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Integrable dynamical systems obtained by duplication
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ABSTRACT. - New integrable dynamical systems are generated from
known ones, by using an argument of symmetry; and their properties are
exhibited.

RESUME. 2014 Nous construisons des nouveaux systemes dynamiques inte-
grables a partir de cas deja connus en utilisant un argument de symetrie.
Nous decrivons aussi leurs proprietes.

1. INTRODUCTION

Almost twenty years ago it was pointed out, in the context of nonrela-
tivistic quantum mechanics, that the one-dimensional N-body problem
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168 F. CALOGERO AND J.-P. FRANÇOISE

with interparticle inverse-cube forces, and possibly in addition an external
(or, equivalently, interparticle) harmonic interaction, is solvable [ 1 ] . Such
a system is characterized by the hamiltonian

with

Subsequently J. Moser has shown that this system (with ~==0), in
the context of classical (rather than quantum) mechanics, is completely
integrable [2]; and soon thereafter it has been shown [3] that this property
is also possessed by the hamiltonian ( 1.1 ), with ~==0, in the more general
case .

where ~ denotes the Wierstrass’ elliptic function [of which ( 1. 2 a), as well
as

are special cases]. These findings have been followed by various extensions
and applications (including the proof that the dynamical system character-
ized by the hamiltonian ( 1.1 ) with ( 1. 2 a) and ~0 is also integrable);
they have opened an entire research field, that has been reviewed about
ten years ago by M. A. Olshanetsky and A. M. Perelomov [4], and more
recently by A. M. Perelomov [5]. Here we limit ourselves to recall that the
system characterized by the hamiltonian

has also been shown to be completely integrable, with v (x) taking any
one of the determinations (1.2~,~,c,~) if ~=0, or the determination
( 1. 2 a) if ~~0; and arbitrary constants. The integrability of the
dynamical system characterized by this hamiltonian originates from the
possibility to replace the original many-body hamiltonian ( 1.1 ), whose
potential energy part contains a sum over the interparticle distances 
by a (more general if less physical) analogous hamiltonian, whose potential
energy part consists of an analogous sum, but extending instead over the
root systems associated with semisimple Lie algebras [4]. It is, however,
well known that analogous (albeit slightly less general) results can also be

Annales de l’Institut Henri Poincaré - Physique theorique



169INTEGRABLE DYNAMICAL SYSTEMS

obtained directly from the many-body hamiltonian ( 1.1 ) via a process of
"duplication" based on an argument of symmetry, as reviewed in the
following Section.
The process of "duplication" had been hitherto confined to the real

axis (see, however, [6], [7]). The main contribution of this paper is to point
out that, by extending the "duplication" process to the complex plane, new
(real) integrable systems can be obtained. The most interesting instance of
such systems, on which our presentation will be mainly focussed, is

characterized by the following (real) equations of motions

with À and ’Y arbitrary (real ) constants and

Clearly this dynamical system can be interpreted as describing the classical
evolution of m + n nonrelativistic one-dimensional unit-mass particles, m
of one kind and n of another, with the force fe acting between equal
particles and the force fd between different particles. Note that these forces
depend on the coordinates of the two interacting particles not merely via
their difference.

It is easily seen that these equations are associated, in the standard
manner, with the hamiltonian

where

Vo!.57,n’2-1992.
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so that

Note the negative sign in front of the "kinetic energy term", as well as
the "potential energy term", for the particles of second kind, in the

hamiltonian ( 1. 4 e). Of course a special case is that in which only one
type of particles is present (say, ~==0).
Below we show that this dynamical system is completely integrable, and

moreover that, if ~0, all its orbits are periodic with the same period
21t/À, independently of the values of the (real ) constants g and y, and of
course of the initial conditions; while if ~==0 (in which case the motion is
unbounded, with the particles incoming from infinity in the remote past
and escaping to infinity in the remote future), the interaction gives rise to
a scattering process whose final outcome is merely a reversal of the

asymptotic velocities of each particle, so that particles incoming from the
left (right) in the remote past return to the left (right) in the remote future,
with the same asymptotic velocity (in modulus-opposite in sign) in the
remote future that each of them had in the remote past.
Another interesting dynamical system, which we also show below to be

integrable and to behave in an analogous fashion to the system described
above, is characterized by the following equations of motion:

with Â and a arbitrary (real ) constants and

Note the differences in sign among ( 1. 5 a) and (1. 5&#x26;). Of course in this
case as well one may restrict attention to systems with only one kind of
particles, namely set m = 0 or n = o.
As mentioned above, these results are obtained via a process of genera-

tion of new integrable systems from known ones, that we have called
"duplication". This process (which may have various twists; see below)
can be used in several other situations as well. We treat below those

presented above as examples to illustrate the general method.
Let us end this Section by pointing out that both systems, ( 1. 4) and

( 1. 5), described above, have the property to be invariant under the
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transformation that changes the sign of any coordinate (leaving the others
unchanged). Thus, without loss of generality, one can actually restrict the
study of these systems to the case when all the coordinates are positive,
i. e. all the particles are on the positive real axis (~&#x3E;0, ~&#x3E;0).

