize the functional AG which corresponds
to the difference of free Gibbs energy and is defined for

by

(Cf. [Bo] 1, 2, [Gi] and [Du]). ’

The functional AG depend on three parameters d, hand K, h is propor-
tional to the intensity of the exterior field He, and K is a characteristic of
the material which remain fixed in all our discussion.

The pairs ( f , A) characterizing the different states of the superconduct-
ing material are given by the extrema in ( f , A) of the functional AG. In
particular they satisfy the following so called Ginzburg-Landau equations:

As a consequence of the equations, f and A belong necessarily to

H2 (] - d/2, d j2[). The pairs ( f , A) = (0, h (x + e)) (e E ~8) are solutions of the

equations (0.2) and (0.3). They characterize the normal state of the

material and will be called "normal solutions".

A superconducting state corresponds to a solution such that f# 0.
The first problem we shall consider is to determine if a solution

(0, h (x + e)) is a minimum of AG. A global minimum will define a stable
solution and a local minimum a metastable solution.

The following proposition reduces this study to a spectral problem:

PROPOSITION 0.1. - Let d &#x3E; o, h &#x3E; 0 and Let i = i (d, e, h) the

principal eigenvalue of the Neumann problem:

Annales de l’Institut Henri Poincaré - Physique théorique



191AN APPLICATION OF SEMI-CLASSICAL ANALYSIS

(i) If - 1 + ’[ (d, e, h) &#x3E; 0, then the solution (0, h (x + e)) is a local mini-
mum of aG.

(ii) If -1 + i {d, e, h}  o, then the solution (o, h (x + e)} is not a local

minimum of ~G.
According to this proposition it is natural to ask if there exists a critical

value for h corresponding to the property that all the normal solutions
are metastable. For this we introduce the following definition:

DEFINITION 0.2. - For any d &#x3E; 0, let (d) the subset of the h in R 
+ *

s. t. every normal solution (0, h (x + e)) (e e R) is locally stable. Then we
shall call supercooling field the lower bound Hs~ (d) of (d).
We shall study in section 1 the properties of the set (d).
To relate more deeply the problem (0.4) and the supercooling field we

will prove in Section 2 the following

THEOREM 0.3. - (i} For each (d, e) E f~ + * X R, there exists a unique
h (d, e) s. t. 1: (d, e, h (d, e)) =1.

(ii ) HS~ (d) = Supe h (d, e).
The study of this supercooling field leads us to the study of the critical

values of the function: e -~ ’t (d, e, h). Let us introduce:

Let us recall one result obtained by one of us (C.B.) in [Bo]2.

THEOREM 0.4.

Moreover,

h (d, 0) is monotone decreasing and tends to K as d tends to 00. (0 . 7)

As a natural continuation of [Bo]2, we want to study by semiclassical
analysis the structure of s above a point d of [R + * in the limit ~-~+00 or
d - 0. This method was successfully applied in [Bo]2 to prove the existence
of solutions s. t. e#0 when d is large enough and that a nontrivial

necessary condition to get bifurcation was satisfied. This permits, modulo
some additional conjectured property of transversality (verified only
numerically), to predict existence of bifurcations and to explain the nature
of the numerically computed results. We shall return more in detail to
some of the results obtained in [Bo]2 in the study of an equivalent model
in Part II.

The natural questions for the study of s is the existence of regular
curves d - e (d) defined on some interval s. t. (d, e (d)) E s

Vol. 58, n° 2-1993.



192 C. BOLLEY AND B. HELFFER

The numerical computations of [Bo] 2 (see Appendix 1 ) give the following
structure for s:
There exists do s t.

is a smooth curve with value in t~* s. t. e (d) tends to 0
as 

We are far to get until now the complete proof of this situation but we
shall justify mathematically the structure of the picture outside a black
box (probably the most interesting, but see [Bo]~ for partial results)
corresponding to the interval [I /D, D] (with 0  (1 /D)  D  oJ), where D
is a sufficiently large positive real number. Our principal theorems will be
the following:

THEOREM 0.5. - There exists Dl &#x3E;O~ s. t.

smooth curve with value in R + * defined on + 

Moreover (increasing we have the following properties in

]i~l, + oo[.

is monotonically decreasing in + 

Here 01 is the minimum over a ~ 0 of the first eigenvalue of the Neumann
problem of the harmonic oscillator in ] 

- 

a, + 00[.

Remark 0.6. - It will be proved in section 4 (cf. also [Da-He]), that ~°
is attained at a unique point ao. The numerical computations (see
Appendix 2) give: oco z 0.73 and z 0.59.

As expected, the limit obtained in (0.9) coincides with the results obtai-
ned by D. St James and P. G. de Gennes [Ge-Ja] for the supercooling
field as they consider a sample with a semi-infinite domain.

The study of the supercooling field is finally completed by the following:

THEOREM 0.8. - d -~ Hsc (d) is a continuous, strictly positive, piecewise
analytic function.

Annales de l’Institut Henri Poincaré - Physique théorique



193AN APPLICATION OF SEMI-CLASSICAL ANALYSIS

This article is organized as follows:
0. Introduction

Part I. Ginzburg-Landau equations and critical fields
1. Stability of the normal states: the supercooling field.
2. Qualitative properties of the supercooling field.
Part II. Neumann problems with variable boundary
3. Presentation of the problem and of the statements.
4. The Neumann problem on a semi-axis.
5. Construction of quasimodes for the Neumann problem in

] 2014 ~ + c, ~ + c[.
6. Proof of Theorems 3.3 and 3.4.
Part III. The link between Part I and Part II
7. Asymptotic properties of the supercooling field. End of the proofs of
all statements of section 0.

Appendices
References

PART I. GINZBURG-LANDAU EQUATIONS
AND CRITICAL FIELDS

1. Study of the stability of the normal solutions

In this section we shall give a proof of Proposition 0.1 and study
preliminary properties of the supercooling field. We shall complete the
statements of proposition 0.1 by the study of the global stability of the
normal solutions.

Proof of Proposition 0. 1. - To study the functional OG near

(o, h (x + e)), let us consider the following change of functions:
A=h(x+e)+tB; f=tg.
Then

Vol. 58, n° 2-1993.



