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Recurrent versus diffusive dynamics
for a kicked quantum oscillator
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Henri Poincaré,
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ABSTRACT. - We study the long time behavior of a quantum oscillator
driven by sequences of kicks at integer times. These kicks have constant
size, but signs alternating in an aperiodic way, distributed either randomly
or along suitable "substitution sequences" such as the Thue-Morse or the
Rudin-Shapiro sequences. We show a "typical" diffusive energy growth
in time connected with the espace to infinity of the corresponding classical
trajectories. However this growth can depend in a subtle way on the
frequency of the unperturbed oscillator; in particular, suitable resonant
frequencies induce a partly recurrent behavior in the quantum as well as
classical evolution. In the Thue-Morse case, this recurrent behavior is

explicitely manifested in the calculus of the quantum autocorrelation
measure, which splits into pure point and singular continuous parts.
Furthermore the singular continuous part is directly related to the singular
continuous correlation measure of the Thue-Morse sequence itself. There-
fore we think this simple model provides a good scenario of a "stochastic
long time quantum behavior". This study is an extension of my previous
work on a kicked quantum 2-level system, to a quantum system with
infinitely many energy levels.

RESUME. 2014 On etudie Ie comportement asymptotique en temps d’un
oscillateur quantique convenablement pulse en temps aux instants entiers.
La taille de ces pulsations est constante, mais leur signe alterne d’une
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68 M. COMBESCURE

maniere aperiodique, etant distribue aleatoirement ou suivant des « suites
de substitution » telles que les suites de Thue-Morse ou de Rudin-Shapiro.
On montre que « typiquement » 1’energie croit en temps selon la fuite a
l’infini des trajectoires classiques. Cependant cette croissance peut dependre
d’une maniere subtile de la frequence de l’oscillateur non perturbe; en
particulier certaines frequences resonantes induisent un comportement
partiellement recurrent dans 1’evolution quantique aussi bien que classique.
Dans Ie cas de la suite de Thue-Morse, ce comportement recurrent est
manifesté explicitement dans 1’expression de la mesure d’autocorrelation
quantique qui se decompose en une partie purement ponctuelle et une
partie continue-singuliere. De plus la partie continue-singuliere est directe-
ment reliee a la mesure de correlation continue-singuliere de la suite de
Thue-Morse elle-meme. C’est pourquoi nous pensons qu’un tel modèle

simple fournit un bon scenario d’un « comportement stochastique asymto-
tique en temps » pour 1’evolution quantique. Cette etude est une extension
de mon precedent travail sur un systeme quantique « a 2 niveaux » pulse
en temps, a un systeme quantique « a une infinite de niveaux ».

1. INTRODUCTION

The study of the long time behavior of both classical and quantum
systems subjected to time-dependent Hamiltonians has received recently
an increasing attention. The first reason is that a wide variety of micro-
scopic systems governed by such Hamiltonians seems to exhibit some kind
of chaotic long time behavior, namely an irregular diffusive behavior in
phase space, or momentum space, and strong decorrelations in time ([ 1 ]-
[5]). The second reason, which partly overlaps with the first, is the desire
to investigate which kind of mechanism in both classical and quantum
dynamics of these systems could be responsible for this chaotic long-time
behavior. In fact while a precise mathematical definition is attached to
the "classical chaos" [6], no similar notions in quantum mechanics are
available to describe such irregular long-time behaviors. More seriously,
a number of numerical and theoretical studies on periodically driven
Hamiltonians have exhibited the so-called "quantum suppression of classi-
cal chaos", namely the quantum long-time behavior appears to be strongly
recurrent although the corresponding classical dynamics is perfectly chaotic

de l’Institut Poincaré - Physique theorique



69RECURRENT VERSUS DIFFUSIVE DYNAMICS

for the same parameter values ([7]-[9]). Although some particular time-
periodic quantum models, studied both rigorously and numerically exhibit
an irregular diffusive behavior in momentum space ([ 10], [30]), it is gen-
erally believed that periodically driven quantum systems are much more
stable than their classical counterparts. However it is expected that some
randomness in the time-dependent driving force destroys the quantum
interference effects which enforce stability in the time-periodic case. This
was actually exhibited by I. Guarneri [11] for a "randomly kicked quantum
rotator". But pure randomness in the time dependent driving is an extreme
case which can seem too wild. Halfway between the purely periodic
and the purely random cases are several more or less disordered time-
dependences such as

