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ABSTRACT. - We study in this paper the Rényi entropy densities of
integer order for the class of finitely correlated states on a quantum spin
chain, and obtain in this way explicit lower bounds for the usual entropy
density. We apply this technique to obtain good bounds on the entropy
density of a certain state on a spin-3/2 chain. This state is a ground state
of a translation invariant nearest neighbour SU (2)-invariant interaction,
which is thus shown to posses a residual entropy as T ~ 0. Breaking the
translation symmetry by adding a small SU (2)-invariant interaction of
period two removes the ground state degeneracy, and produces a non-
zero spectral gap above the ground state.

RESUME. 2014 Nous etudions la densite d’entropie de Renyi pour une
classe d’etats, dit a correlations finies, d’une chaine de spins quantiques.
Grace a ce resultat nous obtenons des bornes inferieures pour la densite

d’entropie usuelle. En particulier nous appliquons cette technique a l’etude
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260 M. FANNES, B. NACHTERGAELE AND R. F. WERNER

d’un etat fondamental d’un modèle a spin 3/2. L’hamiltonien correspon-
dant est defini par une interaction a plus proches voisins, invariante sous
SU (2) et sous les translations. Nous montrons que cet état est a densité
d’entropie non nulle ce qui demontre que Ie modele a une entropie
residuelle et ne satisfait donc pas a la Troisieme Loi de la Thermodyna-
mique. La forte degenerescence de l’état fondamental est levee en introdui-
sant une petite perturbation de periode deux sur la chaine, toutefois

invariante sous SU (2). Cette perturbation introduit un « gap » dans Ie

spectre de l’hamiltonien, gap qui tend vers zero quand la perturbation
tend vers zero.

1. INTRODUCTION

In this paper we will consider the class of finitely correlated states on a
quantum spin chain. These translation invariant states were introduced
in [1] ] and extensively studied in [6]. The characteristic property of these
states is that their correlation functions are described in terms of finite

dimensional spaces. It is shown in [6] that the finitely correlated states

coincide with (generalized) valence bond states [4]. Moreover, the pure
exponential clustering states among them can be obtained as the unique
ground states of translation invariant, finite range Hamiltonians and these
Hamiltonians have a non-zero spectral gap.
The special properties of finitely correlated states makes them easy to

handle in applications. For example, the computation of their correlation
functions reduces to computing the powers of a finite matrix. Nevertheless,
the class of finitely correlated states is still convex and weakly dense in
the set of translation invariant states on the chain. This makes them good
candidates for trial states in variational computations. However, in order
to use them in the Gibbs variational principle for finite-temperature
equilibrium states, one would need a way of computing the mean entropy
of finitely correlated states.
Our main objective in this paper is to obtain information about the

mean entropy of finitely correlated states. In Section 2 we will study the
integer order Renyi entropy densities for finitely correlated states and use
our results to gain control over the usual von Neumann entropy. As an
application we will construct in Section 3 a translation invariant, nearest
neighbour, anti-ferromagnetic SU (2) invariant Hamiltonian for a spin-3/2
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261ENTROPY ESTIMATES FOR CORRELATED STATES

chain with highly degenerate ground state. Using the results of Section 2
we will in fact show that this ground state has non-zero mean entropy,
thereby producing an example of a quantum Hamiltonian with residual
entropy. This is counter to general expectations about half-integral spin
chains formulated by Affleck and Lieb [3] in their discussion of Haldane’s
Conjecture [10]. We also show that the addition of an arbitrarily small
"staggered" interaction destroys the degeneracy of the ground state and
produces a gap.
Our notations for quantum spin chains are as follows. The algebra of

observables for a single site will be taken as the algebra ~~d of the complex
d  d matrices. The algebra of observables localized in the finite volume
A c 7~ is then given by d A = (8) ~~, where ~i is a copy of As usual

iEA

if A 1 c A2 c Z, A^1 is identified as a subalgebra of by tensoring
with unit matrices on the sites The algebra of the infinite
chain is then the C*-inductive limit of the A finite. The group 7~ acts
on as a group of translation automorphisms { E 7~ ~ where ia maps
j~~ onto Any one-site symmetry, given by a unitary defines
an automorphism of ~~: on any local element it is given by

