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The Fermion Number Processes as a Functional

Central Limit of Quantum Hamiltonian Models

L. ACCARDI and Y. G. LU

Centro Matematico V. Volterra,
Dipartimento di Matematica, Universita di Roma II

Ann. lnst. Henri Poincaré,

Vol. 58, n° 2, 1993, Physïque théorique

ABSTRACT. - In the present paper, we investigate, in the Fermion case,
how the number processes arise from a limit of a quantum Hamiltonian
model. Our conclusion is that the time evolution of a certain quantum
Hamiltonian model tends to the solution of a quantum stochastic differen-
tial equation driven by the Fermion number processes.

RESUME. 2014 Dans cet article nous étudions comment le processus de

nombre de fermions apparait comme une limite dans un rnodele Hamilto-
nien quantique. Notre conclusion est que l’évolution temporelle d’un
certain modele Hamiltonien converge vers la solution d’une equation
differentielle stochastique avec une source qui est le processus du nombre
de fermions.

1. INTRODUCTION

In the series papers ([ I ], ..., [6]), we have investigated in the Boson
case the low density limit of a quantum Hamiltonian system and shown

(*) On leave of absence from Beijing Normal University.
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128 L. ACCARDI AND Y. G. LU

that the time evolution of the quantum Hamiltonian system tends to a
quantum stochastic process which satisfies a quantum stochastic differen-
tial equation diven by quantum Poisson processes.
The present paper is devoted to the Fermion analogue of [1] ] and for

sake of brevity we shall omit here the motivations of the problem and
refer the reader to the "Introduction" of [1], [6].

Following the pattern of [3], we formulate the problem for a general
quasi-free state and we prove the convergence of the kinematical process of
the collective number vectors to Fermion Brownian motion in the general
case. Starting from Section 3 we restrict our attention to the Fock case.

Let Ho denote the system Hilbert space; H 1 the one particle reservoir
Hilbert space and W(Hi) the CAR-algebra on Hi , i. e. the algebra gener-
ated by the set

where, A ( f ) is the Fermion annihilation operator. Let H be a self-

adjoint bounded below operator on HI and z, P positive real numbers
interpreted respectively as density of the reservoir particles and inverse
temperature. Denote p the Fock state characterized by the condition:

We whall write A (resp. A + ) for 7r°A Let Sr be a unitary
group on B (HI) (the one particle free evolution of the reservoir). The
second quantization of St, denoted r (St), leaves q&#x3E; invariant hence it is

implemented, in the GNS representation, by a 1-parameter unitary group
Vt whose generator HR is called the free Hamiltonian of the reservoir. As
in [3] we assume that there exists a non zero subspace K of H~ 1 (in all the
examples it is a dense subspace) such that

Let be given a self-adjoint operator Hs on the system space Ho, called the
system Hamiltonian. The total free Hamiltonian is defined to be

We define the interaction Hamiltonian V as in [1] i. e., we fix two functions

gl, go E K and define ,

Annales de l’Institut Henri Poincaré - Physique théorique
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with the notations

and where D is a bounded operator on Ho satisfying

Moreover we assume that go and gl have disjoint energy spectra, i. e.

More general interactions will be discussed in subsequent papers.
The condition ( 1. 9) is natural and has already been used in the literature

on the weak coupling limit (ef [8], [8 a], [8 b]). With the condition ( 1. 9),
the condition ( 1. 8) is also natural since a typical example for D in

quantum optics is D==~0)(l~ where 11), 10&#x3E; are eigenvectors of the
system Hamiltonian Ho (rotating wave approximation). This corresponds
to [Ho, coo are the eigenvalues). The condition (1. 8)
corresponds to taking 03C91 = but the choice results only in a
trivial shift in the one particle reservoir Hamiltonian (cf. Section 5 in [6]
for the detail). Also from the point of view of mathematics, the difference
between the condition ( 1 . 8) and the general N-level case is as we have
shown in [3], only to applying (many times) Reimann-Lebesgue Lem-
ma - of course a different quantum process is obtained in the N-levels
case but the difference is not fundamental (cf. [3], for the weak coupling
case [9]).
With these notations, the total Hamiltonian is

and the wave operator at time t is defined by

Therefore we have the equation

where,

Moreover the solution of ( 1. 12) is given by the iterated series

which is norm convergent since the field operators are bounded.