194 C BOLLEY AND B. HELFFER

Let us assume (i). T(J, e, h) being the principal eigenvalue of (0.4), we
ge for every function d/2[) an 6f/2[):

~~.~-~-~~-~-t~~&#x3E;_t~~~-1~~~~, e, 

If we normalize by:

then

where we have used (1.2) and the injection of Sobolev.
We get the following inequality

and the r.h.s. is positive if:

Assumption (i) implies So we get for all ~e[-~, to] :

i. e. (0, h (x + e)) is a local minimum.
(ii) Let us assume h) -1  o. Choose g = ~ where § is the

positive Lz normalized eigenstate of (0.4). Then

which is strictly negative if 0  ~ t ~  ~1 1 with t 1 small enough.
Remark 1.1. - Proposition 0.1 is different of the classical statements

on linearized stability because of the singularities of equation (0. 3). Let
us recall that a solution (/o. Ao) of equations (0. 2) (0. 3) is called linearly
stable if all the eigenvalues y of the linearized problem in (/o. Ao):

are strictly positive,
In the case where Ao) = (0, h (x + e)), (1 .3) is:

Annales de l’Institut Henri Poincaré - Physique théorique



195AN APPLICATION OF SEMI-CLASSICAL ANALYSIS

~ = 0 is always an eigenvalue of this problem with corresponding eigenspace
~ = 0, A=cst. Consequently we have never linearized stability at the points
(0, h (x + e)). This is quite evident if we observe that e - (0, h (x-~- e~~ is a
curve of critical points of the functional. The tangent space at a point
(0, h (x+eo)) is given by (0, A) with A = Cste and is automatically a
solution of (1.4) with So we can hope only transversal linearized
stability in the sense that we look at the spectral problem (1.4) in adding
an orthogonality condition to this tangent space:

and we shall say that the problem is transversally linearly stable if all the
eigenvalues of this new problem are strictly positive.
We then observe that if T(~~A)&#x3E;1, the problem is transversally

linearly stable and that if T (d, e, h)  1 the problem is not transversally
stable at (0, h (x + e)).

Supercooling field. - It is well known from the physicists that a super-
conducting material which is submitted to an exterior field He can change
of state when the intensity h of this field varies.
The definition of the supercooling field we have proposed in the intro-

duction is justified by the following proposition:

PROPOSITION 1.2. - For any d &#x3E; o, a semiinfinite interval

(Hsc (d) , + 
More intuitively, this corresponds to the idea that by decreasing h a

normal state can stay locally stable until a critical value Hsc (d).
An interesting still open question is to determine if HSe (d) belongs to

(d) or not.

Proof of Proposition 1.2. - We first prove that if for some value of h
say ho all the solutions (o, ho (x + e)) are locally stable, then the same
property is true for any h s.1. h &#x3E;_ ho.

Let us assume that for a given pair (e, h) we have the property:
There exists to &#x3E; 0 s. t., for all and for all normalized pair (g, B)

(as in ( 1. 2)), AG (tg, 
Then let us observe that this property is equivalent to:
There exists to &#x3E; 0 s. t., for all and for all normalized pair (g, B)

(as in ( 1. 2)), AG (tg, h (x + e + t B)) &#x3E;_ 0
But

Vol. 58, n° 2-1993.



196 C. BOLLEY AND B. HELFFER

is an increasing function of h &#x3E; o. We then get the property that is
a semiinfinite interval. ’

The critical thermodynamic (2).f’ield
PROPOSITION 1.3. - For any d &#x3E; o, let the subset of the h in *

s. t. every normal solution (0, h (x + e)) (e E R) is stable.
Then is a semiinfinite interval (Hb (d), + 00[. The lower bound of
(d), Hb (d), will be called the critical thermodynamic field.

Proof of Proposition 1.3. - The proof that it is an interval is the same
as for the supercooling field. Let us give a proof that Hb (d)  00.

LEMMA 1.4. - For each d, there exists h (d) s. t. h &#x3E;_- h (d) implies that
the functional ~G is positive.

Proof of Lemma 1.4. - To normalize we shall rewrite sometimes a
general solution (g, A) as:

with e = cste and J B (x) dx 
= 0.

Step 1. - We first remark that

As a consequence we get that if

Let us now observe that (1. 6) is satisfied if

But by Holder, we know that:

(2) This field is called "champ magnétique critique" in [Du].

Annales de l’lnstitut Henri Poincaré - Physique théorique



197AN APPLICATION OF SEMI-CLASSICAL ANALYSIS

This implies that (1.6) is satisfied if

(1.8) permits to reduce the study of the positivity of AG to the case
where:

It is however not sufficient for our step 2, and we establish now the
partially stronger statement:

There exists C (~) s. t. (1.6) is satisfied if

Indeed we known already from ( 1. 8) that this is the case if

So we need only to prove ( 1. 10) under the additional assumption ( 1. 9).
But ( 1. 7) and ( 1. 9) imply that:

and (1. 6) is satisfied with C (d) = 2 d.
The conclusion of step 1 is that

Step 2. - We study now the problem of the positivity under the
additional assumption that

In particular, it implies that we can assume that g stays in a ball in H 1,
that is that there exists a constant C (d) s. t.

Let us consider the following rewriting of AG:

Vol. 58, n° 2-1993.



198 C. BOLLEY AND B. HELFFER

where a is a parameter independent on h satisfying 0  a  1.
Using Cauchy-Schwarz inequalities we get the following minoration for

AG:

To get the positivity of the r.h.s. we shall first choose a s. t.:

for any g satisfying (l . 1 3) and any B satisfying lB dx = O.
For this we observe the two inequalities:

under condition ( 1.13), and

C2 (d) is the inverse of the first nonzero eigenvalue of the Neumann
problem for the Laplacian in [ - d j2, d/2].
Then we choose a (d) s. t. :

We observe now that if

the first term in the r.h.s of (1 . 14) is positive and we get Lemma 1.4.

On the comparison between the supercooling field and the critical thermo-
dvnamiefield. Of course we have always

Annales de l’lnstitut Henri Poincaré - Physique théorique
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but numerical computations (in [Du]) suggest the equality of the two
critical fields for d small enough. Actually we shall prove:

PROPOSITION 1 .5. - There exists dl s. t.

Proof of Proposition 1. 5. - We shall show the existence of dl s. t.
AG(~/x(~+~)+B)~0 for any e, any and any B for
which we can assume without loss of generality that:

We shall use also a result in [Bo]2 (see also Lemma 7.6)

Step 1. - As in the proof of Lemma 1.4 step 1, we can by easy estimates
reduce the proof of positivity of AG (g, h (x + e) + B) to the case where the
additional following assumption on (e, B, g) is satisfied [cf. (1.12)]:

where Ci is a constant independent of d.
From this we deduce in particular that:

Using ( 1 . 21 ), ( 1 . 22) and ( 1. 23), we observe the positivity of
AG (g, h (x + e) + B) for ) e ~ Cg d, for ~3 large enough.
The result of step 1 is consequently that there exists C &#x3E; 0 and 

Step 2. - We can now assume that

Let us write the following inequality for DG (g, [with
h = HSe td)~ ~

Vol. 58, n° 2-1993.