2. THE DUPLICATION PROCESS

Let us start from the (integrable) dynamical system characterized by the
hamiltonian ( 1.1 ), namely by the equations of motion

with v (x) given by ( 1. 2 a) [actually, for ~==0, the dynamical system (2 .1 )
is integrable for any one of the 4 determination ( 1. 2 a, b, c, d ) of v (x); in
the following we will concentrate on the determination ( 1. 2 a), that yields
more interesting results].

There is a well-known process that allows to obtain a new integrable
system from this. Consider the case with an even number of particles,
N = 2 n, and note that an initial configuration that is symmetrical around
the origin remains symmetrical under the flow (2 .1 ) [since v (x) is an even
function], so that one can set, compatibly with (2 .1 ),

There thus result for the equations of motion

that may indeed be obtained in the standard manner from the hamiltonian

Vol.57,n°2-1992.
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Let us moreover note that if, in the duplication process, we add  (static)
particles at the origin, we get the equations of motion

corresponding to the hamiltonian

But this is not a new system, being clearly the special case of ( 1. 3)

corresponding to (X2 = J.1 g2 and [32 = _ 2 1 g2.
What seems less known (see, however, [6], [7]) is the possibility to

generate a new model by putting two configurations of particles, one on
the real axis and the other on the imaginary axis. One has moreover the

option to add some (static) particles at the origin.
In this manner, as we presently show, one can manufacture an integrable

dynamical system featuring two different types of "particles". Let us

emphasize that this is a different kind of trick from that which generates
two types of particles by an appropriate shift of their coordinates, as

explained in [3], and studied in [8] in the case v (x) _ [sinh (ax)] - 2.
So we start again from the system (2 .1 ), but now with 2 m particles in

a configuration symmetrical around the origin on the real axis, 2 n particles
in a configuration symmetrcial around the origin on the imaginary axis,
and  static particles at the origin; that is, we set N=2(~+~)+~ and

It is clear that these positions are compatible with (2 .1 ), and they yield
for the m "particles of the first type", of (real) coordinates xj and (real)

Annales de l’Institut Henri Poincaré - Physique theorique
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momenta (or, equivalently, velocities) y~, the equations of motion

and for the n "particles of the second type", of (real ) coordinates 03BEj and
(real) momenta (or velocities) 11., the equations of motion

It is easily seen that these two systems of coupled second-order ODEs
can be obtained from the following (real ) Hamiltonian:

These results imply of course that the Hamiltonian system (2.6), that
as we have seen can be considered to describe the motion of two groups
of particles of two different types, is completely integrable if v (x) is given
by any one of the determinations (1.2~,6,c,~) and ~=0, or if v (x) is

given by ( 1. 2 a) and ~, is an arbitrary (real ) constant. In particular, in the
latter case, to which our treatment is actually limited (this restriction being
instrumental to guarantee the reality of the coordinates x~, ~), this system
coincides with ( 1. 4), with

Vol. 57, n° 2-1992.
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Note however that, while this derivation would seem to suggest that the
system ( 1. 4) is integrable only for the special values of y2 given by this
formula with  a nonnegative integer, in fact ( 1. 4) is completely integrable
for any arbitrary value of the constant y2 (as implied by the results of
Section 4 below). In our discussion below we will however, for simplicity,
restrict attention to the case when the constant ~y2 is positive.

3. SYSTEMS OF "MOLECULES" AND ITERATED
DUPLICATIONS

In the case when v (x) is given by ( 1. 2 a), it is easily seen that the
equations of motion (2 . 6 a, b) for and ~~ (t) become identical, so that
it is consistent to set m = n and, as a special configuration (compatible
with the motion),

Note that, in this configuration, the hamiltonian (2 . 6 c) becomes a (vanish-
ing) constant. On the other hand the equations of motion (2 . 6 a, b) remain
valid, and they read as follows:

with

and

This m-body system is therefore another example of integrable problem;
we refer to it, in the title of this section, as a system of "molecules", since
each particle may be considered as made up of two tightly bound different
particles of the previous system, whose coordinates actually coincide [see
(3.1)].

