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Quantum mechanics and coherent states
on the anti-de Sitter spacetime
and their Poincaré contraction

Stephan DE BIÈVRE (1) Amine M. EL GRADECHI (2)
Laboratoire de Physique Theorique et Mathematique (3), Universite Paris-VII,

Tour Centrale, 3e etage,
2, place Jussieu, 75251 Paris Cedex 05, France

Ann. Inst. Henri Poincaré,

Vol. 57, n° 4, 1992, Physique theorique

ABSTRACT. - In this work we show how a Poincare quantum elementary
system arises as the zero curvature limit of an anti-de Sitter (SO (2,1 ))
analog. The latter is constructed by applying the method of geometric
quantization to the classical motion of a massive freely evolving particle
on the anti-de Sitter spacetime. The (unique) invariant polarization that
selects the anti-de Sitter quantum elementary system is shown to have as
zero curvature limit the Poincare polarization. In addition, the same

limiting process is also applied to a particular family of quantum states,
namely the set of SO (2, 1 ) coherent states, which are optimally localized
in phase space. It is shown that their limits are energy eigenstates, and
henceforth optimally localized in momentum space.

RESUME. 2014 Nous montrons dans ce travail comment un systeme quan-
tique elementaire vis-a-vis du groupe de Poincare s’obtient comme limite
de courbure nulle d’un systeme analogue vis-a-vis du groupe anti-de

Sitter (SO (2, 1 )). Ce dernier est construit en appliquant la methode de
quantification geometrique au mouvement classique d’une particule mas-
sive, evoluant librement sur l’espace-temps anti-de Sitter. Nous montrons
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404 S. DE BIEVRE AND A. M. EL GRADECHI

que 1’unique polarisation invariante qui selectionne Ie systeme elementaire
quantique de SO (2, 1 ), tend dans la limite de courbure nulle vers celle
qui sélectionne un systeme analogue du groupe de Poincare. De plus,
nous appliquons la meme procedure de passage a la limite a une famille
particuliere d’etats quantiques, a savoir les etats coherents associes a
SO (2, 1); ces derniers sont localises de maniere optimale dans Fespace des
phases. Nous montrons alors qu’ils tendent vers des etats propres de

l’energie, qui sont de ce fait des etats localises de maniere optimale dans
l’espace des moments.

1. INTRODUCTION

In this paper we show how to approximate the classical and quantum
mechanics of massive particles on Minkowski spacetime by the correspond-
ing theories on an anti-de Sitter spacetime Mx with small curvature K.

Physical theories on the anti-de Sitter spacetime have attracted consider-
able attention (see [F], [FF], [GH] and references therein) and have been
motivated by a number of different considerations. One of them is the

observation that the discreteness of the energy spectrum for massive fields
leads to an infra-red cutoff in such theories. This cutoff is considered
rather natural, since the anti-de Sitter group is, together with the de Sitter
group, the only possible deformation of the Poincare group [LN] [BLL].

In this paper we start a careful study of the zero-curvature limit of
anti-de Sitter spacetime classical and quantum mechanics. We limit the
discussion to 1 + 1-dimensional spacetimes, in which case the anti-de Sitter
group is SO (2,1 ). This will allow us to keep the notation relatively simple,
while already bringing out many of the essential difficulties of the theory.
The theory in 3 + 1 dimensions will be elaborated elsewhere [EDB].

Underlying the zero curvature limit considered here is the Inonu-Wigner
contraction [IW] [D] of SO (2,1 ) with respect to the spacetime isotropy
group S0(l, 1 ), giving in the limit the 1 + 1-dimensional Poincare group.
The contraction of Lie algebras is a well defined and much studied notion
[IW] [S] [D]. The behaviour of the irreducible representations of the
corresponding Lie groups under contraction has been investigated as well
in a number of cases (for an overview and further references, see

[MN] [D]), but generally poses various problems of functional analytic
and group theoretic nature. They seem to obstruct the formulation of a
general theory, but were overcome for a class of examples (not including
the case considered here) in [MN] and [D]. One of the main problems

de l’Institut Henri Poincaré - Physique theorique



405QUANTUM MECHANICS AND COHERENT STATES

that arises is the need to realize the sequence of Hilbert spaces carrying
the representations that are contracted in a way that allows the taking of
a meaningful limit (see [MN] and [D]). We solve this problem here by
identifying among themselves the classical phase spaces (coadjoint orbits
of S0o(2, 1)) for different values ofK. This identification is based on the
physical interpretation of their points as geodesics on spacetime. It allows
us then to realize the above Hilbert spaces as reproducing kernel Hilbert
subspaces of the space of L2-functions on phase space. This formulation
permits us to study the limiting behaviour of quantum mechanical states.
We realize in section 2 the classical anti-de Sitter phase spaces in a