Vol. 58, n° 2-1993.



130 L. ACCARDI AND Y. G. LU

An important role in the present paper will be played by the collective
number vectors defined by

where and for each ~~N,~, 

From Lemma (3.2) of [10], we know that the assumption (1.4) implies
that the sesquilinear form (..) : K x K --+ cø defined by

defines a pre-scalar product on K. We or simply K,
the completion of the quotient of K by the zero (. (. )-norm elements.
The analogy with the new techniques, developed in [ 13], for the weak

coupling limit, suggests to consider the limit, as z -~ 0 of expressions of
the form

In analogy with the strategy of (1~, the first step in our investigation
will be to control the following limit:

We first outline the common and different points between the present
work and [1]: Due to the form (1.6) of the interaction, the Wick ordered
from of the products

Annales de l’lnstitut Henri Poincaré - Physique théorique
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is the main subject to the considered in the low density limit, both in the
Boson and the Fermion cases. The only difference between the two
cases is some power of ( -1 ) which is due to the different commutation
relations. Therefore one can hope that

(1) The negligible terms will be similar to the Boson case.
(2) The uniform estimate theorem in [1] can be used directly to the

present situation.

(3) The limit of the non-negligible terms is similar to the Boson case.
Exactly as in the Boson case, the estimates needed to solve this problem

will allow, with minor modifications, to control more general situations
(ef [1]). In order to formulate our result, let us recall from [13] the
definition of the Fermion Brownian Motion:

DEFINITION ( 1 . 1 ). - Let f be a Hilbert space, T an interval in R. Let
1 be a self-adjoint operator on f and let

denote the GNS representation of the CAR algebra over L2 (T, dt; x)
with respect to the quasi-free state (po on W (L2 (T, dt; characterized

by

The quantum stochastic process

where A ( . ), A + (. ) denote respectively the annihilation and creation fields
in the representation ( 1. 23), is called the Q-Fermion Brownian Motion on
L2 (T, dt; Jf). The Fock Fermion Brownian Motion corresponds to the
choice of Q =1.
Our main result in this paper is to prove that, the limit ( 1. 19) exists

and is equal to .

where ( /, A, A +, BII} is the Fock Brownian motion on

and U (t) satisfies a quantum stochastic differential equation driven by
purely discontinuous noises in the sense of [14] and [15], whose form is
given by (5.28).

Vol. 58, n° 2-1993.
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2. THE NOISE SPACE

We know from ~] that for each S, T, S’, T’eR, and f, f’ e K satisfying
(1.6), one has

Moreover, the limit is uniform for S, T, S’, T’ in a bounded set in R.

Proof - The proof is similar to that of Lemma (2 .1 ) of [ 1 ]. The only
difference being that now we have number rather then coherent collective
vectors.

By expanding the scalar product in the left hand side of (2. 2) and using
the CAR, one finds 

~T

which, as z -~ 0, (2. 7), by formula (2 .1 ), tends to

Since the limit (2 .1 ) corresponds to the 0-th term in the expansion
( 1.14), Theorem (2 . 1 ) shows that our limit processes, if it exists, lives

Annales de l’lnstitut Henri Poincaré - Physique théorique
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on the Hilbert space r (L 2 (R, dt) (8) K))-the Fermi Fock space over

L2 (R) 0 K, i. e. the space of the Fermi Fock Brownian Motion.