A state co on is a normalized positive
linear functional on ~~ . co is called translation invariant if ia = co for
all If Y is a group of unitaries in we call 00 Y-invariant if

for all 

We now present the construction and some elementary properties of
finitely correlated states. More details can be found in [6]. To construct
the so-called C*-finitely correlated (for short finitely correlated states) we
need to introduce some auxiliary objects:

(i ) an algebra ~~k
(ii) a completely positive map E: ~~d (x) ~ ~~k that is unity preserv-

ing [20,21] ]
(iii) a state p on that satisfies (x) Y)) = p (Y) for all 
There is then a unique translation invariant state 00 of ~~, such that

its local expectation values are given by:

where is an observable at site i and where for all 

Such a state 00 will be called the finitely correlated state generated by (E, p).
The general behaviour of the correlation functions of 03C9 is determined by
the completely positive ~~lk -~ ~~k. A finitely correlated state
co can be decomposed into ergodic components ma generated by pj
such that the eigenvalue 1 of is non-degenerate. In this paper we will
restrict our attention to the ergodic case, i. e. we will assume that 1 is the

Vol. 57, n° 3-1992.



262 M. FANNES, B. NACHTERGAELE AND R. F. WERNER

unique eigenvector of P corresponding to the eigenvalue 1. In order to
have that M is clustering one has to require that P has no other eigenvalue
of modulus 1. In this case we will say that P has a trivial peripheral
spectrum; it follows then that co is exponentially clustering. For an ergodic
finitely correlated state co, it was shown in [6] that the peripheral spectrum
is a cyclic group of p-th roots of unity. The state co can then be written as
an average over p p-periodic states of the chain. These periodic components
can be considered as translation invariant states of a new chain for which
the one site algebra is now obtained by grouping together p consecutive
sites of the original chain. Considered as states of the regrouped chain
these components are then exponentially clustering. Therefore it will be
sufficient for our purposes to consider only the case where P has a trivial
peripheral spectrum.
A finitely correlated state 00 is called purely generated if the completely

positive unity preserving map E is pure i. e. if there is an isometry
V : Ck  Cd (x) Ck such for all (x) ~~k.

It was shown in [6] that purely generated finitely correlated states

with trivial peripheral spectrum are pure. Moreover, such a state can be
characterized as the unique ground state of an associated translation
invariant finite range Hamiltonian. In this situation the ground state

energy is separated from the remaining energy spectrum by a non-zero
gap [7].

2. ENTROPY ESTIMATES
FOR FINITELY CORRELATED STATES

Any state co of a quantum spin chain is completely described in
n

terms of a set of density matrices ...,~ (8) such that
m

The von Neumann entropy S{ m, ,.., n ~ of the state (D restricted to the volume
~m, ... , n ~ is then defined by:

Another measure of the disorder in the state co was introduced by
Renyi [17]. For q &#x3E; 1 the local Renyi entropy R{ m, ..., n ~ (~) of order q is
defined by:

- Annales de Henri Poincare - Physique " theorique "



263ENTROPY ESTIMATES FOR CORRELATED STATES

Remark that the von Neumann entropy S{ m, .,., n ~ (0) is recovered by taking
the limit of the Renyi entropies Rf m, ...~ n } (~) for ~1. These quantities
are well known in the context of dynamical systems where one studies the
structure of the invariant measure ([8], [9], [ 11 ], [ 12]).