manner which allows us to easily associate to each of their points a
time like geodesic on the anti-de Sitter spacetime. Using an appropriate
coordinate system on spacetime we then identify among themselves the
phase spaces for different values of K. It is then easy to show that the
K ~ 0 limit of the classical theory yields its Poincare counterpart describing
massive test particles on Minkowski spacetime. In sections 3 and 4 we
quantize the classical theory. Since canonical quantization can not be
applied to find the quantum observables corresponding to the 1 )
generators, we use the methods of geometric quantization. The Hilbert
space of quantum states will therefore be realized as a reproducing kernel
Hilbert space of L2-functions on phase space, on which S0o(2, 1)
acts with a unitary irreducible representation. This allows us to interpret
each state in physically through the phase space probability distribu-
tion that it generates. We identify explicitly those states which are opti-
mally localized on phase space. We show that in the zero curvature limit,
they contract to eigenstates of the Hamiltonian in the limiting Poincare
invariant theory, thereby becoming completely localized in momentum
and completely delocalized in position. We identify the Hilbert space ~f~
of the limiting theory as a space of functions on the classical phase space,
which are however no longer square integrable. In section 5 we show how
this space arises naturally if one studies the small K limit of the SOo (2, 1)- .

invariant polarization used to define and we establish the link with
the geometric quantization theory as applied to the Poincare group.
Section 6 contains our conclusions and a comparison with previous work
on the subject [AAG] [BEGG].

2. CLASSICAL MECHANICS OF A MASSIVE TEST PARTICLE

In this section, we describe the classical dynamics and symmetries of a
massive test particle of mass m in the 1 + 1-dimensional anti-de Sitter

spacetime, in a formalism convenient for our purposes, and describe its
limit as the curvature tends to zero, recovering the Minkowski theory.

Vot. 57, n" 4-1992.



406 S. DE BIEVRE AND A. M. EL GRADECHI

The anti-de Sitter spacetime Mx is defined as the surface in R3
given by

equipped with the Lorentzian metric gx, induced by the metric of signature
(2014, 2014, + ) on R3. The numbering of the indices is the obvious restriction
to the 1 + 1-dimensional spacetime of the notation of [F], where the 3 + 1-
dimensional spacetime is studied. Here K&#x3E;O is the curvature of Mx. The
isometry group of Mx is 0(2, 1 ), its component connected to the identity
SOo (2, 1 ). The generators of S0o(2, 1 ), viewed as vector fields on R3,
are

so that

The metric on Mx has signature (+, 2014) and we shall take the timelike
directions to be those for which the norm of the inner product is negative.
This implies that time is compactified on Mx.
As we now first show, the classical dynamics, the classical phase space

and its symmetries can be described in an efficient and intrinsic way using
constraint Hamiltonian mechanics [Sn] [DB]. Let (~, ~) be canonical
coordinates on T* X R3. Then the cotangent bundle T* Mx to Mx
is identified with the four-dimensional surface

The evolution space or extended phase space [So] [DB] Ex for a particle
of mass m is then

with the additional requirement that the timelike vector q is future point-
ing. A point ( y, q) E Ex represents a particle at the spacetime point y in Mx
with two-momentum q constrained to the forward mass shell. Note that
the restriction of the canonical two-form n n dq  on T* R3
to (2 . 4) yields the symplectic two-form WI( on T* Mx. The restriction of
WI( to Ex yields a closed but degenerate two-form E:Z on A direct

calculation or a simple application of the general theory shows that

is tangent to Ex and that

Annales de l’Institut Henri Poincare - Physique theorique



407QUANTUM MECHANICS AND COHERENT STATES

so that X generates the kernel of Here we used the notation X f for
the Hamiltonian vector field corresponding to the function f,

Note that,

where

The geodesic equations of motion are now obtained as the Hamiltonian
equations corresponding to ju, i. e.

It is clear that the solutions of (2 . 9) with initial data on Ex stay on E~.
Solving (2. 9) yields

Since each solution in (2 .10) intersects the surface y° _ © in exactly one
point, we can identify the symplectic reduction of Ex with

~x is the space of motions [So] [DB] or phase space of a test-particle of
mass m on Mx. To each point in Ex corresponds precisely one timelike
geodesic on Mx, i. e. one possible motion of the particle, given by (2 . 10).
The symplectic form on 03A3mx is obtained as the restriction of 03C9 to 03A3mx.
To describe the symmetries of this system, we proceed as follows. On
T* R3, SOo (2, 1) acts via:

This action leaves the two-form co invariant; its generators are therefore
Hamiltonian vector fields, generated by the functions

We remark that indices on y and q are raised and lowered with the metric
on R3. Since

Vol. 57, n° 4-1992.