200 C. BOLLEY AND B. HELFFER

We have just to prove the positivity of the r.h.s. for d small enough.
For this we observe simply using ( 1. 21 ), ( 1. 23) and ( 1 . 25) that:

We then get this positivity easily by choosing d small enough.

2. Qualitative properties of the supercooling field

LEMMA 2.1. - For fixed d &#x3E; o, the map

is a continuous, strictly positive, strictly monotone, piecewise analytic func-
tion.

Proof. - Let us first observe that the map:

is an analytic function with respect to the three variables (see for

example [Ka]).
As a consequence of the minimax principle in (0.4), we get:

More precisely we have at a point (d, e, h):

(where ()) is the L2-normalized positive first eigenfunction of the Neumann-
problem) which implies the strict monotonicity.

It is clear from the fact that ’t (d, e, h) is always &#x3E;_ 0, that

To see if this infimum is in fact a minimum we have to analyze the
behavior of e - T (d, e, h) as I e -)- oo .

Let us just observe for the moment that we have the following simple
inequality for ( e I &#x3E;_ d/2:

which gives the behavior of e --* 1: (d, e, h) at oo .

Annales de l’lnstitut Henri Poincaré - Physique théorique
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If we observe that this last function is continuous, we obtain immediately
the existence of a non empty compact set G (d, h) s. t.

Let us just localize this set more precisely in proving

We just observe that at a point e in 6 (d, h), we have

So we get, observing that

and (2.7) follows immediately (see also Lemma 3.1).
Let us be more precise for the future in observing that, because

is a non constant analytic function due to (2 . 1 ) and (2 . 5), the set ~ (d, h)
which is contained in the zero set of e - (d, e, h) has the following
property

Let us show now the continuity of the map as a function of 
Let ho &#x3E; 0 and let us consider for ho &#x3E; po &#x3E; 0,

The continuity is an immediate consequence by standard arguments of
(2 . 6), (2 . 7) and of the uniform continuity of (e, h) -1&#x3E; i (d, e, h) on the
compact [ - d j2, dj2] x B (ho, po).

Let us give the argument for the strict positivity. Because the infimum
is a minimum, this is an immediate consequence of

We have finally to consider the problem of the piecewise analyticity, that
means that:

Outside a locally finite set ~f (d) of h,
the function h - e (d, h) is analytic. (2 . 12)

Let us take some point ho &#x3E; o. We shall prove that there exists po &#x3E; 0 s. t.
in B (ho, ho ~, h - e (d, h) is analytic.

Vol. 58, n° 2-1993.



202 C. BOLLEY AND B. HELFFER

Let us consider the finite set E (d, ho) and let ei (ho) a point in 6 (d, ho).
We have already used that e - (ayae) (d, e, h) is a non identically 0,
analytic function. In particular, there exists ki s. t.

/!o)~0. Using the Weierstrass preparation Theorem,
we get that:

where ai (e, h) &#x3E; 0 in a neighborhood of (e;, ho), and the bl, i (h) are analytic
functions vanishing at ho. Then we use the classical result on the zeros of
a polynomial with analytic coefficients (see for example Theorem X.12 in
[Re-Si]), to get branches of analytic curves (with a possible puiseux singu-
larity at ho). Then selecting only the curves which stay in the real, we get
that in some B (ho, h) is obtained as the mini-
mum over a finite, non empty set (3) of analytic curves. By changing
possibly po, we then get (d is fixed in the discussion) that for any ho there
exists po s. t. /! -~ h) is analytic in some B (ho, ho ~.

For any compact K in [R~*, we can consider a finite covering of K by
a finite family of p~) and we have proved the statement (2.12). To
prove the strict monotonicity we observe that outside a locally finite set
we can compute the derivative of e using (2 . 3) and we observe immediately
that this derivative is strictly positive.

Moreover:

For h&#x3E;hC(d), 8 (d, h) &#x3E; 1.
For (d), 8 (d, h)  1.

Proof of Corollary 2 . 2. - As h tends to 0, t (d, e, h) tends (by regular
perturbation theory) to the first eigenvalue of the free (without potential)
Neumann problem, in particular we have

It is also an immediate consequence of the following inequality (simple
application of the minimax principle with the constant function 1):

(~) Let us assume indeed that for all i all these analytic branches are not real for h

sufficiently near ho. Then we get the contradiction with the fact that for any h there exists a
non empty set in the zero set of e - (ayae) (d, e, h). Here we use the fact that f: (d, h) stays
in a fixed compact (cf. (2 . 7)).

Annales de l’Institut Henri Poincaré - Physique théorique
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In particular

The study as h tends to infinity is more delicate. (2.7) gives that it is

sufficient to study i (d, e, h) for e satisfying 
We shall prove later (see section 7, lemma 7.2) the following

As a simple consequence, for fixed d, T (d, e, h) tends to infinity as h tends
to infinity.
Remark 2.3. - The proof gives in particular the existence for each

(d, e) of a unique h (d, e) s. t. T (d, e, h) = 1.
This gives us immediately the proof of the first part of Theorem 0.3

(using also the analytic implicit function Theorem and (2. 3)).

COROLLARY 2 . 4. - For all d &#x3E; o, the supercooling field.

Proo. f : - We just remember Proposition 0 . 1 and Definition 0.2 of the
supercooling field.

We pursue this section with the following lemma which gives some
regularity properties of the supercooling field as a function of the
thickness d.

PROPOSITION 2 . 5. - a continuous, strictly positive, piecewise
analytic function.

Proof of Proposition 2. 5. - Let us first study the continuity property
near do.

Let dn a sequence s. t. dn - do.
As a consequence of (2 . 15) and (2 . 16), we have the following property:

There exists a compact K in ~ * s. t. h~ (dn) E K. (2 . 17)
It is sufficient to prove that one can extract a subsequence

d~ s. t. h~ tends to h~ (do).
According to (2 . 17), there exists a subsequence t.:

Using (2 . 7), we can find (by new extraction) a sequence dn and a sequence
en s. t. en tends to eo, en is a minimum of

By continuity we get i (do, eo, ~)=== L
On the other hand, eo corresponds to a minimum of e - 1: (do, e, h). If

it was not true we would find eo s. 1. ~Q, ~  ’t (do, eo, b) = 1 and by

Vol. 58, n° 2-1 993.
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continuity we would get T h~ (dn))  1 for n large enough which
contradicts the assumption that en is a minimum.

So we get Inf ’t (do, e, h) =1 and by unicity h = h~ (do).

