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ABSTRACT. - We obtain the Euler-Lagrange equations for higher order
graded Lagrangian densities. As in the first order case, some of these

equations are non standard and they can be interpreted as constraints. If
the graded Lagrangian density comes from a Berezinian Lagrangian den-
sity we obtain then the standard Euler-Lagrange equations on the graded
ring for the Berezinian Lagrangian densities with both even and odd
coordinates.
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equations.

RESUME. 2014 Les equations d’Euler-Lagrange pour les densites Lagran-
giennes graduees d’ordre superieur sont obtenues. Aussi dans ce cas-ci,
quelques-unes d’entre elles ne sont pas standard et on peut bien les

interpreter comme des contraintes. Si Ie Lagrangien provient d’une densite
Lagrangienne Berezinienne alors on obtient les equations d’Euler-

Lagrange, pour la densite Lagrangienne Berezinienne, standard dans 1’an-
neau gradue, avec les coordonnées paires et impaires.
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4 J. MONTERDE

INTRODUCTION

Dealing with graded manifolds one notes that there are two kinds of
integration: the graded integration, defined by means of the natural morph-
ism of a graded manifold [6], and the Berezin integration [7]. Each one
produces different variational problems.

In this paper we first deduce the variational equations for graded
Lagrangian densities of any order. The definitions of graded jet manifolds,
and of graded Lagrangian densities, and the deduction of the first order
variational equations can be found in [2], [3].
As it is well known, in classical variational calculus, it is equivalent to

take as algebra of variations the sub algebra of vertical vector fields or the
subalgebra that commutes with the subalgebra of horizontal vector fields.
The resulting variational equations are the same: the Euler-Lagrange
equations. However, in the graded case the situation is a little bit different.
Each sub algebra produces different sets of variational equations. To be
more precise, the second subalgebra gives more equations than the first
one. Therefore, we will take as algebra of variations the subalgebra of
prolongations of vertical vector fields.
The deduction of the variational equations is made by computing the

first variation of the functional defined by a graded Lagrangian density
with respect to a vertical vector field and removing the terms that are
total differentials. The equations that appear are equations on the ring of
differentiable functions of the underlying manifold, but not on the graded
ring.

Let us suppose that the variational problem is defined on the submersion
of graded manifolds p : (Y, B) -~ (X, A) with graded dimensions

dim (X, A)=(~, n) and dim (Y, 
The total number of equations for a general graded Lagrangian is

But if the order of the Lagrangian is rn then the number

of nontrivial equations is n
A subset of the variational equations can be seen as the image by the

natural morphism of the graded manifold (X, A) of the standard Euler-
Lagrange equations for the even coordinates. In [3], for first order graded
Lagrangians, the other equations are considered as previous constraints
and the authors give an example with physical meaning. We have thus
deduced here the whole set of constraints for a graded Lagrangian of
arbitrary order.

In the second part we define, following [4] and [5], the concept of
Berezinian Lagrangian density. The main fact of this part establishes the
local equivalence between graded and Berezinian variational problems
with respect to the algebra of prolongations of vertical graded vector

de Henri Poincaré - Physique theorique



5HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

fields. The Berezinian variational problems are defined by means of the
Berezin integral. The computation of such integral implies, as a first step,
the differentiation of the expression under the sign of the Berezin integral
with respect to all the odd variables. With variational problems, these
derivatives are transformed into total derivatives, and thus, r-order Berezi-
nian variational problems are equivalent to graded variational problems
of order r + n, where n is the odd dimension of the base manifold.

This is the reason why it is necessary to deal with graded Lagrangian
densities of arbitrary order: even for 0-order Berezinian Lagrangian densit-
ies, the equivalent graded Lagrangian densities are of order n.
When we compute the variational equations corresponding to graded

Lagrangian densities coming from Berezinian Lagrangian densities all the
(m 1 + n 1 ) 2n scalar equations can be expressed as m 1 + n 1 equations on the
graded ring, and these equations are the Euler-Lagrange equation for all
the variables, even and odd.