408 S. DE BIEVRE AND A. M. EL GRADECHI

one sees that the action (2.12) of S0o(2, 1 ) leaves Ex invariant. In fact,
Ex is a homogeneous space for S0o(2, 1 ) on which SOo (2, 1 ) acts transi-
tively and freely. Fixing a point (y~o~, q~o~) on Ex by

one sees that for each ( y, there exists a unique A (y, 1 )
so that

One verifies that A (y, q) is given by

where is the alternating tensor defined by

Since the action in (2.12) sends the solution curves of (2.10) into each
other, it induces an action on !:~ which leaves ú)~ invariant. Its generators
are therefore Hamiltonian vector fields, generated by the restriction of the

in (2.13) to E~. This last assertion follows again readily from the
general theory of Hamiltonian constraints. It is also clear that we can

identify ~x with SOo (2, 1 )/SO (2), where SO (2) is the group of rotations
in the plane.
We have therefore determined very explicitly the classical phase space

~~ of a particle of mass m on Mx [see (2 .11 )], together with its symplectic
structure, an explicit expression for the generators of the symmetry group
SOo (2, 1 ) 0’. e, the moment map [So] [AM], see (2.13)), and a clear physical
interpretation for its points [see (2.9)-(2.10)]. Since in addition

is a homogeneous space of SOo (2, 1 ), we can iden-
tify (S~, in a natural way with an orbit in the dual of the Lie algebra
of SOo (2, 1 ).
We are now ready to study the flat spacetime limit (K ~ 0) of the

classical theory. Notice first that ~x, defined in (2.11), changes as a subset
of T* R3 == R 6 when we vary K. In addition, the coadjoint orbit associated
to L= via the moment map changes as a subset of the dual of the Lie
algebra of SOo (2, 1). Indeed, the Casimir operator - L;o + + L51 takes

the value - (; an E~ and hence varies with K. This shows at once that
~,~ and ~x ~ are identical as symplectic homogeneous spaces of S0o(2, 1)

if and only if 2014 = 2014.

Annales de l’Institut Henri Poincaré - Physique theorique



409QUANTUM MECHANICS AND COHERENT STATES

take a meaningfut limit of the group generators in (2J3) restricted
to 1::’ as K -+ 0, it is dearly necessary to identity the 1:: for different values
of K. Since it follows from the above argument that 1:= and 03A3mx can not
be identical as symplectic homogeneous spaces I ) unles,s K = 1(’,
we conclude that this identification can not both intertwine the action of

1 ) and preserve the symplectic structure. The identification we
construct betow preserves the latter and is based on a local identification
of the non-isometric spacetimes and MXi for as follows.

Consider the system of global coordinates on given by

with

Note that, uniformly on compact neighbourhoods of x° -= o, 
g~o --+ 1 and gx’~ ~ ~ . In this sense, we can say that the spacetimes Mx
converge to the Minkowski spacetime as 1( -+ 0.
Now we can introduce coordinates pa, pl) on T* Mx by setting

or, using (2.19) and 

Inverting (2.22) yields

Now, using (2.20), one sees that equation (2.5c) in the (x,p) coordinates
of T* M reads

It follows then from (2. It) that are coordinates on S~ so that
(1::’, 03C9mx) is symplectomorphic to (R 2" dx1 A This gives the desired
identification between the 03A3mx for different vatws of 03BA (and of m). Using
(2. t 9) and (2.23) in (2 f 13) and setting y0=0, one finds, for each value
of m and 03BA

’

° 

4-1992.
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where p° &#x3E; 0 is found upon solving (2 . 24) for p° in terms of pl). A
direct calculation confirms that one has

where the Poisson bracket is taken with respect the canonical pair 
The geodesics can be recovered by solving

for (xl (t), pl (t)). A geodesic on Mx is then given by t, xl (t).
Giving (2 . 24), (2 . 25) and (2 . 27) is completely equivalent to giving (2 .11 ),
(2.13) and (2.9). The latter representation of the massive particle on Mx
is simpler for calculational purposes, but hides the K dependence of the
generators. We therefore need to use the first to study the contraction

Recall first that the Poincare group in 1 + 1 spacetime dimensions is

three-dimensional with generators

on the usual phase space of a massive test particle of
mass m in Minkowski spacetime. One then sees readily that

The following proposition implies that the limits in (2.29) are uniform
on compacta.