Let us prove now:

Outside a locally finite set in [R + *, (d) est analytic. (2 . 18)

The proof is quite similar to the proof of the analyticity in Lemma 2 .1
but in this lemma we did not analyze the dependence with respect to d.
We have seen before that for all d, there exists e (d) s. t.:

The natural idea is to consider the system:

near the point (do, e (do)).
To arrive to a situation similar to the situation in the proof of

Lemma 2 . 1, we observe using (2. 3) that we can parametrize T= 1 by an
equation h = h (d, e) depending analytically on (d, e). Then we are essen-
tially reduced to the study of

and the basic remark is then that:

Let (do, eo) a point s. t. e~)=0. Then there exists an open set

] do - + Õo [ x ] eo - Eo, eo + Eo [ s. t. the solution of (2 . 20) are described
by a finite set of continuous curves d -~ (d), analytic outside of do, s, t.

(2.21)
To prove (2.21) as in Lemma 2.1. (according to the Weierstrass pre-

paration Theorem) we have just to verify that:

e - (do, e) is a non identically vanishing, analytic function.

We recall first from (2.6)-(2.7) that (do, e, ho) is not

identically 0. Therefore there exists k &#x3E;_ 2 s. t.:

and

We recall also that:

Annales de l’Institut Henri Poincaré - Physique théorique
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From these two properties we deduce:

and

Indeed we can differentiate (2 . 24) with respect to e and, using 
we get:

Then (2.25)-(2.26) are immediate consequences of (2.22)-(2.23).
This gives modulo some details left to the reader the proof of (2. 18)

and of Proposition 2.5.

Remark 2.6. - Corollary 2.4 and Proposition 2. 5 give the proof of
Theorem 0.8.

PROPOSITION 2 . 7. - h‘ (d) = Sup h (d, e).
e

Proof

Step 1. - We first remark that:

Step 2. - Let us prove now that

If h &#x3E; Sup h (d, e), we get by the monotonicity of T with

respect to h : T (d, e, h) &#x3E;T (d, e, h (d, e)) = 1 for each e.
This implies (2. 28) by Corollary 2. 2.

Step 3. - Let us conversely prove that

Let e s. t. (d, e, h (d, e)) = 0, T (d, e, h (d, e)) =1.
Then by definition

and this implies h (d, e)  h~ (d) again by Corollary 2 . 2.

Remark 2. 8. - Proposition 2. 7 gives in particular the second assertion
of Theorem 0 . 3.

Vol. 58, n° 2-1993.
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LEMMA 2 . 9.. - monotone decreasing.

Proof of Lemma 2.9. - According to Proposition 2. 5, we have just to
prove that the derivative of Hse (d) is negative outside a locally finite set
of points ~. It follows from the proof of this proposition that outside !?fi,
one can always find locally an analytic positive function s. t.

Let us now differentiate with respect to d, the identity: i (d, e (d),

If we remember (2 . 19), we get:

According to (2. 3), we are reduced to prove that

Let us compute e, h) at a point where e, l~) = 0.
We observe as in [Da-He] (see also section 5), that we can write the

following relations for the derivatives (it is convenient to translate by e,
to arrive to a Neumann problem for the harmonic oscillator operator in

with Vi: (d, e, h) &#x3E; 0 .
Using now the relation (ai/ae) (d, e, h) = 0, we get

So we are just reduced to the proof that:

Since e (d) &#x3E;__ 0 and using (2 . 15) under the form 1~H~)~/12, we get
the result.

Remark 2 .10. - The monotonicity of d - h (d, 0) was already proved
in [Bo]2 (Proposition 2. 5).

PART II. NEUMANN PROBLEMS WITH VARIABLE BOUNDARY

It is easier for the study of some properties to look to a scaled problem
obtained by using the following map:
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Then we get

where ~, (a, c) is the first eigenvalue of the Neumann problem

This part (Sections 3, 4, 5 and 6) will be devoted to the study of this
problem. We shall describe more precisely in section 7 how to use the
results of this part to prove the statements of the theorems announced in
section 0.

3. Presentation of the problem and of the statements

Let us first introduce the following definition.

!7 is the set of the (a, c, À, u) a + c [, R)
(3 . 1 )

s. t. the following conditions (3. 2)-(3. 6) are satisfied:

where P is the harmonic oscillator:

One can always solve uniquely (3 .2)-(3 . 5). The condition (3.4) implies
that necessarily ~, _ ~, (a, c) is the first (simple) eigenvalue of the Neumann
realization of P in ] - a + c, a + c [ and that u is a corresponding eigenfunc-
tion. (3. 5) permits to get uniqueness. Then the question is of course to
satisfy (3 . 6). Let us observe that:

~ is in bijection with the set s
obtained by projecting i7 on the two first variables. (3 . 7)

That means that if (a, c) belongs to s there exists a unique pair (~, (a, c),
u (a, c)) such that (a, c, ~, (a, c), u (a, c)) belongs to ~.
Analogously to Theorem 0.4 (cf. [Bo]2), we have the property:

For each a in [R ~ (a, 0) e s (3 . 8)
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which is easy to prove according to the symmetry property of the potential
and of the domain in the case .c = 0 .

The same symmetry property implies to followmg property for s

Let us observe new that:

which is a relatively standard result because 1 is the eigenvalue of P in R
and that the domain ]2014~ ~[ tends to M as a tends to oo .

We get a first localization (see (2 . 7)) of s by the following:

Proof. - Suppose for example that Then in (3.6) we observe
that we integrate over an interval in R +. In particular x . u (x) is ~0 on
this interval. Then (3.6) implies that xu (x) = 0 and we get the contradiction
with (3.5). The case when is treated on the same way.

In a preceding paper the existence of solutions for (3.2)-(3.6)
with was studied in connection with the existence of bifurcation (see
also [Bo]2)- Let us just recall some facts of [Bol2 which will be useful in
our discussion.

First we remark that condition (3.6) is equivalent to:

Then

We observe also that according to the analyticity of X (a, c), if (ao, 
and V (ao, co) # 0, s is locally a submanifold in (1R+*)2.
As we remark before: (a, Now 0) ~ 0 for each a in

!R + * then the line c = 0 is isolated and one can not hope any bifurcation.
For this reason, it was interesting to prove the existence of solutions of:

(we observe that (a2 aa) (a, 0) always vanishes).
This was proved by a careful analysis of this quantity as a tends to 0

and as a tends to 00 exhibiting a change of sign of the function:

More precisely it is proved that:

For A large enough, 0 is, for each a &#x3E;__ A, a local maximum of

c - X (a, c) and, for each a  IjA, a local minimum of c -)0 À (a, c). (3.14)
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Now let us compare 03BB (a, 0) and 03BB (a, a). An easy computation shows that:

But this is not sufficiently precise for our purpose. Let us recall that it
was proved in [Da-He] (Theorem 4. 2) by elementary Sturm-Liouville

techniques that:
The first eigenvalue of the Neumann problem in j0~ +a [ increases

monotonically from 0 to 1 as a goes from 0 to + oo. (3 .16)
We observe also that this eigenvalue is the same that the first eigenvalue
of the Neumann problem in ] - a, a ~. This implies. (observing that ~ (~, a)
is the first eigenvalue of the Neumann problem the inequality:

As a consequence, this will give us the existence for a large enough of
two symmetric minima and the following lemma:

LEMMA 3 . 2 (cf. Proposition 2.25 in [BoJ2). - There exists A&#x3E;O, s. t.,
for each a &#x3E; A, ~ { c (a, c) E s ~ &#x3E;__ 3.