(i ) the quasiperiodic case
(ii ) the case of "deterministic disorder" induced by suitable substitution

sequences or automata [12]
(iii ) the case where the time-dependence arises from some particular

stochastic process. One may then ask how the type of disorder contained
in the driving term manifests itself both in the classical and quantum time
evolution of the system.
The case (i ) of a quasiperiodic driving was considered in several papers

([13]-[[17]). In particular Luck, Orland and Smilansky [18] see also [19])
have considered a quantum two-level system perturbed quasiperiodically
via the Fibonacci sequence; their approach provides analytical and numeri-
cal evidence that the quantum evolution is not quasiperiodic but exhibits
some intermediate kind of behavior between quasiperiodic and random.
The case (ii) of more general substitution sequences which are no longer
quasiperiodic, as for example the Thue-Morse sequence, has been treated
by myself in reference [20] again in the particular case of a quantum two
level system. Here, the self-similarity of the substitution sequence governing
the driving in time is shown to induce a quantum evolution which can be
both recurrent and diffusive. Furthermore, the diffusive part of the quan-
tum evolution is explicitely calculated, for a non-trivial (but thin) set of
parameters and is shown to be directly related to the (singular continuous)
correlation measure of the Thue-Morse sequence.
The general case (iii) where the time-dependent driving arises from a

given stochastic process has been considered in reference [21] for the
particular case of classical and quantum driven oscillators. This approach
goes back to the work of Hagedorn, Loss and Slawny [22] where only the
time-periodic and the purely random cases were treated. In reference [21],
the following remarkable features are demonstrated:
- the classical and quantum dynamics can be treated on an equal

footing
- varying the degree of randomness of the driving stochastic process

provides very different dynamical responses; in particular, the asymptotic

Vol. 57, n° 1-1992.



70 M. COMBESCURE

energy growth is precisely related to the ergodic properties of the driving
process.
- however a diffusive energy growth is typical provided the autocorrel-

ation function of the process decays fast enough.
In this paper, we consider classical and quantum oscillators driven by a

sequence of kicks distributed along a deterministic substitution sequence
like the well known Fibonacci, Thue-Morse, or Rudin-Shapiro sequences.
In these simple systems, we show how the deterministic disorder of these
sequences manifests itself in both the classical and the quantum long-time
behavior, in particular in the quantum autocorrelation measure. Thus it
is an extension of our previous study of reference [20], to a system with
an infinity of energy levels.
The paper is organized as follows:
In section 2 we compute explicitly the classical and quantum time

evolution of the system described by Hamiltonian (2.1, 2). This part is

strongly related to a similar study performed by Bunimovich et al. in

reference [21] where the (less singular) driving F (t) originates from suitable
stochastic processes. In section 3, we show the typical diffusive growth of
the energy of the oscillators, for various sequences (either random, or
deterministic substitution sequences), and we explicitly calculate the quan-
tum autocorrelation function C (n). For suitable resonant frequencies, we
show that C (n) splits into a purely recurrent and a purely diffusive part.
In section 4, we summarize the main results of this paper in the form of
concluding remarks.

2. THE CLASSICAL AND QUANTUM DYNAMICS

Given co and ~&#x3E;0, and F being a piecewise continuous real function,
we consider a system governed by the following Hamiltonian

Below, we shall extend this approach to the case of distributional F of
the form

where is a deterministic (or random) sequence taking values in

~ -1, + 1 }.

de l’Institut Poincaré - Physique theorique



71RECURRENT VERSUS DIFFUSIVE DYNAMICS

In the piecewise continuous case, it is easy to see that any classical

trajectory for Hamiltonian (2.1) satisfies

where

and

Therefore the trajectories in phase space are continous with piecewise
continuous derivatives. We now turn to the quantum evolution problem
in the Hilbert space H = L2 (!R). We start with simple lemmas:

as operators acting on the form domain of Hw.