PROPOSITION 2 . 1. - Let L &#x3E; 0 be given. Let

Annales de 1 l’Institut Henri Poincare - Physique " theorique "
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The proof consists of a simple estimate that we omit. Proposition 2. 1
can be interpreted as follows. Suppose Poincare invariance is established
experimentally up to a given experimental error, for states of the particle
in a compact subset of Then the inequalities in (2 . 30) give an upper
bound on K in terms of the experimental error.

3. PREQUANTIZATION

To quantize the classical theory of section 2 means in the first place to
identify the Hilbert space of quantum states, for which we shall write

and to give the physical interpretation of the states in ~x . In

addition, we need to quantize the classical observables L~ in order to
obtain (upon integration) a unitary irreducible representation Ux of
SOo (2, 1 ) 
One might argue that this is trivial since the unitary irreducible represen-

tations of SOo (2, 1 ) are well known. This is not true for two reasons.

First, one has to decide which irreducible representation is associated to
which classical system. Geometric quantization gives an answer to this

question and we shall see that quantization of Ex and of E~ leads to the

same irreducible representation if and only if2014 = 2014 . This follows because
K K’

the coadjoint orbits associated to ~x and E~ are identical as symplectic
homogeneous spaces of S0o(2, 1 ). Hence, geometric quantization yields
the same irreducible representation. Nevertheless, the points of ~~ and of
E~ have different physical meanings, since Mx and Mx, are different (i. e.
not isometric) as spacetimes Similarly, we shall see that states in

and in ~f~ have different physical meanings, although (~, and

(~f~, U’;,’) are unitarily equivalent as irreducible representations of

SOo (2, 1). In order words, we argue that the actual realization of the
irreducible representation is of physical importance, not just the representa-
tion up to unitary equivalence. This is our second point. This is of course
related to the fact that the group generators are not the only physically
important observables. Turning now to the explicit quantization of the
theory in section 2, we start by remarking that the complicated dependence
on of the L~ in (2.25) makes it impossible to obtain their

quantization via canonical quantization. This is why we use the methods
of geometric quantization here.

In this section we analyse as a first step the prequantization of the
observables L 03BD in (2.25) and their contraction. As in (2.29), we make
use of the identification with (R2, dx1 /B given in section 2.
This will allow us to study the contraction of the prequantized observables

Vol. 57, n° 4-1992.
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as a strong limit on one fixed Hilbert space (Theorem 3.1). The prequan-
tization map associates with every smooth function f on phase space an
operator/on L2(R2, dx1dp1) as follows [W];

where, for a vector field X on R 2,

and

One sees easily that, if the flow of ~~. is complete, then f is the generator
of a one-parameter group of unitaries, and hence self-adjoint on its natural
domain. Indeed, let

where pt is the flow of X f, i. e.

and the integral is taken along the flow line from to 

Then Ût is unitary and

The main property of the prequantization map is that

This guarantees in particular that the one-parameter groups corresponding
via (3 . 4) to the generators in (2 . 25) combine to yield a unitary representa-
tion U of S0o(2, 1 ). We shall refer to U as the prequantized representa-
tion. It is clear from (3.4) that, in order to write this representation
globally, one needs to integrate the flow of the in (2.25), which is a
difficult task in the coordinates used. Since we shall need this representa-
tion further on, when dealing with quantization proper, we shall use
another method for that purpose below. For now, we note the explicit
form of the prequantized operators and study their contractions:

Annales de l’Institut Henri Poincaré - Physique theorique
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It is then clear that, formally at least, we have

where now More precisely, we have the following theorem:

It suffices to show the result on a dense subset of

L2(R2, We take "’EC~(R2), which is contained in the domain
of each generator and left invariant by the corresponding one-parameter
groups of unitaries [see (3.4)]. We have

Since the one-parameter group can be computed explicitly
using (3.4), the result follows easily from simple estimates on the coeffi-
cients of the first order partial differential operator K H. This ends
the proof of (3.9 a); (3 . 9 b) and (3 . 9 c) are proven similarly. D

The above result is the prequantum (and global) equivalent of

Proposition 2.1, which describes the behaviour of the classical theory
under contraction. In sections 4 and 5, we shall study the contraction of
the quantized theory as well. For that purpose we shall need an explicit
expression for the prequantized unitary representation U of S0o(2, 1 ).
This is most easily found if one works in an intrinsic form, without

Vol. 57, n° 4-1992.