Finally, we study a curious example. It is possible to speak of variational
problems when the underlying manifolds are reduced to a point. In this
case, the local sections are determined by a set of real numbers and
thus the Euler-Lagrange equations become relations between those real
numbers.

1. PRELIMINARIES AND NOTATIONS

Let (X, A) be a graded manifold of graded dimension
dim (X, A) = (m, n) [6], in the following sense
- X is a ~ real manifold of dimension m.
- A is a sheaf of Z2 graded commutative algebras such that
( 1 ) there exists a surj ective sheaf morphism

often called the natural morphism,
(2) there exists an open covering {Ui}i~I of X and sheaf isomorphisms

Let p = (q, q*) : (Y, B) -~ (X, A) be a submersion of graded mani-
folds ([2], Def. 11 ) with graded dimensions and

Let us denote (~’==1, ... , m;

1=1, ..., n) the graded A-coordinates for the coordinate open (U, A (U)),
and ~~ (/= 1, ..., m 1; J =1, ..., n 1 ) the graded B-co ordi-
nates for the coordinate open (V, B (V)) with a suitable and

Vol. 57, n° 1-1992.



6 J. MONTERDE

with degrees

Let Jk (B/A) be the graded k-jet bundle of graded sections of p ([2],
Def. 17). Let us denote by Xk the base manifold and by ~k the graded
sheaf of rings of the graded manifold Let us consider the projec-
tions (see [2] for the definitions)

that satisfy the relations

By the very definition of a graded morphism, there are canonic projec-
tions between the base manifolds

satisfying the relations

and there are canonic projections between the graded sheafs of rings

with relations

Let Xoo be the projective or inverse limit of the projective system

The induced projections will be denoted by q~, k, q~.
Given an open subset U of let .9100 (D) be the inductive or direct

limit of the inductive system

The induced projections will be denoted by q~, k, q~.
Let Joo (B/A) _ (X 00 , .91(0) be the graded oo jet bundle of graded

sections of p [4]. The graded canonic projections are denoted by
p~, k= (q~, k~ q~, k) and p~ _ (q~~ q~)~

Annales de l’Institut Henri Poincare - Physique theorique



7HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

The description of all these projections above can be visualized in the
following diagram:

Let r (P) be the space of local sections of p. If

is a local section of p, then joo 
° 

(a) : (X, A) ~ 
° 

(B/A) is the limit of the
morphisms 

In order to denote the coordinate functions of JOO (B/A) we will need to
define two kinds of multiindexes. An even multiindex a will be an element
of i. e., a = (a 1, ..., with i =1, ..., m. We will call them
even multiindexes because they will only appear with derivatives with

m

respect to the even coordinates, {xi}. |03B1| stands for 03A3 03B1i, the length of
i= 1

a. Let us denote by 0 the even multiindex (0, 0, ..., 0).
For/eA(U), we set

An odd multiindex P will be an ordered subset of { 1, 2, ... , n }, i. e.,

1 _ ~ii  n, i = l, -.~. We will call them odd
multiindexes because it will only appear with derivatives with respect to
the odd coordinates, {~}. Let us denote by d (~i) the cardinal of P.
For/eA(U), we set

Let W c q ~ 1 (U) be an open subset of The graded coordinates for
(W, .9100 (W)), suitable reorganized, are

Vol. 57, n° 1-1992.



8 J. MONTERDE

where a is an even multi index and P is an odd one, with degrees

and where the last coordinate functions are defined by

Remarks:

(1) We will identify j~ ~ (resp. t ~, ø) with y’ (resp. tJ).
(2) Unless otherwise stated, subindexes will denote derivatives.