This is a standard result for quantum harmonic oscillators.
.

LEMMA 2. - Let F be a piecewise continuous real function, and let

cp (HO»). Then the time-dependent Hamiltonian (2 .1) is essentially self-
adjoint on D (HO») for any t, and admits a unitary evolution operator U (t, s)
satisfying

(i) U (t, s) cp (HO») (any t and s)
(ii) U (t, s) cp admits derivatives from the right and from the left for

any t, which satisfy

(iii) U (t, 
Proo, f : - (i ) and (ii ) are easy consequences of a general result of

Kato [23]. To prove (iii), it is enough to note that the time-dependent
Hamiltonian

Vol. 57, n° 1-1992.
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equals ~, F (t) x sin due to lemma I; therefore it is essen-

tially self-adjoint on D (Hw) and admits a unitary evolution operator

satisfying statements analogous to (i ) and (ii ). It follows that
U(t, s) eisH03C9 satisfies (i ) and (ii ), which completes the proof.
THEOREM 1. - ~et F (t) be a piecewise eontinuous real function, and zl

and z2 be given by (2 . 5). Define

Then for any cp (HJ we have:

The proof is elementary, and left to the reader.
We now want to show that the classical (2.3) and quantum (2.8)

dynamical results extend to distributional F of the form (2 . 2). For such a
"kicking force", the classical momenta are expected to be no longer
continuous, but to have jumps at integer times. The jump of the momen-
tum at time n equals - Therefore, if xn and pn denote respectively the
position and momentum just after the n-th kick, they obey the recurrence
formula:

whose solution is

But (2.10) can be rewritten as

Annales de Henri Poincaré - Physique theorique
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n n

where zl = ~, ~ Ep sin rop and z2 = - ~, Z Ep cos are nothing but
1 1

equation (2 . 5) where and t ~ n (from above). Furthermore, if

n~tn + 1, the classical evolution from time n to time t is nothing but
the rotation therefore:

because R~ (t - n) R~ (n) = R~ (t). This proves that the classical trajectory
in this case is still given by equations (2. 3)-(2. 5).
We now turn to the quantum evolution problem in the case (2.2).

Using approximants of the ö-pulses, equation (2. 8) holds true for the
quantum evolution UE (t, s) with regularized F£ instead of F. But it has
been shown rigorously (see ref. [24]) that the limit sB0 can be taken in
(2 . 8) in the strong convergence sense. Since for fixed s and t, z(~)i (s, t)
converges to t) as sB0, and since translations in position and in
momentum space are continuous to .Yf=L2(~), s)
cp converges in ~f to U (t, as sB0.

In particular,

and therefore

which proves that lim as expected. Thus we have:

THEOREM 2. - Let F (t) be given by (2 . 2), for an arbitrary real sequence
and , a, P, y be given by (2.5)-(2.7). Then for any (HJ,

equation (2. 8) holds true for the quantum evolution.
The Hamiltonian (2 .1 ) being j time-dependent, there " is no conserved

energy. However we can explicitely study how the energy of the oscillator

varies in time, either along the classical trajectory (2. 5), or along the
quantum time evolution, pt (resp. qt) being in the last case the Heisenberg
observables U(~0)*~U(~0) [resp. U (t, 0)* U (t, 0)] averaged over a

given initial state B)/. This has been done in reference [21] ] in the general

Vol. 57, n° 1-1992.
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case where F (t) is given by a stationary process with given invariant
measure.

COROLLARY 3. - Let EQ (t, "’) =  U (t, 0) ~, Hoo U (t, 0) ’" &#x3E; be the quan-
tum energy of the oscillator at time t (for the initial state "’), Then if F (t)
is as in Theorems 1 or 2 and is any normalized eigenstate of Hoo, we
have:

where

with z~ (s, t) given by (2 . 5).

Proof. - Using (2.8) and the fact that 03C8 is an eigenstate of Hw [so
that (resp. is orthogonal to B)/] it is easy to see that:

and similarly

Thus

due to (2 . 6) and unitarity of the matrix Roo (t).