3. THE COLLECTIVE TERMS AND THE NEGLIGIBLE TERMS

Starting from the iterated series ( 1. 14) and using ( 1 .13), one has

In the right hand side of (3 .1 ) the operator on the system space is rather

simple and the most important thing is to know what is the contribution
of the product of creation and annihilation operators. In order to do this,
as usual, we shall bring that product to the normal ordered form. This is
done in the following:

THEOREM (3 .1 ). - For each n E N, the normal ordered from of the
product

is equal to

where, 9=b 1 and (n, ~ qh ~ h =1 ) is defined as

The sum I’ means the sum for all 1 ..., satysfy-
qio ... , Pm, qm)

ing = m (the cardinality of the is equal to m), ph  qh
for any h = l, ..., m for some h = l, ..., m.

Remark. - In the second term of (3 . 3) (type II), the value of 9 is not
relevant because we shall majorize the modulus of the sum with the sum

Vol. 58, n° 2-1993.
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of the moduli (for which the value of 9 is irrelevant) and then we prove
that the latter tends to zero.

Proof - The only difference between the proof of this Lemma and
that of Lemma (3.1) in [6] is the precise computation of the exponent of
(-1) in the type I term, i. e. of the quantity (3 . 4). This is achieved as
follows: by bringing to normal form the products of the creation and
annihilation operators in (3 . 1 ) and arguing as in Lemma (3 . 1 ) of [6], one
arrives to an expression which differs from (3 . 2) only by the replacement
of the power of ( -1 ) and by an unknown factor 9.

In order to compute this factor, denote

with

the indices which label the annihilators which have not been used to
produce scalar products. Then notice that to move to
the right hand side of one needs to exchange

with the creators which are the right hand side of it
and have not not used to produce scalar products, ~. for

..., ~}B{~}~=i, so one gets a factor 

The same argument shows that to move to the
left hand side one needs to exchange

with A+(Stjg~(j)) for j &#x3E; 03B2n-m-1, and j ~ {1, ... , n}B{qh}mh=1. So, one
gets a factor

Repeating the argument n - m times [i. e. once for each of the 03B2j in (3.5)],
the factor { -1) to the power (3.4) arises.
Now let investigate the contributions of terms In (E) and IIn (s). First of

all we have:

Annales de l’Institut Henri Poincaré - Physique théorique
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Proof - By the definition of IIn (E) [see (3 . 3)] and letting the creation,
annihilation operators in IIn (e) act on the number vectors in the left hand
side of (3 . 8), one shows that the module of the scalar product in the left
hand side of (3 . 8) is dominated by

where, cr ({ ~i~ ~, N, N’, m) is the modulus of the scalar product of a
pair of collective number vectors, i. e.

hence, by Theorem (2.1) a convergent, and therefore bounded quantity,
as z-~0.

The factor in the last line of (3.9) is majorized by

The factor given by the first two lines in (3.9), up to a constant, is the
same as the right hand side of (3.16) of [1] and there we have proved
that it tends, as z - 0, to zero. Thus the thesis follows.

In order to compute the limit of the type I terms we rewrite the term
In (s) in another form in which the exponent of the factor -1 has an
expression much clearer than formula (3.3).

Vol. 58, n° 2-1993.
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LEMMA (3.3). - 1}"

where, = _ ~ + ~ .

It is clear that when we bring the product (3.2) to the

normal ordered form, there will exist m ~  ~) creators not used to pro-
duce the scalar products with annihilators. Moreover in the product (3 . 2),
A+ is in ordered position, so 7M~ L Label the remaining creators

This means that the creators

have been used to produce scalar products with the annihilators

i. e. the remaining annihilators are

The factor (2014 t)(t/~’"’"-~ comes from the following exchanges:
A g 1- E with A + {qm~) (this gives the factor - 1); 

_

with A gE cqm&#x3E;) (this

gives the factor ( -1)2); ... ;

with A + 
+ (this gives

the factor ( - 1)"’ ~ ~)..