We now formulate the two results which are the analogs of Theorem O. 5
and Theorem 0. 7 in the introduction.

THEOREM 3 . 3. - There exists A s. t. for a&#x3E;A there is a unique
c = c (a) &#x3E; 0 s. t. (a, c) E s. Moreover (taking possibly a larger A) e(a) has the
following pro perties:

c (a)/a -:,. 1 as a tends ta + oo, (3 . 1 6)
a - c (a) -:,. ao exponentially rapidly as tends t© + ~, (3 . 1 7)

X (a, c (a)) is monotonically increasing and tends to p[
exponentially rapidly as a tends to + 00 (with 0  01  1 ), (3 .. 18)

THEOREM 3 . 4. - These exists A &#x3E; Q, s. t.

4. The Neumann problem on a semi-axis

In this section we recall useful results of [Bo], [Da-He], on the
Neumann model problem 

Find )) in H2 (] - a, +00 ~)s. t.
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where P is again the harmonic oscillator:

and

(Neumann condition at - a)

Let us first recall that it has been proved in [Da-He] or [Gu] by
elementary methods that, if we denote by 1 (a) the first eigenvalue of the
Neumann problem in ] - a, + 00],
the function (oc) has a unique minimum on ] 0, oo [

Let us also recall that this minimum is  1 because:

In particular:

which is compact in [R~*, and this will be very important to have uniform
control of the results. By standard o.d.e. techniques (see Sibuya [Si],
Theorems 6.1 and 7. 1) we know that we can for any parameter J.1 choose
a basis 03C61(., J.1), (k (., Li) of the solutions of the operator (P - J.1) in R s. t.:

where all these expansions are valid as y - + oo and the 0 are locally
uniform with respect to y.

Moreover, we have similar expansions for the derivatives, and in particu-
lar :

when y - + oo .
Let us observe now that ~,1 (o~ then a first eigenfunction j~ (y, a)

of the Neumann problem is necessary of the form:
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We have more presisely proved the following:

LEMMA 4 . 1. - The normalized first eigenfunction VI (., ex) of the Neu-
mann problem in ] - oc, + 00] has the following behavior:

as y -~ + 00, where O is uniform wich respect to oc

and

g (a) is a continuous strictly positive function on [0, 00 [ (4 . 11)
and

and

Proof - We just have to compute: "~1 (., + 00 [) and observe
that the construction is regular with respect to ~.
We observe also that ~,1 (a) is a C~ function of a on [0, oo [ and that

as a tends to +00, Jll (a) tends to + 1 the first eigenvalue of the harmonic
oscillator. Observe also that for Jl= 1, ~1 (y, u) is exactly the function
exp ( - y2i2). From all these remarks it is clear that:

is a continuous strictly positive function on [0, + oo [ and that:

It remains to prove that g (a) tends as a tends to + oo to get a
complete answer. This is proved in [Bo]2 by comparing again the Neumann
problem in ] - a, +00] and the global problem in ] - oo, + oo [.
The last observation in this section is the following:

LEMMA 4 . 2. - If we denote by ~,2 the second eigenvalue of the
Neumann problem in ] - a, + 00], there exists a constant vo &#x3E; 0 s. t. for each
a E [0, oo [ we have:

Proof - This is clearly true on every compact of [0, oo [. At +00, this
is a consequence of the semi-classical study:

2 is indeed the splitting between the two first eigenvalues of the harmonic
oscillator. Note also as a remark that:
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5. Construction of quasimodes for the Neumann problem in ] - a + c, a + c [

In this section, we shall try to have a very precise estimate for the first
eigenvalue and the corresponding eigenfunction of the Neumann-problem
in ] - a + c, a + c [ for each (a, c) in the limit where a is large and for c
satisfying

For this analysis, we shall use the construction of quasimodes in the semi-
classical spirit (see [He-Sj]). This will be partially a substitute for ordinary
differential techniques. Let us define:

Let us now construct a good candidate to approximate the Neumann
problem under the condition that P is a large positive number. Typically
we shall need these results under the condition that:

c &#x3E; - p2 . a for some fixed p2 satisfying 0  p2  1. (5 . 2)
Under assumption (5.2) p large will be a consequence of:

and we have always:

We denote by sf (p2, A) the set of (a, c) satisfying (5.1), (5 . 2) and a &#x3E;_ A.
We start from the solutions given in section 4 with (a) and we look
a priori for linear combination of the two functions:

This is bad because the boundary conditions are not satisfied. Recall that
this problem was studied in [Bo]2 in the case where c = 0 and we shall
follow the same strategy. The only thing we know is that ~ 1 satisfies

the condition at 2014a. On the other side we must think to the term

8 (a, c) ~2 (y, Jll (a)) as a correction to take account of boundary effects at
P (~1 does not satisfy the condition at P but is very small there). So it is
natural to multiply this function by a cutoff function x s. t. :

and to consider as a candidate to be a good quasimode the function:

We have now to choose the coefficients y and 8 s. t.:
- the Neumann-boundary conditions are satisfied
- the function Bt/ is normalized
- the error is sufficiently small.
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Let us start with the Neumann condition. By construction, the boundary
condition is automatically satisfied at 2014(X. So we have to look only to a
condition at P, which is : y (a, c) §[ (@, t~)+8(~ e) c~2 (~i, ~) = 0, or

From (4. 7) and (4 . 8) and observing that P tends to + oo as a tends to
+ oo and that LL. (a) belongs to a compact we obtain:

as a tends to + 00 where O is uniform with respect to (a, c) satisfying the
conditions (5. 3)-(5.4).