Remark 1. - Formula (2 . 13) for the quantum energy can be compared
to a similar calculus for the classical oscillator energy, which is, due to

(2 . 3):

and which in general differs from

because of the cross-terms. In the quantum case, the cross-terms disappear
when we choose W as an eigenstate of but they do not in general.
However, the long time behaviors of both E~. (t) and EQ (t, w) are essentially
the same.

We now turn to the quantum "return probability at time t" for initial
state B)/, defined as:

Annales de l’Institut Henri Poincaré - Physique theorique
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Then:

THEOREM 3. - For any eigenstate 03C8m of H03C9 belonging to the eigenvalue

(m+1 2) co, we have:

where Lm are Laguerre polynomials [25] and z (o, t) is given by (2 . 14).

Proof:

B U (t, 0) ‘E’m &#x3E; = e it 0) (m+(1/2))-iy (0, t) / Wm, eix03B2 (0, t) e - ipa. (0, 

Now the result follows from lemma 3 below, and from the fact that

03C9-1 a (o, t) 03B2 (o, t) = 2 ’Y (o, t), and 03B12 + 03B22 = z (o, t)| 2.
LEMMA 3:

Proof:

Hm being a Hermite polynomial, and the normalization constant

(so that the L2 norm of is 1). Therefore

(see [25])
Therefore, the long-time behavior of z (o, ~ is a central tool m the

study of the long-time quantum behavior. It was studied precisely in

Vol. 57, n° 1-1992.
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reference [21] in the case where the driving term F (t) arises from a station-
ary process ~t (i. e. F {t) = f {~t)), with measurer (for example F (t) _ ~,
cos {S~ t + cp) with p a random variable uniformly distributed in [0, 27r]).

t) ~2 ~~ is related to the correlation function of the process
~f (~t) f (~o) B? and the resulting growth when 1 ~ oo was studied preci-
sely for varying degrees of randomness of the process Çw

In the next section, we study the long time behavior of 1 z (0, t) ~ 2 in the
case (2 . 2) where F (t) is a sequence of "kicks" in time distributed along a
sequence En which is either
- independent identically distributed random variable
- or a deterministic binary sequence of + 1 and -1 given by a

substitution rule, like for example the Thue-Morse or Rudin-Shapiro
sequence (see [12]).

3. RECURRENT VERSUS DIFFUSIVE DYNAMICS
FOR THE KICKED SYSTEM (2.1-2)

Since the discrete kicks only occur at integer times, we shall now
concentrate on z(0, n) given by (2 . 5, 2 . 14) and on U (n, 0) Bf1 for a given
initial quantum state Bf1, where In particular we shall be interested
in the following limit

which we denote by C,~ (n) when it can be shown to exist, and which we
call the "quantum autocorrelation function" at time n. If it exists, it

obviously satisfies

and it is therefore the Fourier transform of a positive measure on TT,
called the "quantum autocorrelation measure":

Note that for the Hamiltonian (2.1-2) in the time-periodic case

(i. e. d n), is nothing but the spectral measure (in the
stated) of the Floquet operator U(1,0)=U. Namely in that case

U(p, so that exists and equals

Annales de l’Institut Henri Poincaré - Physique theorique
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by the spectral theorem. Therefore when studying the quantum long time
behavior, the analog in the case of aperiodic sequences of the spectral
study of the Floquet operator, is the study of the continuous or pure
point nature of the "quantum autocorrelation measure". The first result
in this direction is the following:

THEOREM 4. - Let (En)n be the Thue-Morse sequence of + 1 and -1
defined as follows:

and let = ~ f~. Assume ’ that ro is such that the base-2 expansion
’

Then the following properties hold:
(i) and eigenstate ofH:

(ii ) The quantum autocorrelation function defined

by (3.1) for any eigenstate of Hro exists and satisfies (3 . 3) with

v (À) being the weak star limit as N ~ 00 of the Riesz product

Proof - Let z (s, t) be given by equations (2 . 5) and o (2 . 14) . Then for

But, as a property of the Thue-Morse sequence [12],

so that for any pE ~J:

Vol. 57, n° 1-1992.
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and therefore equals the Riesz product

Since by definition of the integer n [see (3.5)]

we conclude from (3 . 11 ) that

Then, since zl (resp. z2) is the real part (resp. imaginary part) of z, we
immediately get from Lemma 2 (iii ) that

for any eigenstate of H03C9 of eigenvalue (m+(1/2))03C9). Moreover, for any
integers p and and any q =1, ... 2p, the Thue-Morse sequence
satisfies (see [12]):

so that, similarly to (3 . 11 )

Therefore, due to (3 . 13), we conclude that

which implies [similarly to (3 . 15)]

This completes the proof of part (i ) of Theorem 4.
The proof of part (ii) is very similar to that of Theorem 1 in

reference [20]: Denote by V (t, 0) the evolution operator for Hamiltonian

[recall that U (t, 0) is the evolution operator for H(/)=H~+~F(~ so
that the "kicks" in H’ (t) and H (t) have opposite sign]. Then, due to the
self-similarity of the Thue-Morse sequence:

for n defined by (3 . 5) and ~=0,1, ... 2n -1, and any which can
be rewritten as

l’Institut Poincaré - Physique theorique
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Therefore, defining

we get (using (3 .18)):

Using Lemma 5 of reference [20], (3 . 21 ) allows a complete calculus of the
quantum autocorelation measure:

The scalar products in (3 . 22) can be calculated using (3 . 21 ); now, using
the fact that Ep has mean zero, so that the cross-terms ( ~’m, I&#x3E;m&#x3E; do not
contribute, we obtain:

where

But it is known that (3 . 24), which is the correlation function of the Thue-
Morse sequence, is the Fourier transform of v(~) (in the distributional
sense), so that the result follows with

Vol. 57, n° 1-1992.
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and aq solution of the system of 2n equations of 2n unknown variables:

(For further details, we refer to [20], Lemma 5).
Remark 2. - In reference [20], we obtained a similar result for the

quantum autocorrelation measure of a two-level system with "kicks" in
time modulated along the Thue-Morse sequence. The set of

parameters (E, À) for which it held was a non-trivial but thin set described
in [20, section 3]. Here we get a similar result for a quantum system with
an "infinite number of levels", with no conditions on the size ~, 
kicks, and for all dyadic (which are dense in For these values of
the oscillator’s frequency, the quantum autocorrelation function splits into
a purely recurrent and a purely diffusive part. Furthermore, the way it

diffuses is via a well-known singular continuous measure (the Riesz meas-
ure). Therefore it seems to be a good candidate for what could be called
a "chaotic long-time quantum behavior".

Before giving further results for non-dyadic frequencies and for
other substitution sequences (En), we treat the simple case where En are
independent identically distributed random variables (i.i.d.r.v.) taking
values + 1 or -1 with equal probability 1 /2.

LEMMA 4. - distributed along a probability measure Jl,

with ~ = 0 and = b &#x3E; 0.

(i) Then we have:

i. e. the mean classical and quantum energies of the oscillator increase

linearly in time.

(ii) Assume further that d  = 1[03B4(~ + 1 + S (s - 1)] dE (i. e. that E takes( ) .f ~ 
2 

~ ( ) ( )~ (

values + 1_or -1 with equal probability 1 /2). Then the random variables
zi (o, n)/, Jn (i =1, or 2) converge in distribution to a standard gaussian
variable.

Proof - (i ) From (2 . 13) and remark 1, it is enough to calculate

 I z (o, n) 12 &#x3E;~ (because all cross-terms disappear as a consequence of the
parity of the probability measure But

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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because ( Ep e~ ~ =  Ep B ( Ep. B = 0 
(ii ) is an extension to the present situation of a general central limit

theorem established in reference [21]: It is enough to show that the charac-
teristic function

We give the proof for /== 1 (the case i = 2 being similar).

Therefore

which completes the proof, with d= 2/~,2.
We also have an "almost sure result" [with respect to the probability

distribution of sequence (En)] for the growth at infinity of EQ (n, w) and
Ee (n).