Annales de I’Institut Henri Poincaré - Physique théorique
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exists and is equal to

where ’P is the vacuum vector of r (L2 (R; dt, K»,

and for f, g E K the half-scalar product ( f ~ g) _ is defined by

So, one can rewite the product of scalar products in the right hand side
of (3 .11 ) in the form:

Using (3 . 11) and (3.18) in (3 .15) one finds that the limit (3 .15) is equal
to the limit of

Vol. 58, n° 2-1993.
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Letting the creators in (3.19) act on the number vectors in the left hand
side of the scalar product, one has

1

where we have used the symbol n to denote the product of operators
h=m

with decreasing time-indices. Similarly, letting the annihilators in (3.19)
act on the 03A6N’-number vectors and changing their order, using the CAR,
so to obtain a sequence of decreasing time-indices, we obtain the expression

acting on the ÐN, - number vectors in (3 , 19). Now we can apply (3. 20)
and this leads to the result:

Annales de l’Institut Henri Poincaré = Physique théorique
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Summing up, (3.19) is equal to

By Theorem (2.1) the last scalar product in (3.23) tends to

and the same arguments as in the proof of Lemma (3 . 4) of [1] show that
the t-integral term in (3.27) tends to

This proves our result.

4. THE LIMIT OF THE NON-NEGLIGIBLE TERMS

In the previous section we have discussed the limit (!.19) for each fixed
n and our main results are Theorems (3.2) and (3.4). The present section

Vol. 58; n° 2-1993.
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is devoted to investigate:
( 1 ) the condition to exchange the limit z - 0 with the sum over nEN;
(2) the explicit form of the limit.
In the following, we shall use the notation

where,

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Proof. - By formula (3 . 3) and using the notation (4. 3), we know that
the left hand side of (4. 2) is majorized by

this is the same, up to a constant, as the right hand side of (4 .18) in [ 1 ],
therefore the application of the same argument as in the proof of Lemma
(4 . 3) of [1] leads to (4 . 2).
Combining together Theorem (4 . 1 ), Theorem (3 .1 ), Theorem (3 . 2) and

Theorem (3 . 4), one has the following

the limit (1 . 19) exists and is equal to

Proof - By expanding the product

Vol. 58, n° 2-1993.



142 L. ACCARDI AND Y. G. LU

one can write the scalar product in (1.19) in the form

Applying Theorem (4. 1) to (4.9), one knows that if  i/16I~ D II, the
limit (1 .22) is equal to

By application of Theorem (3. 2) and Theorem (3 . 3) we finish the proof.

5. THE QUANTUM STOCHASTIC DIFFERENTIAL EQUATION

From the Sections § 2, § 3 and § 4 one has learnt
( 1 ) the limit space on which our limit processes lives;
(2) the conditions allowing to take the limit in (1.19);
(1) the explicit form of the limit ( 1.19).
Now we want to describe the quantum stochastic process arising in the

limit (1.19).
First of all notice that for each N, f~, ..., ~i, ..., K,

T,}~~ {S,, T~ }~= 1 c R, u, v ~ Ho, (Ra), the scalar product in

Annales de l’lnstitut Henri Poincaré - Physique théorique
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(1.19) can be written as

and its limit e. (4.6) can be written in the form

It is clear that both expressions are bounded.
In the following we introduce the following notations: for a E {0,1}

our first and most important conclusion in this section is 

THEOREM (5.1). - For each N, N’ E N, fl’ ..., f’i, ..., K,
{Sk, Th }Nh=1, {Sh, Th )§/= c R, u, v ~ H0, D ~ B (Ho), under the conditions

( 1 . 8), ( 1 . 9) and (4 . 5), the expressions (5 . 2) satisfy the system of differential
equations

and

Vol. 58, n° 2-1993.
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Remark. - This Theorem is the analogue of Theorem (5.10) of [1] and
the two proofs are also similar. We shall not repeat the details of the

proof but only give the main idea and outline the important steps.
Proof. - By the change of variable

in ( 1. 22), one finds that (5 . 1 ) is equal to

Using the explicit form (1 . 6) of the interaction for and the

change of variables

(5.7) becomes

Annales de l’Institut Henri Poincaré - Physique théorique
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The first term of (5.9) tends, as z -~ 0, to