2. ALGEBRAS OF VECTOR FIELDS ON (B/A)

A graded vector field on a graded manifold (X, A) is an ~-derivation
of the sheaf A, i. e., an element of Der~ (A).
A vector field Z on (Y, B) is said to be p-projectable if there exists a

vector field p (Z) on (X, A) such that Z ~ p* = p* ~ p (Z).

Horizontal vector fields [4]

Let Z be a vector field on the graded manifold (X, A). We define the
total or horizontal graded lifting ZH of Z as the vector field on JOO (B/A)
such that for every open subset W for every f ~ A~ (W), and every
local section 03C3 = (03C4, ’t*) : (U, A(U))-.(V, B (V)) of p, with suitable open
subsets U, V such that j~ (’t)* ( f ) E A (U), we have

Note that Z" is a p~-projectable vector field with p~ (ZH)=Z.
A graded vector field on (B/A), W, is called horizontal if there

exists a graded vector field, Z, on (X, A) such that W=Z". Note that
Z~]=[Z~ Thus we have a sub algebra of vector fields, the subal-

gebra of horizontal vector fields.
Let us take graded A-coordinates for the coordinate open

(U, A (U)) and graded B-coordinates {xi, yj, sI, tJ} for (V, B (V)) such

Annales de l’Institut Henri Poincaré - Physique theorique



9HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

Let us denote the horizontal graded liftings of {~ ~xi, ~ ~sI } by

d d . Their local expression are given by

where the following conventions are used: If oc = (oc ~, ..., then (x+ i is
the even multiindex (a 1, ..., 1, ..., Note that i is a Latin index.

In the second formula, the index ? runs over the subsets to which I
does not belong. If 03B2={03B2103B22...03B21} and I~03B2 then 03B2+I is the
odd multiindex {03B21  03B22  ’ - ’  P&#x26;  I  03B2k+1  ’ ’ ’  03B2l}, i.e., the ordered
subset P U {I}. Thus, sg (P, I) = k.

Vertical vector fields

A graded vector field Z on (Y, B) is said to be vertical if for allf E A (U)
we have that Z(~*(/))=0. Analogously, a graded vector field Z on

is said to be vertical if for all we have that

Z(~(/))=0. The bracket of two vertical vector fields is another vertical
vector field. Then we can define the subalgebra of vertical vector fields.

Obviously, we have that if Z is projectable vector field on JOO (B/A)
then Z -p~, (Z)~ is a vertical vector field, an thus Z can be uniquely
decomposed as a sum of a horizontal vector field and a vertical vector
field. This spliting is only possible in (B/A).

Graded infinitesimal contact transformations [2]

In the classical calculus of variations the elements of the subalgebra of
infinitesimal contact transformations play the role of tangent vectors of
the allowed variations [8]. There are other characterizations of this subalge-
bra ; for oo-jets, it is possible to define it as the subalgebra that commutes
with the subalgebra of horizontal vector fields. We will generalize this
construction for graded manifolds.

Let ~ be the subalgebra of vector fields on that commutes
with the subalgebra of horizontal graded vector fields. That is, W belongs
to ~ if and only if V Z horizontal graded vector field we have that [W, Z]
is again a horizontal graded vector field. It is not hard to see that if the

Vol. 57, n° 1-1992.



10 J. MONTERDE

local expression of W is

then the following recurrence relations hold:

These equations are useful to define the following lifting. For every
graded vector field Z on (Y, B) there exists a unique graded infinitesimal
contact transformation, on (B/A) which projects onto Z. is
called the prolongation of Z to JOO (B/A).
We have the following

PROPOSITION 2. 1 [4]. - Let W be a vector field on (X, A) and let Z be a
p-projectable vector field on (Y, B). Then W~]=[~(Z), Wf.