In statistical mechanics one is specially interested in translation invariant
(or periodic) states, where one expects the entropies to be extensive quanti-
ties. For a general translation invariant state 03C9 of it is known that

only the von Neumann entropy has sufficiently nice properties to guarantee
the existence of its density s (co) [5] :

The Renyi entropy densities rq (o) can be defined as:

For finitely correlated states one can express the density in terms of the
defining objects p) of co. We will mainly use the rq (o) as a technical
tool to get lower bounds on the (von Neumann) entropy density of a
finitely correlated state. Indeed, one has the following Proposition:

2.1. PROPOSITION. - Let 03C9 be a translation invariant state of the chain
algebra ~~, then for 1 ql  ~2-’

Proof. - Fix n and let p{ - n, ..., n} be the density matrix corresponding
to the restriction 03C9{-n, ..., n} of 03C9 to A{-n,...,n}. Let {ri} be the set of

eigenvalues of p~ _~ ~~ repeated according to multiplicity. Obviously the
ri are non negative, add up to 1 and

First we show that by Holder’s inequality:

Indeed,

Vol. 57, n° 3-1992.



264 M. FANNES, B. NACHTERGAELE AND R. F. WERNER

and so (2 .1 ) follows by taking logarithms. As:

we obtain:

The Proposition follows by dividing this inequality by 2 n + 1 and taking
the lim sup. N
Remark that the Proposition immediately extends to a general quasi-

local quantum spin algebra. Instead of taking a limit for n  00 one

should then consider a limit in the sense of van Hove [13].
In the following we will consider the integral order Renyi entropy

densities of a finitely correlated state co generated by p). Let

~ A1, ... , Aq } be a set of trace class operators on an Hilbert space ~f
and ... } be an orthonormal basis for First observe

that for q = 2, 3, ... :

where r: cp 1 Q ... @ ... 9~ @ 9i 1 is the cyclic shift to the left on
Jf (x)... ~f. Applying this to a density matrix p corresponding to a state 00
one gets:

We will now use this relation to compute the integer Renyi entropies for
finitely correlated states. In order to formulate the result we need the

following notation: for q =1, 2, ... define

with

2 . 2. PROPOSITION. - Let 00 be a , finitely correlated state generated by
p), then for q = 2, 3, ...

Annales de ’ l’Institut Henri Poincaré - Physique " théorique "



265ENTROPY ESTIMATES FOR CORRELATED STATES

in particular

where for a , linear operator A, spr (A) denotes the spectral radius of A.

Proof - Observe first that for A c 7L

where is a finitely correlated state on a product of q copies of
the chain: (~~d Q ... ~~a)~ ^-_~ Qq ~~. The state is a product state on

generated by (~~q~, Qq p). According to (2 . 3) we have to
compute ~~q~ (r{ 1, ..., n }) where r{ 1, ..., n ~ = Q i ri. Here ri is a copy of the

cyclic shift on the Cd (x)... Cd at the i-th site of the product chain. So,
applying the defining formula ( 1.1 ) for finitely correlated states, we calcu-
late the expectation value of r{ 1, ..,, n }:

2.3. Remark. - Generically F(q) will only have a single eigenvector
belonging to an eigenvalue with modulus equal to spr (~~q~). Let us denote
by and the left and right eigenvectors of ~~q~ corresponding to this
eigenvalue.

If ( Q q p) (W~») . W~) ( Q q 1) ~ 0 then, as the Renyi entropy density is real,
we must have that spr (~~q~) is an eigenvalue of ~~q~ and we actually find that

In order to prove that the situation described in Remark 2. 3 generally
holds one would use a result similar to the classical Perron-Frobenius
theorem. In our case however, it is not immediately clear that the mappings
~~q~ possess the necessary positivity. This lack of manifest positivity can
already be traced back to formula (2. 3). Since by Proposition 2.1 the
Renyi entropy of order 2 gives the best bounds on s (co) we shall be

especially interested in this case. We show now that the situation described
in the above remark indeed holds in this case.