In the second term of (5 . 9), the action of the creator A+ g£) on the
vector gives

Therefore the second term of (5.9) is equal to

The expression 1 (8)A is handled with the same techniques
as in [1, ..., 6]. Namely: one expands Utl/z2 using the iterated series and
after the change of variable 12, one finds

Moreover

Vol. 58, n° 2-1993.
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and by (1.9) the scalar product is not equal to zero only when E’ =1- E.
Thus (5.12) can be rewritten as

Now let see the third term of (5.15) and try to move the annihilation

operator A gl -£) to the right hand side of product V (t3) ... V (~")
so that we can let the annihilator act on the 03A6N’-number vector. In order
to do this, from the formulas ( 1.13) and (5.14) we know that the

annihilator A (St1/z2 g1-~) can appear in two ways:
1. it is used to produce a scalar product with a creator A + 

where ~~= 3,. 4, ... ,, n;

2. the annihilation operator ís simply exchanged with the product
v (t3) ... V (tn).

In the case 1, 3; one obtains a term type II, therefore its.

limit is zero: all the terms of this type are collected in o(1) below. Thus

Annales de l’lnstitut Henri Poincaré - Physique théorique
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(5. 16) is equal to

By letting the annihilator act on the number vector

du, k= 1, ..., N’ one obtains
B /

Finally recall that as z - 0 one has

Vol. 58, n° 2-1993.
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and

From the above, in the notations (5.1), 5.2 ), we deduce: .

Notice that in (5.20) the last term is similar to (5.12), therefore byrepeating the discussion from (5.12) to (5 . 20), we have

Annales de l’Institut Henri Poincaré - Physique theorique



149FERMION NUMBER PROCESSES

Iterating n times the above procedure one finds that the scalar product

is expressed as a sum of several terms. Denoting by Tk the sum of all the
terms obtained in the k-th step with the exception of the first and the last
summands, one has

Vol. 58, n° 2-1993.
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where

Moreover the last summand in the n-th step is

Notice that the term (5.24) differs from the corresponding one in the
step in that the operator A 1/z2g~n- 1) has been replaced by

and the operator

has been replaced by

Annales de l’Institut Henri Poincaré - Physique théotique



151FERMION NUMBER PROCESSES

Therefore it follows, from the induction argument and formula (5.19 b)
that

Finally by rewriting the right hand side of (5.25) as the sum of two
terms corresponding to n odd or even and letting z tend to zero, we obtain
(5 . 5 a). It is easy to check (5 . 5 b) and (5 . 5 c).
Now let us introduce some notations on the Fock space

F(L~(R0(K,(. ~ .)). For TeB(K), denote 
the number operator, characterized by the property

For each define the number process by
~t)- Consider the quantum stochastic differential equa-

tion

where,

THEOREM (5 . 3). - The quantum stochastic differential equation (5 . 27)
has a unique and unitary solution.

Vol. 58, n° 2-1993.
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Proo_ f : - The existence and uniqueness of the solution of q.s.d.e. (5.27)
follows form the fact that DI (a), D2 (a) are bounded operators. The
proof of unitarity is the same as the one of Theorem (6.3) of [1].
Now our last assertion can be stated and proved as following:
THEOREM (5 . 4). - Under the conditions ( 1. 8), ( 1. 9) and (4.5), the

limit ( 1.19) is of form

and where U (t) is the solution of the quantum stochastic differential
equation (5.27).

Proof - Clearly (5. 29) can be written in the form:

Using the QSDE (5.27) it is easy to show that (5. 30) satisfies the system
of differential equations (5 . 5 a, b, c).

Since D2 (cr) are the bounded operators, one knows that the
differential equation has a unique solution. This allows to identify (5. 29)
with (5. 2) and therefore, by Theorem (5.1), with the limit (1.19). This
completes the proof.
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