414 S. DE BIEVRE AND A. M. EL GRADECHI

reference to the p 1 ) coordinates. To do so we remark that the defini-
tion of f on L2 (R2, dxl dpl) is not completely natural in view of the gauge
freedom in the choice of e in (3 . 3). General theory teaches us f ’ is in fact
an operator on a space of L2-sections of a line bundle with connection
over L:Z ~ R 2, associated to the principal bundle [W]

This means in particular that the natural Hilbert space for prequantization
is not L2 (~x, dxl dpl), but rather the space of L2-functions Bf1 on SOo (2, 1)
satisfying

for which we shall use the notation Jf. Note that this space is non-trivial

if and only if m is an integer. Here e50 is the element of the Lie algebra
K

ofSOn(2, 1 ) for which

The character exp (im 03BA 1:) of SO (2) is naturally associated to 03A3mx as can

be seen upon remarking that L5o(0,0)= , L15(0,0)=0=L01(0, 0). To
K

understand the link between L2 (03A3mx, dx1dp1) and the Hilbert space H
defined in (3.10), we recall from (2.16)-(2.17) that, as homogeneous
spaces 1 ). Hence functions on SOo (2, 1 ) are functions on

To understand what (3.10) implies for those functions, we compute
the left-invariant vector fields on SOo (2, 1 ) as vector fields on Ex :

Hence

Annales de ’ l’Institut Henri Poincaré - Physique ’ theorique
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We conclude that L2-functions on SOo (2, 1 ) satisfying (3 . 10) are in 1-1

correspondence with L2-functions on Ex satisfying

with Y50 given in (3 . 12 b). Remark now that

where Xn is defined in (2.8). It follows then from (3. 13)-(3.14) that the
functions B}/ in (3 .13) are entirely determined by their restriction to Ex
and, conversely, that to each element’" in L2 (03A3mx, dx1dp1), we can associ-
ate a unique 03C8 on Ex satisfying (3 .13); this establishes the link between
~f and Note that 1),~), where the
invariant measure is determined uniquely (and not just up to a

multiplicative factor) by the requirement that the identification of B)/ and
~ is unitary.
We now turn to the determination of the prequantized representation

U, as acting on We claim that,

To prove (3 .15), it suffices to computes explicitly the generators of LJ and
to compare with the definition (3 .1 ) of We conclude from (3 . 15)
that the prequantized representation is nothing else than the left regular
representation on S0o(2, 1 ), restricted to those L2-functions that satisfy
(3 .13). In other words, it is the representation of SOo (2, 1 ) induced from

the character of SO (2). Note that if m is not integer, then we
K

obtain a representation of the universal covering of SOo (2, 1).

4. QUANTIZATION AND SO (2, 1 ) COHERENT STATES

To quantize, we use the methods of geometric quantization to select an
irreducible subrepresentation of the prequantized representation, using a
positive invariant Kahler polarization on X~. A general discussion of the
concept of polarization can be found in [W]. Here we content ourselves
with a definition that is correct in the specific example dealt with in this
paper.

DEFINITION 4.1. - A positive invariant Kähler polarization on (03A3mx,
is a complex vector field 2m on Em satisfying the following properties:

Vol. 57, n° 4-1992.
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(ii ) there ’ exists a function f3J1v on 1::’ such that

and extending linearly, we define

We require then that gx is a positive non-degenerate metric on 03A3mx.
Conditions (i ), (ii) and (iii) refer respectively to the Kählerian, invariant

and pasitive character of the polarization. Invariant Kähler polarizations
can be charaCterized algebraically [W]. This allows us to prove the follow-
ing.

LEMMA 4 . 2. - There exists on 03A3mx a positive invariant Kähler polarization,
unique up to a multiplicative factor, given by:

The proof of Lemma 4.2 is given in Appendix A. Equation (4 . 2) now
implies

so that (4.3) yields

We also introduce

which is defined on an of Ex [see (3.12)].
We now show how the geometric quantization program allows us to

use the Kählerian polarization determined above to construct a unitary
irreducible subrepresentation of U. First, one defines the Hilbert space

The arguments in Appendix B show that this space is infinite dimensional

if 2014 &#x3E; - otherwise, ~e te we can assume to

be in the first Then, one observes that the 
L~ m (3.7) ~f~ L ~.