Vol. 57, n° 3-1992.
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2.4. THEOREM. - Let CO be a finitely correlated state generated by p)
and suppose that has only one eigenvalue of maximal modulus, then:

Proo, f : - The theorem will follow from Proposition 2 . 2 if we show
that spr ([F(2») is an eigenvalue of [F(2) and if moreover the right and left
eigenvectors of [F(2) have non-zero scalar products with p (8) p and lk (8) lk.
The left multiplication A E (x) p-~ FA by the flip F on Ck (x) Ck is a
unitary transformation on @ equipped with the tracial scalar

product. It will be convenient to introduce the operator

We can then express the R~i 1, ~ as:

As E is a completely positive map there is a (finite) set Va of linear
mappings from Ck into Cd @ Ck such that for (x) 

Denoting as before by r the flip on Cd Q Cd we then compute for

Consider now in (x) the convex cone .% generated by
{X* (g) X I X E ~}. By formula (2 . 6) X is mapped into itself by T.

Let { A~, i =1, ... , k2 ~ be an orthonormal basis for equipped with
the tracial scalar product  A, B ~ - Tr (A* B). We then have that

Indeed, if for cp, I P &#x3E;  0/ I denotes the rank 1 operator
x E C~ )-~ ( 0/, X &#x3E; cp, we compute:

But this implies that F is an order unit in Jf.

Annales de l’Institut Henri Physique theorique



267ENTROPY ESTIMATES FOR CORRELATED STATES

Applying formula (2. 2) we also have that:

This implies that the functional is in the
dual of and, as p was assumed to be faithful, Tr (p X* p X) vanishes
iff X = O. Therefore Y E (g) H Tr (p Q p FY) is also an order unit
for the dual cone of 
From the Theorem of Krein and Rutman ([14], [ 18]), applied to the

case of a finite dimensional space, it now immediately follows that 
is an eigenvalue of 1F(2). Furthermore as F and

are order units in f and its dual, it follows that both the right and left
eigenvector of T have non-zero scalar products with these order units. []

3. A QUANTUM SPIN MODEL WITH RESIDUAL ENTROPY

For quantum lattice systems one expects that generically the mean

entropy of the equilibrium states converges to zero as the temperature T
tends to zero. This is the Third Law of Thermodynamics. It has been
known for a long time that there are special interactions that violate this
property. The limiting entropy density as T tends to zero is called the
residual entropy of the model. A non vanishing residual entropy is closely
related to a high degeneracy of the ground states of the model. This was
clearly shown in [2]. In classical spin systems the high degeneracy is caused
by cancellations in the energy of many configurations due to a special
choice of the coupling constants. This is related to the phenomenon of
frustation [22]. The residual entropy is then usually determined by counting
the ground states configurations ([ 16], [ 15], [ 19]) .
Here we will consider a quantum spin chain with SU (2) invariant

nearest neighbour interaction. We are not estimating the residual entropy
by directly counting the ground state degeneracy. We will show instead
that there exists a finitely correlated ground state for this model which
has a non-zero mean entropy. This mean entropy is then a lower bound
for the residual entropy. In fact we are not able to compute exactly the
mean entropy of this finitely correlated state, but, using the results of the
preceding section, we will get lower bounds. It is rather easy to obtain

upper bounds.
We will heavily use the representation theory of SU (2). It is well

known that all the irreducible unitary representations of SU (2) are finite
dimensional and that there is exactly one for each dimension. Traditionally
they are labelled by a half-integer: the spin s = 0, 1 /2, 1, 3/2,..., the

Vol. 57, n° 3-1992.