In the deduction of the Euler-Lagrange equations for the standard
variational calculus on manifolds, the subalgebra of variations is the

subalgebra of prolongations of vertical vector fields, and it is well known
that if the choice of the subalgebra of variations is the sub algebra that
commutes with the subalgebra of horizontal vector fields, then the resulting
equations are the same. It is equivalent to take any of the two subalgebras.
But this is not the case for graded manifolds. To enlarge the subalgebra
of vertical vector fields with the horizontal vector fields produce new
equations. (See remark 5 of theorem 4. 2.) Then we will restrict the subal-
gebra of variations to just that of vertical vector fields.

3. DIFFERENTIAL FORMS ON (B/A)

Let be the space of differential r-forms on We put
to denote the module of on that are k

times horizontal and l times vertical, i. e., such that they vanish when
acting on more than l vertical vector fields or more than k horizontal
vector fields.
Let d be the exterior differentiation ([6], pruposition 4.2.3) and

let be the horizontal differential and let

Annales de l’Institut Henri Poincaré - Physique theorique



11HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

a : H~+ 1 (B/A) be the vertical differential. We have

We can make a local refinement of the bigraduation. Let (W, A~ (W))
be a coordinate open set of J °° (B/A). Since 2014, ~} are a basis ofi’ ~J
vector fields, then we can define as the submodule of differential
forms of H p + q (W) such that they vanish when acting on more than /?
vector fields of { ~} or more than vector fields of { 2014 }.

~J (~’j
Therefore

with projections ~cp, q : H~ (W) -~ Hp, q (W). Considering the action of D on
a fixed H~ ~ (W), we define and D1 =D-Do.

If Z is a vector field on of degree then the insertion
operator i (Z), defined in [6], prop. 4 . 2 . 3, is a derivation of bidegree
( - 1, I Z I ).
We can compute, by means of the insertion operator with respect to

suitable vector fields, the following local expressions

Let us fix a global section 11 : ~ (X) -~ A (X) of the natural morphism,
A(X)-~~~(X) [1]. A coordinate system, on an open subset
(U, A (U)), is said to be compatible with the section 11 if there is a

coordinate on the open subset U, such that 
The section 11 induces a morphism A* Q (X) -~ Q (X, A) and thus, every

ordinary differential form can be considered as a graded differential form.
Let us assume that X is oriented by a volume element T e A"" Q (X) and let
us also denote by t the induced graded m-form on A) and the
induced graded m-form on by the map 

DEFINITION [3]. - A graded Lagrangian density on the submersion p is
an element such that there exists 

Locally, if (W, .9100 (W)) is a coordinate open of (B/A), a graded
Lagrangian density is written as

thus À E H~, 0 ~w~’

Vol. 57, n° 1-1992.



12 J. MONTERDE

If (X, A) is the standard linear graded manifold 
and cr is a local section then

by the definition of the natural morphism [6], where Lø (x) is the first or
independent coefficient of the development 
as products of the sJ’s, ¿ Lp (x) sl3.

4. EULER-LAGRANGE EQUATIONS FOR GRADED
LAGRANGIAN DENSITIES

Let us state the following variational principle:
A local section of p, cr : (X, A) -~ (Y, B) is a graded critical section for

the graded variational problem defined by the graded Lagrangian density
À if for every p-projectable vertical vector field Z on (Y, B) whose support
has compact image on the domain of a, we have that

We will need the following

LEMMA 4 . 1. - Let (W, .9100 (W)) be a coordinate open of JOO (B/A). Let
S2 E Hm_ 1, o (W) an let Z be a vertical vector field on o (W),
B (p~, o (W))), then

Proof - Both expressions are elements of H0m, o (W), it is thus enough
to check that they agree acting on {d dx1,..., 20142014 }.

Now it is easy to see that this expression is the same as

NOTATION. - In order to avoid o irrelevant repetitions, we will denote

by z either the variable y or t. Thus za, p will be either ya, ~ or t, p. The

Annales de l’Institut Henri Poincaré - Physique - theorique



13HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

only difference between y and t is the parity, thus, sg(z) will denote the
parity of the variable, i. e., if z = y and sg (z) = 1 if z = t.
The following theorem presents the deduction of the variational equa-

tions associated to the variational problem defined by a graded Lagrangian
density. The proof follows closely the methods of [9] in the sense that we
look for a local source form defined by the Lagrangian.