Annales de l’Institut i Physique - theorique .
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This follows from the general theory, using (4 .1 ) [W] and can be verified
by a direct computation. Equation (4.9) implies that U restricts to a

representation on that we shall denote by We write for its

generators, /.~. 
We show in Appendix B that the representation (U~, ~f~) is irreducible

and square integrable, i. e. that it belongs to the discrete series of represen-
tations. is the Hilbert space of the quantized theory. Each state B)/ in

yields a phase space probability distribution |03C8|2. Now, two represen-
tations (~x , and (~f~, U,::) are unitarily equivalent if and only if
~ = m (Appendix B). Nevertheless, the fact that ~x and ~f~ are different
K K’
as subspaces of L2 (R2, dx~ has as a result that the quantum states
they contain have different physical interpretations. This is as it should
be, since Mx is not isometric to Mx, if and should be compared to
the comments of section 2 [before (2.19)].

In the following, we study those quantum states that are optimally
localized, in a sense we now make precise. We shall say the quantum
state 03C8~Hmx is localized at the phase space point provided
[see (2. 25)]

We say B)/ is optimally localized if, in addition,

Here ~ . ~ denotes the expectation value in the state This definition of
"localized" is justified by the observation that the values of Lol and L~ 1
uniquely determine a point in L~ [see (2.25)]. We will justify
(4.10 b) below.
The state optimally localized at (0, 0) is easily seen to be unique; it is

the eigenstate of with eigenvalue m 03BA (i. e. the ground state). We

denote it by Consequently, all optimally localized states are unique
and we denote them by They can be obtained by applying the
unitary operator U= (A (~, q)) to the state Here ( y, q) is related tö

by (2.19) and (2.23) for and A (~y, ~) is given in (2.17).
In other words

The states p(xl; 111) are also called cohefent states [Pe]. Their properties-
were studied in [Pe] in the context of the Fock-Bargmann realization of
the representation (eK~, U:’)~ whete it is proves in particular that they
minimize the ’Invariant dispersion" of the Casimir operator. This in itself
does not justify the term "optimal localization" used above, since tbe
Casimir operator -L250 + L215 + L201 is not positive definite. However, onè

Vol. 51,. n" 4-t992.
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can verify that minimizes the uncertainty relation

verifies that

We now compute It will be convenient to consider the Hilbert
spaces in (4. 8) as subspaces of ~f, the space of L2-functions on Ex
satisfying (3. 10). We shall write for these spaces. Recall that we
showed in section 3 how to identify Jf with We first
claim that

where Zx is defined in (4. 7). This is easily proven by a direct calculation
using (4.4), (4.8~ (3. 12) and (3. 13), or by remarking that Zx is the
horizontal lift of Zx in (4 . 4) to the prequantum line bundle E~ -~ E~. The
ground state of the generator of time translations [50 is
determined uniquely (up to normalization) by the following three equa-
tions. First, from (3 . 13),

Next, from (4. 14),

Finally, remarking that the generators of U in (3.15) are the right-
invariant vector fields 

To solve (4.16-4.18) for (po, it is convenient to introduce

in terms of which

We note that (4 . 19) identifies T*R3 with C3 and that the surface Ex is
now given by:

Annales de l’Institut Henri Poincare - Physique ’ theorique "
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and

A simple calculation allows us then to solve (4.16)-(4.18) uniquely for

where the normalization is chosen so that" = 1. Now, for

which, using (2.17) and (3.15), gives

One can also prove that this implies (see Appendix B)

Since the prequantized representation LJ leaves invariant, we see
that The states in (4 . 11 ) are obtained

from the states by restricting both z’ and z to Ex c Using the
definition of z in (4. 19) as well as (2.19) and (2 . 23), one obtains their
explicit expression. -

In order to understand the contraction of the quantized theory, we now
study the contraction of the states The result is contained in the

following lemma.

Proo, f : - First, we recall that the surface ~x c C is realized through
(4 . 23) and y0 = 0 so that, using (4 . 19), (2 . 19), and (2 . 23), we can write,
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Expanding (4.28) in terms of K, we obtain after some calculation (noting
that from now on, 

the result follows after some further computation. 0
The result in (4.27) merits some comments. First we note that the

contracted states are no longer in L2 (R2, This suggests that the
family of Hilbert spaces ~f~ does not converge to any limiting Hilbert
space contained in L2 (R2, dxi dpl). In other words, the limiting Poincare
invariant theory does not arise naturally as a theory formulated on phase
space. In section 5 we shall analyse this phenomenon in some detail and
relate it to the contraction of the polarization Zx and in particular to the
observation that there is no Poincare invariant Kahler polarization on
~~ ~ R 2. In order to identify the quantum Hilbert space of the limiting
theory, that we shall denote ~f~, we remark that the limiting states in
(4 . 27) are (generalized ) eigenstates of P and H [see (3.8)] with eigenvalues
pi and respectively. Hence they span an irreducible unitary
representation of the Poincare group, an observation we shall also make
more precise in section 5. Finally, we see from (4. 13) that