Let us note that, as in the case discussed in the preceding Section, while
(3 . 2 b) seems to imply a limitation on the permitted range of values for
a2 (arising from the condition that  be a nonnegative integer), the
treatment given below implies that the complete integrability of the models
discussed in this Section actually holds for any arbitrary value of a2
(although for simplicity we will in the following generally assume a2 to
be positive).

Annales de l’Institut Henri Poincaré - Physique theorique
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As already mentioned in the Introduction, without loss of generality we
can hereafter assume that all the coordinates are positive (the equations
are clearly invariant under the transformation xj ~ -xj, even if performed
only for the j-th coordinate; indeed, they are also invariant under

x~ ±~). In any case, as implied by (3 . 2 a) [and the positivity of (X2;
see (3 . 2 b)], the dynamics prevents from changing sign throughout
its time evolution (the singular repulsive force oc2 x - 3 keeps the particles
away from the origin); moreover the singular repulsive pair force (3 . 2 c)
prevents the particles from crossing each other.

Clearly the system (3 . 2) implies the conditions (as well as
the possibility to "duplicate" this system in the manner of the

previous Section is thereby excluded. It is however possible to perform a
different kind of "duplication", by replacing m with m + n and then setting

of course with x~, for j =1, 2, ... , m, as well as ~(~), for j =1, 2, ... , n,
being real coordinates. Then in place of the system (3.2) one gets the

, 
more general system characterized by the following equations of motion:

This can be described as a system of m + n one-dimensional unit-mass
classical particles, m of one type and n of another; the previous system is
of course the special case of this corresponding to ~=0; and another
(different) system, involving again only one type of particles, is obtained
by setting instead ~==0. But note that, while as pointed out above the
particles of first type are repelled by the origin and also repel each other,
the particles of second type are instead attracted to the origin (with a
force that becomes infinite at the origin), as well as pairwise among
themselves (again, with a force that becomes infinite at zero distance).
Hence, if particles of the second type are present, the system, in spite of
its completely integrable character, may give rise to a singular behaviour
(collapse) at a finite time. Note moreover that the different behaviour of
the two types of particles exclude the possibility to generate yet another
dynamical system by the trick of putting together molecules, as described
above. Indeed it appears that the models described thus far exhaust the

range of possible "integrable many-body (classical nonrelativistic) models
on the line" that can be manufactured by this kind of tricks (as mentioned

Vol. 57, n° 2-1992.
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above, one may also try to apply such tricks with the more general
functions (1.2~,c,~), rather than ( 1. 2 a); but the resulting results are not
sufficiently interesting to warrant reporting here).

4. EXISTENCE OF LAX PAIRS FOR THE FLOWS

The systems described in the two previous Sections (and mentioned in
the Introduction) are of course completely integrable, as implied by the
way they have been obtained. In this Section we demonstrate this by
explicitly providing the corresponding Lax representation, as well as their
solution. However, for simplicity, we limit such an explicit treatment to
the system (2 . 6) with ( 1. 2 a) and (2 . 7) [or, equivalently, ( 1. 4)] .
We start with the N x N matrices (with N = 2 (m + n)) associated [9] with

the system ( 1. 3) with ( 1. 2 a), that read

with the (N/2) x (N/2) matrices A, B, D, E, F defined as follows:

Here the indices j and k run from 1 to m + n = N/2, and of course 03B4jk =1
if j= k, b~k = 0 while

The equations of motion corresponding to the integrable hamiltonian
(1.3) can be recast, using these matrices, in the following (generalized)
Lax form:
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To get the equations of the system ( 1. 4) [or, equivalently, (2 . 6) with
( 1. 2 a)], it is now sufficient to perform the substitutions (2.5~, c).
Note that the hamiltonian ( 1. 4 e) is given, via (2 . 5 b) and (2.5~), by

the formula

Let us recall that the generalized Lax equations (4 . 3 a) can be recast in
the standard Lax form by the following trick. Let us introduce the two
N x N matrices

It is then easily seen that (4. 3) yield

so that, by setting

there obtains for W the standard Lax equation

Of course a standard Lax equation is also satisfied by the matrix

since clearly (4 . 6 a) implies

The Lax representations for the system ( 1. 5) can be obtained in anal-
ogous manner, by using appropriate specializations of the variables, as
suggested by the treatment of Section 3; of course the corresponding
matrices will be of order N x N with N = 4 (m + n).