Let us now determine y (a, c) by the normalization condition:

We shall prove the following:

LEMMA 5. 1. - There exists A and two constants Y 1 and y2 s. t., for all
(a, c) E ~ (p2, A), we have:

Proof - The general idea is again that this is the first term in (5.5)
which will be dominant. This first term was indeed computed in section 4
(Lemma 4. 1). Then all the other contributions are exponentially small
due to (5.7) and to the estimate:

for all (a, A) and A large enough.
So we get modulo an exponentially small term that:

We arrive to the last but most important point in the proof to be sure
that we have a good approximation. We have now to estimate precisely
the error we have made. We now compute 

Using for the first time the precise choice of the cutoff-function, we get
immediately from (5.7) and (5 . 9) that:

As in [He2014Sj] (ef also [Bo]2), we deduce from (5.12)-(5.13) the existence
of an eigenvalue of our problem which is near of III (a) with an error
which is of the same order as the r.h.s. of (5. 13). This is the immediate

(4) Actually we do not need always an optimal estimate according to stronger errors
elsewhere.
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consequence of the spectral theorem. Using now Lemma 4.2 (see
Lemma 5.2), it is not too difficult to see that this eigenvalue is unique.
So there exists A &#x3E; 0 and C (A) s. t. for each (a, c) E ~ (p2, A) there exists
a unique eigenvalue X (a, c) of the Neumann-problem with

We now have to analyze more precisely the link between the eigenmode
and the real eigenfunction. This is possible because of the uniform control
of the splitting between the two first eigenvalues (that we have already
used to obtain (5. 14)) :

LEMMA 5 . 2. - There exists a constant Vi s. t. for all (a, c) (P2’ A),
we have:

(we have written ~, (a, c) = À1 (a, c)).

Proof. - This is just the consequence of simple semi-classical analysis
and Lemma 4. 2.

We denote by the spectral projector attached to X (a, c). Then we
have, as a consequence of Lemma 5 . 2 (see for example Proposition 2. 5
in [He-Sj]) that:

Consequently, the corresponding normalized eigenfunction has the follow-
ing form:

uniformly for (a, c) (p2, A).
Let us now introduce the spaces:

Then it is clear that (P - X (a, c)) is an isomorphism from Ga,e onto Fa,e
and Lemma 5 . 2 gives us:

and using and using a trivial estimate on the poten-
tial we get:
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We are now able to compute more precisely À (a, c), using the orthogonal-
ity of V and B)/:

We arrive to the computation of the expression (a)) for which
we use (5. 12) :

and we get:

Let us look more carefully to:

and by integration by part we get that:

Let us now use the formulas (4 . 5)-(4 . 8) and we get:

Plugging this result in (5.16), we get:

and using (5.11) :

uniformly for (a, c) ~ A (p2, A).
Let us now return to (5 . 17) to improve it. We deduce from:

But we know that:
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Using the injection of H2 in C1 we get finally that:

uniformly for (a, c) (p2, A).
Finally we have proved the following proposition:

PROPOSITION 5 . 3. - If (a, c) (p2, A), then the first eigenvalue of the
Neumann-problem satisfies:

and the corresponding normalized eigenfunction satisfies:

where ~,1 (a) is the first eigenvalue of the Neumann problem in ] - a, + 00]
and 03C8 is defined in (5 . 5).

Proo, f ’. - Let us first consider (5 . 24). We first remark that:

So finally we get:

and we can use also (5.11) to get (5.24). Let us now consider (5.25). Of
course one way will be to use that u ( - a + c, a, c) is well approximated
by:

and then to study ~1 (- el, This is probably possible but we will
use an indirect way using the preceding result.

If we observe that u ( - y, a, c) = u ( y, a, - c), we get that under the
condition that cO and for some po &#x3E; 0 that:

Finally we use (4 .12) and a &#x3E;_ (1- p2) a to get the conclusion.
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Remark 5. 5. - (5.25) is still true if you replace the condition

(a - c) &#x3E;_ ( 1- p2) a by the weaker condition with B sufficiently
large and if you write (5 . 25) on the form:

6. Proof of Theorems 3.3 and 3.4

We have already observe that we can assume that:

and that on s we have consequently the condition

Let us continue to localize the set s by the following lemma:

LEMMA 6 .1. - There exists B and A &#x3E; 0 s. t

Proof - As it results of [Da-He] (by a variant of the Hellman formula),
(c, a) belongs to s if and only if

where:

Now we have already used that:

and

Then we can rewrite (6. 4) under the form:

Let us write cla = p (a, c).
We shall prove that if (B/a3)  p _ then for a large enough:

Let us start with the problem near 0 and let us assume:

Using the different asymptotics of section 4, we get:
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and the result follows by a careful study of the function:

p -~ (1 + p)2 (1 2014 p)-2 . exp ( - D p~ in the neighborhood of 0.
If we now consider the problem near 1 :

we observe (see remark 5.5) that:

and this is easier.

LEMMA 6 . 2. - For each B, there exists A&#x3E;O s. t.

We have now to use properties of the functions 0 (c) and C ( - c) near
c=0. This is essentially what was made in [Bo]2 to prove that 82 X (a, 0)/~
was strictly positive for a large enough. We have just to verify that the
control which was given for c=0 is satisfied for c f  B a - 2 . If we

derive (6.5) with respect to c and if you look to the proof in [Bo ]2’ the
only thing you have to prove is that for 

This can be proved by small modifications of the argument in [Bo]2.
Using a very accurate approximation (see Appendix 3 for details) of

a, c) where v (x, a, c) = u (x + c, a, c), we justify the asymptotics
obtained by deriving formally with respect to c the formula (5.24). In
particular we obtain:

and consequently (6.12). We now recall that:

and we get for some co s. t. Ba-2:

But according to (6.5), we have:

We apply (6.15) for c= ~c~. Then we use the different asymptotics given
in [Bo]2 and (6. 11) to obtain in the region we are looking that:

and, using (5.24)-(5.25), we get finally
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LEMMA 6 . 3. - For each B&#x3E;O, there exists A &#x3E; B, and C&#x3E;O s. t.

proof - We return to the formula:

giving the equation of s.
We observe that u~ (c - a, a, c) stays in a compact set away from 0 in

the domain. More precisely we use the following lemma:

LEMMA 6 . 4. - For each B&#x3E;0, there exists A &#x3E; B and there exists Õ &#x3E; 0
s. t. for each a &#x3E;-_ A, for each c s. t.a- B  c  a, we have:

Proof of Lemma 6 . 4. - We have just to compare with the correspond-
ing first eigenfunction for the Neumann problem in ] - a, +oo[ [ (with
(x==3-c). The assumptions in the lemma imply that (x stays in [0, B] and
the result is clear in this case. The approximation by this problem is good
for a large enough.