as K -&#x3E; 0, which is also consistent with (4 . 27) and (2 . 29 b-c): the coherent
states, when contracted, become exceedingly well localized in momentum,
while delocalizing completely in position. In [DBEG], the coherent states
are realized as solutions to the Klein-Gordon equation on Mx and it is
shown there how in this picture they contract to plane waves on Mo,
which is the spacetime analog of the above phase space picture.

5. CONTRACTION OF THE POLARIZATION

The contraction of the classical and the prequantized theories in
sections 2 and 3 was a relatively straightforward matter. This is no longer

Annales de l’Institut Henri Poincaré - Physique théorique



421QUANTUM MECHANICS AND COHERENT STATES

so at the quantum level, as suggested by Lemma 4. 3 and the comments
following it. Ideally, we would like to prove an analog of Theorem 3.1
for the operators L~’ ~; we remark however that for different K, they are
defined on different Hilbert spaces as opposed to the in (3.7),
which are for all K defined on L 2 (R 2, dxl dpl). In other words, we are
now dealing with a family of operators U~(A), defined on a family of
Hilbert spaces Hmx, and it is not a priori clear how to make sense out of
the limit of either as K tends to zero (see [CDB]).
To shed light on this question, we shall make use of the observation

that the Hilbert spaces are all subspacc&#x26; of L 2 (R 2, dx2 Introduc-

ing the corresponding the corresponding projectors

we study their limit as K tends to zero. We start by showing § that the IY~
do not have ’ a non-trivial limit in the weak operator topology by studying £
the contraction of the polarization Z~ as K ~ 0 (Lemma « 5 . 2).

PROPOSITION 5.1. - If for some , there , exists a

"’0 E L 2 (R2, ’ that

= O.

This makes the comment following Lemma 4 . 3 precise i. e., if
w - lim n~ exists, it is identically equal to zero.

To prove Proposition 5.1 we start by recalling from (4.4) and (3.12)
that

with

Since ~x is tangent to E~, it is possible to expand it on the basis of TL~

given ,2014 . The lengthy but straightforward calculation is basedg y g Y

Formally, we have then
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where

Applying the analysis of Appendix A to the Poincare group, it is not hard
to show that Z~ is the unique Poincare-invariant polarization on phase
space. This explains its appearance as the zero curvature limit of the Zx .
Note nevertheless that Z~ is no longer positive or Kahlerian, which
explains why the Hilbert space of the limiting theory is not a subspace of
L2 (R2, dxl [see (5 . 9)].
The following Lemma gives a precise meaning to (5.4).

The proof consists of a simple estimate that we omit. The functions
~ (x 1, p 1 ), covariantly constant along 

are of the form

Such functions can never be in L (R, dx dpl). We use this observation
together with Lemma e 5 . 2 to prove Proposition 5 . 1.

5 . 1. - For ~ E ~ (R2), we have ’

where we used Lemma 5 . 2 and that So

Hence and As a result of (5 . 7), we conclude that
~=0. 0

Proposition 5.1 explains why the Hilbert space ~ of the limiting
theory can not be a subspace of L2 (R2, dxl To correctly identify

we remark that the solutions of (5 . 7 a) are determined completely
by their restriction to xl = 0 [see (5.7~)]. But the line xl = 0 has a group
theoretic and K-independent meaning. It is the orbit of (0, 0) under the

S0(l, 1 ) subgroup of SOo (2, 1 ) generated by Loi, i. e. of the subgroup
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with respect to which we contract. We have

The unique K-independent S0(l, 1 ) invariant measure on x1=0 is

Hence we define

It is now easy to verify that is invariant under the action of H, P
and K in (3 . 8). One has

so that one can see that the prequantized representation of the Poincare
group generated by H, P and K restricts to a unitary irreducible represen-
tation on equivalent to the usual Wigner representation. To conclude
we remark that the limiting states in (4 . 27) are of the form (5 . 7 b) and
are indeed (generalized ) eigenstates of H in ~o .