THEOREM 5. - Let (En) be i.i.d.r.v. of values + 1 or -1 with equal
probability 1 /2. Then we have for any quantum state ~ in ~ and some

positive constant C:

almost surely.

Proof - It follows easily from the well known "law of iterated logar-
ithm" (see [26-28]), which in the present case 

" implies, for any fixed co:

Vol. 57, n° 1-1992.
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almost surely (and similarly for cos instead of sin 

Remark 3. - We can compare Theorem 5 with a similar problem
treated in reference [22], namely the quantum dynamics for

where for k~tk+ 1, (any and where 03C9k are i.i.d. random
variables with probability distribution ~. It is shown in [22] that, under
some "non-triviality condition", for any initial state W in Schwartz space,
the following holds:

(i ) w) grows exponentially in t,
(ii) (t) decays faster than any inverse power of t as ( t -~ oo, almost

surely.
Therefore, the quantum dynamics for (3 .25) was argued to be similar to
that of states from the "transient absolutely continuous subspace" for
time-independent Hamiltonians: in that sense, the quantum motion for
(3 . 25) is said to be "almost surely non-stochastic" as t ~ oo .
On the contrary, in the situation of Theorem 5, the growth in energy is

(almost surely) linear (up to logarithmic corrections), which is usually
referred to as a "diffusive growth". Furthermore, the expression 
in Theorem 3 (namely the return probability to state B)/ at time n) shows
wild oscillations between 0 and 1 as almost surely, again as a
consequence of the "law of iterated logarithm". Thus, in deep contrast
with the "almost sure non-stochasticity" of system (3.25), the random
problem of Theorem 5 seems to exhibit an "almost sure stochastic quan-
tum long-time behavior", with non trivial recurrences in time, and a
diffusive growth of energy.
We now come back to the case of deterministic binary sequences (En),

generated for ~ 0 by a substitution rule, and completed for non-positive
integers, by the rule We have seen that a central ingredient for
the long-time classical or quantum dynamics is the behavior of

as n goes to infinity. However it can be a very wild limit, connected with
the correlation measure of the sequence as we shall see. In particular,
we have already seen that for 03C9 a dyadic number, the limit (3 . 26) vanishes
when taken along the subsequence (some depending on co).
We shall consider the cases of the Thue-Morse sequence (in the general
non dyadic case) and of the Rudin-Shapiro sequence (see [12]).

l’Institut Henri Poincaré - Physique theorique
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THEOREM 6. - Let(En) be, as in Theorem 4, the Thue-Morse sequence,
and , let v (x) be its correlation measure , defined by (3 . 8). Define rLl &#x3E; 0 by

Then al ~ 1, and the following properties hold along the subsequence of
times Nn = 2n (n E fBJ): 

.

almost everywhere in 03C9 (with respect to the Lebesgue measure).
(iii) Given any interval Ie [0,1], let v (I) denote the Riesz measure of the

interval I i. e.

Then we have:

Proo, f : - From (3 . 36) and (3 . 12), we have:

where Pn (x) on T is defined by

Therefore

Now (i ) and (ii ) are easy consequences of the Birkhoff ergodic theorem.
Namely let for a parameter ~e[0,1] ]

Vol. 57, n° 1-1992.
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be a one parameter family of ergodic measures on T [with respect to
T~-=2~(modl)], which reduces to the Riesz measure v (resp. the
Lebesgue measure) for t =1 (resp. ~=0). Therefore for any ~e[0,1] ]

converges as n ~ oo to

Log 03B1t = 03BDt (x) dx Log ( 1- cos 21t x) vt-almost everywhere

Now, it is enough to show that Log al &#x3E;__ o, and Log oco = - Log 2.

We split the integration interval in and and in the
Jo Jl/2

second, we make the change of variables ~=~-+1/2, so that
00

n (1 - cos 2~ 2 7i~-) is unchanged, and cos 2 7~ so that:

Now it is easy to see that the integrand is non-negative, and therefore
1. Now considered:

where

But, letting y’ = y + ~, we see that
2

l’Institut Henri Poincaré - Physique theorique
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and therefore

The proof of (iii) is an immediate consequence of (3.28), and of the fact
that the measure v (x) = w* lim has no point mass.