Using (6.20) we obtain from (6.19) the following inequality:

Using (5 . 22) we deduce from this with a new constant C:

Now we recall that the equation 1 (a) = rJ.2 has a unique solution at the
minimum ao of III (a). Because ao is &#x3E;0, we get with a new constant C:

and Lemma 6. 3 is proved.
We have now a very precise localization result for s. The last useful

lemma for the proof of Theorem 3 . 3 is the following:

LEMMA 6 . 5. - For each C, there exists A &#x3E; 0 s. t. for a &#x3E;_ A, there exists
a unique e (a) &#x3E; 0 s. t. (a, c (a)) E sand

We know already the existence (see Lemma 3.2) for each a large enough
of some c(a). The only problem which remains is the problem of the
uniqueness. Let us consider the equation
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with

If we have two solutions c’ and c" of (6.23) in the region

we get:

with ë also in the same region.
We have simply to control that c -~ (a, c) does not vanish in the

same region (6.24). The apparently dominant term is -2(a-e) which is
not zero because uo is not zero. To prove that the other terms are

negligeable we observe that (a, c) and u (a + c, a, c) are exponen-
tially small, and we use (6.20) together with the very crude estimates:

a, c) | are slowly increasing with a. (6 . 26)
Let us prove this weak property very shortly. We start from the equation:

satisfying to the Neumann conditions. It is not easy to derive with respect
to c because the domain depends on c. As in [Bo]2 we introduce:

and we observe that this is a solution of:

with Neumann conditions.
We derive with respect to c and we obtain that:

Then we return to the initial coordinates to obtain:

But (au/ac) ( y, a, a, ( y + c, a, c)
and consequently:

We now observe that a, c) is orthogonal to u,

satisfies the Neumann conditions. From (5.19) we deduce that 
increases polynomially with a. We remark now that
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and using the Sobolev’s injection of H2 in C1 ([ - a + c, a + c]) as in (5.23),
we obtain the polynomial control of (a + c, a, c) and

c). The lemma is proved.
Remark 6. 6. - It can be useful to have a better control of the sign of:

a - c (a) - ao. This is in fact possible by careful analysis of the proof. We
start again from (6.19)

Then we write:

Using (5 . 22), (5. 24) we get:

where ~1 is defined in (4. 9).
We are now able to give a much more precise result on 

Remark 6. 7. - Another problem is to study the monotonicity of
~-~A(~)==~(~ e (a)).
As in section 2, we observe that:

for a large enough.
As a consequence we have:

There exists Ai s. t. for a &#x3E; AI,
the function a - A (a) is monotonically increasing. (6 . 28)

Proof of Theorem 3. 3. - This is just the union of the different assertions
of the Lemmas 6 .1-6 . 4 and of the Remark 6 . 7. Note also that
Remark 6. 6 gives a much more precise statement for (3 . 17).
Proof of Theorem 3.4. - This was partially proved in [Bo]2. It was

indeed proved that for a small enough (a2 (a, 0) was &#x3E; o. We give
now the general proof.
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After some scaling we arrive to the following question. We consider the
Neumann problem in ] -1 /2, 1 /2[ but for the operator:

(with E = a4, cr = e/a).
If ~r (z, E, cr) is the normalized first eigenfunction, the necessary condi-

tion for an extrema (see (3 . 6)) for our initial problem is now:

This is of course satisfied for o = 0 by parity. We have now just to prove
that

But this is clear by standard perturbation theory if we write:

Then B)/ (z, E, o) has the following decomposition:

where ~ is even and  2 is odd.
This gives the result.

PART III. THE LINK BETWEEN PART I AND PART II

7. Asymptotic properties of the supercooling field. End of the proofs of the
theorems announced in the introduction

Let us first recall the relation between the notions introduced in Part I

and II.

It is a priori clear how to associate to (d, e, h) the corresponding
(a, c, ~, (a, c)).

gives a one to one correspondence between
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Proof. - This is an immediate consequence of

LEMMA 7 . 2. - There exists 11 &#x3E; 0 and Ao &#x3E; 0 s. t.

Proof of Lemma 7. 2. - Let us write (7 . 3) under the form:

Then Lemma 7. 2, is a direct consequence of the following property of
c):

which is an immediate consequence of (3 . 18) and (3 . 19).

Remark 7. 3. - A weaker version of Lemma 7. 2 was needed in the

proof of Corollary 2. 2.

Asymptotic behavior as d -~ + 00. - Until now we have only use very
simple argument coming from Part II. We want now to have a precise
analysis of he (d) as d tends to + oo .

Proof of Lemma 7. 4. - We first observe the following relation:

and recall that he (d) was characterized as the unique h s. t. 9 (d, h) =1.
If we produce by some other mean one solution h (d) of this equation

we are done. Let D and ho &#x3E; 0 to be determine later. We are looking for
a solution s. t.

If we assume that

and h &#x3E; ho (where A is defined in Theorem 3 . 3) (7.9)
we know from this theorem the asymptotic behavior of
Inf 03BB ((K h)1/2 d j2, c). As d tends to + 00, it is then natural to look for b(d)
c
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near K/Lim h (a, c (a)) = K/p? : = h (aJ). We now choose
! 2014~ 00

so D and ho are defined (once A is fixed).
Then it is now quite easy to see that for each ~ &#x3E; 0, there exists

s. t. for all ~D~=2A~~)’~ the inequality hE ) _ 1 _ ~ (d, is

satisfied. In particular, using the continuity of e with respect to h there
exists

But and we have the proof of Lemma 7 . 3.

Remark 7 . 5. - Once we have the convergence of as d tends

to + oo to a strictly positive limit the other statements in Theorem 0 . 5
follow immediately of the corresponding statements in Theorem 3 . 3 and
of Lemma 7 . I . 

-

We have indeed the following relation:

as a consequence of (3.16) which gives (0.10).
In fact we can get much more precise information from Theorem 3. 3

than written in Theorem 0.5.

Asymptotic behavior as d- +0. - Most of the results concerning
d - +0 are already proved in ~Bo~ 2 (9 2 . 2).
The proof uses a new scaling reducing to [-1/2,1/2] and in particular

it was obtained that J-~A(~ 0) was strictly decreasing for and that

Lim (d2 h (d, 0)2) =12.

Let us just see briefly how to recover these properties from Part II and
recall also that some estimate can be obtained from 2.15. In fact we

proceed quite in parallel with the case ~-~+00.

LEMMA 7.6.