268 M. FANNES, B. NACHTERGAELE AND R. F. WERNER

dimension of the spin-s representation being 2 s + 1. We will denote the
spin-s irreducible representation by i. e. for gE SU (2), D~S~ (g) is the

unitary in 1 representing g. The generators of will either be
denoted by S", SZ or by the vector S. If denotes the completely
antisymmetric tensor with 3 elements and with ~xyz = 1, then the generators
satisfy

and

For j1 and j2 two half-integers the representation D(1) (8) D(j2) is no longer
irreducible; its reduction is given by the Clebsch-Gordon series:

From this formula it follows that, up to a phase, there exists for each s such
that IiI -7’2 ! + 1, ... jl + j2 ~ a unique intertwining isometry V:

The matrix elements of V are precisely the Clebsch-Gordon coefficients.
As V is an isometry one has V * V =1 and where is the

orthogonal projection on the subspace of C2 jl + 1 @ C2 j2 + 
1 that carries

the irreducible spin-s subrepresentation of D(1) (x) D~2B We will now

consider a chain of spin-3/2 particles. So the corresponding algebra of
observables is the C*-inductive limit of the (8) .A 4 for A c ~, finite. The

iEA

local Hamiltonians Hf m, ..., n }~ on an interval {~, ...,~} c= Z, are given by:

where 1 is the orthogonal projection onto the spin-3 subspace in
C4 @ C4,’ sitting at the nearest neighbour points i, i + 1. In terms of the
generators S this Hamiltonian reads:

We now first construct a finitely correlated state co on the spin-3/2 chain
by specifying an E and a p that satisfy the compatibility conditions.
Consider the uniquely defined intertwining isometry V:

Annales de l’Institut Henri Poincaré - Physique theorique



269ENTROPY ESTIMATES FOR CORRELATED STATES

define

and choose for p the tracial state on uN 2’ i. e. p (B) = - 2 Tr (B). Then
E(1)==V*V=1 because V is an isometry, and by SU (2) invariance p is
the unique state on that satisfies 
As the interaction is of finite range we have the well-known result that

the local Hamiltonians define a strongly continuous group of automor-
phisms with generator § given on local observables by:

A not necessarily translation invariant state co of is called a ground
state of the model if it satisfies:

We will show that the finitely correlated state co determined by the E
and p specified above is a ground state of the model in a stronger sense,
namely:

It is then immediate by the positivity of the interaction that 00 is also a
ground state of the Hamiltonian in the sense of (3.2). According to the
construction of finitely correlated states ( 1.1 ) we compute the expectation
value of an elementary tensor Xi Xi+ 1 of two single site observables living
on the nearest neighbour 1} as:

The range of (14(8) 12 Q V) V is a two dimensional rotation invariant

subspace of C4 (8) C2 (8) C4 (8) C2 (8) C2, that carries a D~1~2~ representa-
tion by the intertwining property of V. By the Clebsch-Gordon series the
representation D(3/2)~D(3/2) on the first and third factors of H

decomposes into a direct sum of irreducible spin 0,1,2 and 3 representa-
tions. In order to get a non vanishing expectation of the subspace
of ~f carrying the D(3) (8) D~1~2~ (8) D~1~2~ (x) representation should con-
tain a spin-1 /2 subspace. This is not the case, which proves (3 . 3).
Formula (3 .1 ) also shows that 00 can be seen as the restriction of a

finitely correlated state coo on a double chain. This chain has at each site
a spin-3/2 and a spin-1 /2 particle, i. e. the one site algebra is ~~4 Q ~~2.
The finitely correlated state Mo on the double chain is generated by p)

Vol. 57, n° 3-1992.



270 M. FANNES, B. NACHTERGAELE AND R. F. WERNER

where

with the same isometry V as in (3 . 1 ). We will show in Proposition 3 . 2
that, if [P&#x3E; 0 denotes the completely positive map 
from into itself:

where J are the generators of the spin-1 /2 representation. From the general
results on finitely correlated states it then follows that (Do is pure. We
have now the following situation: 000 is a pure state on a product algebra
~1 Q ~2, where ~1= (~~4)~ and ~2 = (~~2)~, and we are interested in
studying the mean entropy of the restriction of (Do to The following
Lemma shows that we can as well study the mean entropy of the restriction
of (Do to ~2. This will be of interest because the dimension of the local
algebras for that subchain is much smaller.