Remark 4. - (i ) The constant a 1 can be calculated numerically and
shown to be strictly above 1. Therefore Theorem 6 (i ) shows that, along
the sequence Nn of times, the energy increase is like N~ with

=1 + Log 03B11 Log 2 &#x3E; 1 at least for almost ever 03C9 with res ect to the RieszY = 1 + - &#x3E; 1, at least for (0 with respect to the Riesz

measure.

(ii ) However, part (ii ) of Theorem 6 just shows that, along the same
subsequence, the energy increase is below linear, almost every ~ with

respect to the Lebesgue measure. And of course we already know that
co) is exactly zero for all dyadic Furthermore we recover

the exact linear increase [Theorem 6 (iii )] when integrating over an interval
of values of o. This is not surprising since LlE (Nn, co) has a very weird
dependence on (0.
We now turn to the Rudin-Shapiro sequence (r n)n E  defined by

and we assume En = rn, and (~ef~) in order to have a biinfinite
sequence. Whereas the correlation measure of the Thue-Morse sequence
has been identified with the singular continuous Riesz measure, the correla-
tion measure of the Rudin-Shapiro sequence is nothing but the Lebesgue
measure (see [12]). This property makes the Rudin-Shapiro sequence, in
some sense, closer to the purely random case already considered. Again
we are interested in the quantum dynamical response for Hamiltonian
(2.1-2), in particular in terms of the long-time energy growth. The result
is as follows:

THEOREM 7. - Let En be the Rudin-Shapiro sequence (3 . 29) for 
and Then the energy co) defined by (2 . 13) satisfies

(i) 03C9) ~ 6 n any n E N,

(ii) Along the subsequence of times, we have, for any
interval I of Lebesgue length I I I:
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Proof. - (i) follows from an estimate obtained by Saffari ([31]):

Sup |ei03C9p~p|~6n for En the n-th term of the Rudin-Shapiro sequence.

(ii ) is the analog, for the Rudin-Shapiro sequence, of the corresponding
result of Theorem 6, (iii) for the Thue-Morse sequence. It is a simple
consequence of the fact that the correlation measure of the Rudin-Shapiro
sequence is the Lebesgue measure on T (see [12]).

4. CONCLUDING REMARKS

We have seen that perturbing a free oscillator of frequency co by aperi-
odic sequences of kicks in time with alternating signs produces a quantum
increase of energy exactly connected with the escape to infinity of the
classical trajectories in phase space.

In the purely random case (size of kicks are i.i.d. random variables),
this escape to infinity occurs via a "random walk like" process which
ensures, almost surely, a diffusive linear growth of energy. Furthermore,
the "return probability at time n " for quantum states wildly oscillates
when n becomes large (again almost surely) and therefore the quantum
long time behavior appears to be "almost surely stochastic".
The story seems to be much more involved in the case of deterministic

aperiodic sequences of kicks generated by a substitution rule (or automa-
ton). In this paper, we have considered the case of two substitution

sequences known as the Thue-Morse, and the Rudin-Shapiro sequences,
but the study seems to be generalizable to many other substitution

sequences, because there is already a large mathematical knowledge on
them. The long time quantum behavior is shown to depend weirdly on
the frequency co of the unperturbed oscillator. However, when integrating
over any interval of frequencies, we recover the linear diffusive energy
growth in time, at least over suitable subsequences of integer times. In
the Thue-Morse case, exploiting the self-similarity of the sequence, and
the structure of Riesz polynomials, we show that for all dyadic
frequencies co/2 7t, the quantum autocorrelation measure is an exact sum
of a purely recurrent term, and a purely diffusive term connected with the
(singular continuous) correlation measure of the sequence itself. But given
an arbitrary non-dyadic frequency, the energy growth can be anything
between 0 and t’’, where y is strictly above 1. We think that such aperiodic
substitution sequences provide a good scenario of what could be called a
"stochastic quantum long time behavior".
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