Proof of Lemma 7 . 6. - We start again from (7 . 8) and recall that h~ (d)
was characterized as the unique h s. t. 0 (d, h) = 1. Thus we have to produce
by some other mean one solution of this equation. Let do &#x3E; 0 to be
determine later. We are looking for a solution h (d) s. t.

where I/A was given in Theorem 3 . 4.
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Let us first work heuristically. We know (see or the proof of
Theorem 3.4) that ~(~0)~~/3~ and this gives, for a solution of

h) =1, It looks nice because: h~’~ dm 12~ "’d~’~ which is
effectively small if d is small enough.
To give a rigorous proof let us find a solution h (d) of:

or equivalently

The 1. h. s. is a realvalued analytic function M-~(~) (positive for 
of u = K (a - À (a, 0) can be considered as an even function of a) and
equivalent to u2~3 x~ at O. We can always consider this function as the
square of an analytic function:

Equation (7.14) can be written

x is invertible in B (0, do) for do small enough and one get:

and finally

which gives a complete expansion for h (d).
We now observe that:

e (~ li (d)) = Inf~ ((K h (~) 1~2 df 2~ e) _ (h (~/K) ~ ((K h I’2 dl2~ 0)
c

The second equality follows from the observation that h (d) d2 is small
enough for d small enough and from (3 . 21 ). We then get the existence of
do s. t. for d _ do we have h (d) s. t. : e (d, h (d)) = 1.
By the unicity of he (d) we get h~ (d) = h (d) and Lemma 7.6.
Remark 7 . 7. - Once we have the asymptotic behavior of he (d ), it is

then easy to deduce the statements of Theorem 0 . 7 from the corresponding
statements of Theorem 3 . 4.

APPENDIX 1

Numerical computations in [Bo]2 give us in other units, three branches
of curves ~~), denoted by 6 + , G- and GO such that (d, e (d)) belongs
to the s defined in (0.5).
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The relations between the units (d, e) and those of [Bo]2 (say (a, c)) are
given in (7. 1 ), (7 . 2).

Figure 1 shows the numerically computed branches 6+ and 6° when
the parameter K is equal to 0,062 (characteristic value for Indium). The
branch ~ - is obtained from ~ + by symmetry with respect to the d-axis.

APPENDIX 2

A numerical study of the Neumann problem (4.1) gives us approximate
values of ao and of the minimum = J.l (exo). The following picture shows
the numerically computed graph of oc ~ ~.1 (a). The eigenvalue (ex) is

given by an inverse iterated power method applied to a discretization of
problem (4.1).
The computations give us, in particular, the following approximate

values:

Coming back to our initial units, we obtain that the limit of h (d, e (d)) as
d tends to 00 is around 1,7 1(.
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APPENDIX 3

Construction of an approximation of as a tends to + 00 and c
fives close to 0

In this appendix we give more details on the proof of lemma 6 . 2.
We are looking for an approximation as a tends to + 00 of the derivative

with respect to c of the solution M=M(j% ~ c) of the problem:

This was already made in [Bo]2 in the case c = 0, but we need now to
consider the more general case where c satisfies:

We denote by b (A, B) the set of (a, c) satisfying (A 2) and a &#x3E;_ A.
As in section 6, we introduce the translated function v defined by
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v is then a solution of:

It is easier to differentiate (A 3)1 than (A 1)1 with respect to c because the
domain of (A 3) 1 is independent of c.

Let us define

then ~cv is the unique solution in H2 ( ] - a, a[ ) of:

We have:

so that

We can rewrite the problem (A 4) equivalently as the problem to find z in
H2 ( ] - a, a[ ) solution of:

Here z is related to w by:

Step 1. - Let us first construct an approximation of u denoted by xA
The proof is the same as in [BO]2’ although the interval is not symmetric
with respect to 0.

Let us consider the function fl defined in R by:

fl is a solution of:

Furthermore (see [Si], Theorems 6 .1 and 7.1), there exists a function

denoted f2 s. t. {/i,./2} is a basis of the set of the solutions of

equation (A 7) and s. t. the function f2 satisfies:
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and

We are looking for an approximation if of u of the following form:

where a (a, c), Õ (a, c) and y (a, c) are chosen s. t.

and E is a cutoff function s. t.:

For B&#x3E;0, there exists A &#x3E; 0 s. t. for (a, c) E b (A, B), the condition:

then, using (A 6) and (A 9):

where O is uniform with respect to (a, c) satisfying (a, c) E b (A, B).
For (a, c) E b (a, c), the condition (~M")(2014~+c)=0 is equivalent to :

then:

Let us define a = a - c and P = a + c.
(J (a, c) is determined by the normalization condition (A 10)3, say:
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We have, as in [80]2’ for (a, b (A, B):

It results that for 8&#x3E;0, there exists A&#x3E;O and C&#x3E;O s.t. uniformly for
(a, B):

and:

We have in particular:

Let us first remark that:

Indeed (see [Da-He], and (6.5), (6.13)):

with:

Therefore, (A 21 ) results from (A 19) and (A 20).

Step 2. - We construct an approximation of ae v by differentiation of
uf with respect to c. _

As for the derivative of u, we consider the translated problem in the
variable x. An approximation of v, solution of (A 3) is given by:

The approximation va satisfies the following equation:

with
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and:

The approximation va of v verifies the same estimations as ua in the

corresponding spaces.
Let ~cva be the derivative of va with respect to c, then:

where c), (a, c), Dc y (a, c) are obtained by differentiation of
(A 15), (All), (A 13) with respect to c; the derivative f 2 (x + c) needed for
this calculation is given by:

and we obtain easily the corresponding expansions:
We have in particular for (a, B):

In (A 25), we have also used the fact that the functions fl and f2 are
independent of c.
The derivative ~cva satisfies the following equations, obtained by differ-

entiation of (A 22) with respect to c:

and

But the approximation wa of has to satisfy the orthogonalization
condition:
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Thus we look for wa under the form:

where T (a, c) is chosen s. t. (A 30) is satisfied.
This condition is equivalent to:

We have:

then:

but, as a tends to + oo :

and, for all s&#x3E;0, the others terms of are of order

O (exp ( - ( I - E) a~ /2)) then, using (A 17) with the variable x :

we get:

We have now to verify that wa gives us a "good" approximation of ~~ v.
w" satisfies the same equations (A 29)~ (as and (A 30). Thus
(wa - ac v) is a solution of: 

We now have to prove that the r. h. s. of (A 33)1 is sufficiently small.
(a~ A) satisfies (A 21) and v is normed in L2 ( ] - a, a[ ). So, we only have

to give estimations about ac r; using preceding estimates (A 6), (A 7), (A 12),
(A 14), (A 16), (A 26)-(A 28) about the functions fl and f2, the coefficients
~ (a, c), y (a, c), a(a, c) and their derivatives, we obtain that for

(a, c) E b (A, B) :

It results that:
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We know that a, c) _ (a~ v) (a, a, c) is approximated by
~’a a, c) . °

Then, we have for (a, c) E b (A, B):

and

Therefore:
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