6. CONCLUSION

We have shown in which sense physics on the anti-de Sitter spacetime
can be viewed as a perturbation of the Minkowski theory for small

curvature. Our treatment of the classical (and prequantized ) theory can
be considered complete. In the quantum theory, we identified a particular
family of states (the coherent states) and showed they have a correct zero
curvature limit, tending to eigenstates of the Hamiltonian in the flat

spacetime limit. In addition, one would like to prove an analog of

Theorem 3.1 for the quantum theory. This was achieved after the comple-
tion of this work in [CDB].
The contraction of the generators in the quantum theory (but not of

the coherent states) was also studied in [AAG]. There, the irreducible
representation of SOo (2, 1 ) is taken in its Fock-Bargmann realization (see
Appendix B), as a space of holomorphic functions on a classical domain,
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to be thought of as the classical phase space (the case SOo (3, 2) is
treated in [BEGG]). The contraction is performed using a K-dependent real
coordinatization of the phase space, given by

This parametrization is not given a physical interpretation, however. Two
problems are then encountered. First, divergent terms in appear and
are eliminated upon requiring that the states of the limiting theory satisfy
a polarization condition emerging from the calculation. Second, the gener-
ators obtained in the limit do not satisfy the commutation relations of

the Poincare group, but a spurious factor - appears which is eliminated
by an ad hoc scaling argument. The work in this paper shows that

the polarization that appears is in fact the unique Poincare-invariant
polarization on phase space and can be obtained as the limit of SOo (2, 1 )-
invariant Kahlerian polarizations. It can then also be seen that the factor

- appears because what is contracted in [AAG] ] [BEGG] is actually the
holomorphic part of the prequantized representation. Adding back in

the "forgotten" anti-holomorphic part of the prequantized representation

eliminates both the terms in K -1 and the bothersome -.
2
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APPENDIX A

An algebraic characterization of a positive invariant polarization on Ex
is possible, since the latter is a homogeneous symplectic space for

SOo (2, 1 ), namely 1 )/SO (2) [W] [R]. To find such a polariza-
tion, we first need to look for a complex subalgebra h of so" (2, 1 ), the
complexified Lie algebra of SOo (2, 1 ), satisfying
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here dimch is the complex dimension of h, B ( , ) is the Killing form
for S0o(2, 1) and Ad is the adjoint representation of S0o(2, 1).
Conditions (iv) and (v) are the algebraic counterparts of the equations
(4 .1 ) and (4 . 3), respectively. Once h is obtained, we construct for each
one of its elements the corresponding complex left invariant vector field
on S0o(2, 1)~E~. Their projection onto yields the positive invariant
polarization on X~.

Using (i ) to (v) above, one easily finds h to be the algebra generated by
esQ and The algebra Yh is then generated by Yso and

where YSO, Y01 and Y1s are given in (3 . 12). Therefore
the unique (up to a multiplicative factor) positive invariant polarization
Zx on I:~ is obtained by projecting Yh onto TC ~x, which gives

To project Zx on one first looks for the unique functions 03B101 and
a 15 satisfying

and

Then the projected vector fields and Y15 are obtained by taking y° -- 0
in Y01 + 03B101 Y50 and Y 15 + CX15 Y 50’ respectively. One easily finds

This proves Lemma 4. 2.

APPENDIX B

We display here explicitly the unitary transformation intertwining the
representation (Ux , ~x ) of section 4 and the discrete series Fock-Barg-
mann representation of SOo (2, 1) that we now describe [Pe]. This will
both establish the irreducibility of (U~, ~x ) and allow us to verify
(4 . 26 b). Let be the Hilbert space of analytic functions f(z) on the
unit disc Dee with norm

where

For Eo&#x3E; -, 2 carries a unitary irreducible representation of the cover-

ing of SOo (2, 1 ) which, for Eo integer, yields a unitary irreducible and
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square integrable representation of SOo (2, 1) itself [Pe]. In our notation,
its generators are

To find the unitary mapping from onto with

we proceed as follows. First, we find the complex coordinate function
on Ex associated to the Kahler polarization Zx determined in

section 4; ~(~, pl) is determined uniquely, up to a conformal transforma-
tion, by

A solution of (B. 4) is

Here

and

Note that pER, Te(0,7r). It is then not hard to show, using the definition
(4 . 8), that E can be written as

where f is an analytic function on the strip R+~(0,7r). Finally, introduce

Lengthy, but straightforward calculations then establish

and

Now define
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by

where f is defined in (B . 7). Then

so that

This establishes the unitary of U. Furthermore, using (B .10), one esta-
blishes that

so that we can conclude that U intertwines the Fock-Bargmann representa-
tion and (Umx, .1t:Z). Note that the spectrum of K50 and hence of is

It is now easy to establish (4 . 26 b) by computing the norm of
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