3.1. LEMMA. - Let for /==1,2 and let (0 be a translation
invariant state of ~12 = ~1 Qx ~2 = (~~al O ~~a2)~. Denote by ~land ~2
the restrictions ~ 1 and ~2. Then

In particular, if s = 0 then s (001) = s (c~2).

Proof - Consider first a finite subset A c Z. It is always possible to
find a matrix algebra ~ and a pure state a such
that the restrictions of cr and 03C9 to A1,^~A2,^ coincide. Here A1,^
and ~2, n denote the algebras of observables in the volume A of the
subchains 1 and 2. By the strong subadditivity property of the entropy [5]:

Now we have also that:

Indeed, the restrictions of a pure state on a tensor product of two matrix
algebras to each of the factors are given by density matrices that have the
same eigenvalues taking multiplicities into account, except possibly for the
eigenvalue zero. So

Obviously the roles of 1 and 2 are interchangeable. Therefore:

Annales de l’Institut Henri Poincare - Physique theorique
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Dividing by 1 A and taking the limit we obtain the result. []
Just like Proposition 2 . this Lemma and its proof immediately general-

ize to a general quasi-local algebra.
In our situation we have ~1= (~~4)a, ~2 = (~~2)~ and the finitely

correlated state co on A1 which was defined in (3 .1 ) in terms of 
equals 000 1.91 where (Do is a pure finitely correlated state. We can therefore
apply Lemma 3 .1 and we get immediately a dimensional upper bound on

In the following Proposition we derive a lower bound for s (cc~), together
with a slightly sharper upper bound.

3.2. PROPOSITION:

Before entering the proof we state a basic formula for intertwining
isometries between representations of SU (2), which will be used repeatedly.

3 . 3. LEMMA. - Let s, j, j’ be (half-) integers with s + j + j’ E N and
and let be the up to a

phase unique isometry intertwining and Q9 D(j’). Let S, J, J’ denote
the generators of these representations. Then

and

By the intertwining property (J(x) 1 + 1 The
first relation follows by solving this equation for the mixed term in the
expansion of the square on the left hand side. Since W* (J @ 1) W is a
vector operator in D~B it must be proportional to S. The constant  is
computed from the relation

Proof 3 . 2. - In order to obtain the lower and upper bounds we
will have to compute some n-point functions of the state. By Lemma 3.1
we can restrict our attention to the spin-1 /2 subchain and this will consider-
ably simplify explicit computations.

Consider first the unique isometries:

Vol. 57, n° 3-1992.
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intertwining the SU(2) representations D(1/2) with and D(l)
with D(I/2) @ D(I/2), respectively. Then the isometry V = (1 @ V 2) VI inter-
twines DO/2) with D(3/2) @ D(I/2) @ DO/2), and must therefore coincide with
the operator V of formula (3.1). We will denote by J, K and S the
generators of the representations DO/2), DO) and D(3/2) respectively. We

now apply Lemma 3.3, first to V 2 with (~j’j") = ( 1,"," ), and then to V 1
with (~7,7’) = ( ~ ’ ~ ’ 1 ). to compute

for some X. We need:

Here (3 . 7) follows from (3 . 6) and the observation that the range of V2 is
the symmetric subspace of C2 (x) C2.
The upper bound for s will be obtained by computing the entropy of

the restriction p~i,2} of the state of the spin-1 /2 chain on a pair of
neighbouring sites. Indeed, as the mean entropy is given by the infimum

of the local mean entropies [5]: s ( c~ )_ _ -1 2 S (P~n2~)~ By rotation invariance
it is obvious that p{ 1, 2} is of the form:

where and denote the orthogonal projections on the spin-0 and
spin-1 subspaces of C2 (x) C~ respectively. The entropy is then given by:

In order to compute ro and rl we write:

Annales de l’Institut Henri Poincare - Physique ° theorique °



273ENTROPY ESTIMATES FOR CORRELATED STATES

Then, by normalization ~ = -(1 2014~o)’ So we need to calculate

1 2
Hence ~n= - and ~1 1 = -. Therefore:

3 9

To obtain the lower bound we compute r2 using Theorem 2 . 4 and then
apply Proposition 2. 1. In terms of the generators J the flip F on C2 8&#x3E; C2
is given by:

The state co restricted to the spin-1 /2 chain is a finitely correlated state
given by ([2’ p), where:

We have now to compute the spectral radius of

Due to rotation invariance we can restrict our attention to the subspace
of rotation invariant operators. As a basis in this space we choose 12 (x) 12
and J(x) J.

Vol. 57, n° 3-1992.
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where we have used (3 . 5). In a similar way:

Therefore the spectral radius of 1F~2) is the largest eigenvalue of:

which is

Finally, we show how a small perturbation of the Hamiltonian destroys
the ground state degeneracy. Let HS denote the "staggered" perturbation
operator

This interaction is not translation invariant but only periodic with period 2,
but it is fully SU (2)-invariant. Then we claim that for all positive E the
interaction HE = H + E HS has a unique ground state co" with a spectral gap,
and that the gap with go to zero as 8-~0. It will be clear from the

construction that co" is also a ground state for the original Hamiltonian H.
We shall construct ooS as a finitely correlated state with period 2. For

this we need two completely positive unit preserving maps

We also need a state p+ on and a state p- on M3 such that

p~E~(10X)=p~ (X). As usual we shall write E~(Y)= E"(X (8) Y). The
formula for the state analogous to ( 1.1 ) is then

where 6 (i ) _ ( -1 ) i . We shall where V~ are inter-
twining isometries between the respective representations of SU (2), and
let p ± be the unique rotation invariant states, i. e. the normalized traces

in ~~2 and ~3’ When is even we have

As before we conclude that must vanish,
since otherwise this operator would be a non-zero intertwiner between
D~1~2~ and D(2) @ It follows that co’ is a ground state of H+eH’ in

Poincaré - Physique theorique



275ENTROPY ESTIMATES FOR CORRELATED STATES

the same strong sense as co is a ground state for H. The uniqueness of
this ground state, and the fact that it has a gap follow from the general
theory in [6]. To apply this theory one merely has to note that the two-
step transition operator IE+ - : X1 (x) X2 (x) IE+ (X1 (x) IE- (X2 (x) Y)) is

generated by the isometry (14 @ V -) V + so that the state co" is "purely
generated". One also has to check that the eigenvalue 1 of ~1 - _ ~ + - is
the only one of modulus 1. We do this by computing the decay constant
of the correlation functions of These are determined by the powers of
[p&#x3E; + -, which can be computed in the basis {1,J} of M2. By rotation
invariance it suffices to compute the constant ~, such (1) = )Li J,
and to show that ~  1. From Lemma 3 . 3 we immediately get ~ = 2014.

6

Recall that the decay constant of 03C9 was 2014 2014, meaning 2 for two step
transitions. Hence the correlations in the pure ground state co" go to zero
slightly less rapidly than in the highly degenerate ground state co.
As the ground state o" of HS is non-degenerate we can obtain the

spectral gap as the least such that for all local observables X:

By making an explicit choice for the X we will obtain an upper bound
for yo (E). More specifically we will estimate yo (s) by studying the spin-
wave spectrum of HE, i. e. we choose

As co’(S)=0 and ~)=0 for all observables X we obtain the
estimate:

We now compute the limits of the numerator and denominator:

The sums can be evaluated using the following results for the two-point
correlation function, which can be obtained by applying Lemma 3 . 3: for
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The denominator then becomes

For the numerator one gets

Taking q = 0 we obtain

which shows that the gap disappears when ~ ~, 0.
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