5. EXPLICIT SOLUTION IN THE ~, ~ 0 CASE: PERIODICITY
OF THE ORBITS

We now indicate how the system ( 1. 4) can be explicitly solved, via the
Lax representation given in the preceding Section; and we thereby prove
the following

THEOREM 5.1. - All the orbits of the hamiltonian system (1.4) are
periodic, with period 21t/À (independently of g and y).

Vol. 57, n° 2-1992.
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This result was indeed expected, since it holds for the original system
( 1.1 ) with ( 1. 2 a), of which the models treated in this paper are after all
merely special cases.
Of course in this Section the real constant ~, is assumed not to vanish,

Let us introduce the N x N matrix U (t) via the (matrix) Cauchy problem

where the N x N matrix M (t) is that defined in Section 4 [and of course
N=2 (m+n)].
We then set

where the matrices X and L are again those defined in Section 4.
It is then easily seen that (5 . 2 a) and (4 . 3 a) yield

and then (5 . 2 a), (4 . 3 b) and (5 . 3 a) yield

This equation can be explicitly integrated:

or, equivalently [see (5.2 b), (5.3 a) and (5 . 4)],

This formula provides an explicit expression of the matrix X (t) in
terms of the initial positions and velocities of the particles [see (4 .1 a, b),
(4 . 2 a, b, c) and (2.5~,~,c~)]; on the other hand the positions and

~~ (t) of the particles at time t are just the eigenvalues of the matrix X (t)
[see (5 . 3 a), (4 .1 b), (4 . 2 c) and (2 . 5 a, c)].

It is thus seen that the solution of the problem is merely reduced to the
computation of the (real and imaginary) eigenvalues of the matrix X (t),
given, in terms of the initial data, by the explicit formula (5 . 5 c).

Since the matrix X (t) is clearly periodic in time with period 21t/À [see
(5 . 5 c)], the set of its eigenvalues is also periodic in time, with the same
period; and this entails the periodicity of each one of the resp.

~~ (t)’s (the real resp. imaginary eigenvalues), since their ordering on the
(positive) real resp. imaginary axes cannot change throughout the motion
(since the particles of each type cannot go through each other, as explained
above).

Annales de l’Institut Henri Poincaré - Physique theorique
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It is left to the diligent reader to spell out the analogous technique of
solution for the dynamical system ( 1. 5), as well as to prove that

Theorem 5.1 holds in this case as well (provided there is no collapse).
The only difference from the treatment given just above is that the relevant
matrices have now 4 (m + n) [rather than 2 (m + n)] rows and columns, and
in the appropriate identification of the quantities and for

j =1, 2, ... , 2 (m + n) .
Note incidentally that the fact that the structure of the set of eigenvalues

of the matrix X(t) is preserved over time [for instance, the fact that, if

is an eigenvalue, is] may be formulated as the following
nontrivial, purely mathematical

REMARK. - Let Z be any matrix, of rank N = 2 n, N = 4 n or N = 8 n, whose
characteristic polynomial,

has one ’ of the following $ (special ) forms:

where the quantities Zj or x~, y~ are real. Then there exists a (nonvanishing)
matrix Q (independent of t and À) such that the two-parameter set of
matrices

all have characteristic polynomials with the same special structure (5.7)
(although with different eigenvalues, of course), for any arbitrary values of
À and t.

For instance, as implied by the results above, for N=2n

with U any arbitrary invertible matrix of rank N and

Vol. 57, n° 2-1992.
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where the matrices A and B, of rank n = N/2, have the form

wth b, c and the n parameters aj real but otherwise arbitrary.
It is left for the diligent reader to exhibit explicit examples in the other

cases.

6. EXPLICIT SOLUTION IN THE À = 0 CASE:
OUTCOME OF THE SCATTERING PROCESS

The treatment given in the preceding Section remains applicable in the
À = 0 case, with obvious modifications: for instance (5 . 5 c), for ~=0, reads

In this case the motion is, of course, unbounded; and, for both systems
( 1. 4) and ( 1. 5) (but, in the latter case, only if there occurs no collapse),
there holds the following

THEOREM 6.1:

We omit an explicit proof of this result, since it is a straightforward
consequence, via the "duplication" idea, of the analogous result for the
prototype model; a result that was first proven, in the quantal 3-body
case, by C. Marchioro [ 10], and was then extended to the quantal n-body
case in [ 1 ], and to the classical case in [2].
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