THEOREM 4 . 2. - A local section of p, 03C3: (X, A) ~ (Y, B) is a graded
critical section for the graded variational problem defined by the Lagrangian
Â only each regular coordinate open ( W, ~ °° (W)) (B/A)
such that

the following $ equations hold

Proof - Let (U, A (U)) be a coordinate open set such that

(U)-
Let us suppose that Z is a vertical vector field on (Y, B) such that

(a)* (ðU) 
= o. Then i (ZOO) À = 0, and thus

In the coordinate open (W)) we have

Let us note that f(Z~)D~==0 because is vertical and 
Therefore

Vol. 57,n° 1-1992.



14 J. MONTERDE

We define two differential forms on and
as follows:

This form plays the role of source form in the statement of [9]. To
define the second one we need to make the following conventions:

If a &#x3E; QS is the even multiindex ... , am) and if 1 __ i _ m and
1 _ k _ ai then let be the even multiindex ..., k, 0, ..., 0).

where

Now, let us check that

To see this, let us compute, for each P and a &#x3E; 0, the partial term

where the following equation has been used

The term of the second sum with indexes ((i, k), A;aJ is the same, but
with opposite sign, as the term of the first sum with indexes (i, k + 1). The
term of the second sum with indexes ((i, im) is the same, but
with opposite sign, as the term of the first sum with indexes (i + 1, k =1 ).
The only terms that left are that of the second sum with index (m, 
and that of the first with index ( 1,1 ) .

Annales de l’Institut Henri Poincaré - Physique theorique



15HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

Thus, simplifying this equation we get, for each P, a &#x3E; QS,

We get thus the desired result, and therefore

But according to lemma 4.1 we have that

Let us compute the other term. If Z = Z’ 
a , 
+ J 

a 
thenLet us compute the other term. If Z = ZJ ---: + Z 2014 then

where Za 2014 2014 zj and the same for ZJ., 

Thus the integrand becomes

Let us suppose that ZJ = 0 and, given p fixed, /eA(U), then
therefore the integrand is f ~ (6) * ~ ~ , ~] ~ .

Since/is arbitrary we get the equation We can
deduce the other equation in a similar way, (6)* n]" = 0. N
Remarks. - ( 1 ) The deduction of these equations seems to consider the

coordinates y~, ~, t ~, ~ as fibre coordinates of a fibre bundle on X, and to
identify a)a Thus the deduction is just a copy, for each p,
of the classical deduction of the Euler-Lagrange equations.

(2) The total number of the variational equations for a general graded
Lagrangian is (m 1 + n 1 ) 2n. But if the order of the Lagrangian is rn then

the number of nontrivial equations is n

Vol. 57, n° 1-1992.



16 J. MONTERDE

(3) For first order graded Lagrangian densities, the equations agree
with equations of [3]. Indeed, if (U), where U is an open subset of
XB then the equations are:

For P such that ~(P)~2 the equations are trivial.
(4) In [3] this last set of equations are considered as previous constraints

and the authors give an example with physical meaning. With the equations
of the theorem we have now the whole set of constraints for a graded
Lagrangian of arbitrary order.

(5) If the sub algebra of variations chosen is the sub algebra that commu-
tes with the subalgebra of horizontal vector fields, then a new set of

equations appears:

This fact points out a difference with the classical variational calculus.
The decomposition of the part in Hm, o of 8À as the sum co + Do Q is, in

a certain sense, unique. For each coordinate open compatible with the
global section it is possible to state an analogous of
lemma 5.5, p. 560 of [9].

COROLLARY 4.3. - Let (W, ~°° (W)) be a coordinate open 
Let  be a differential form in Hm, 0 (W), then  can be uniquely written as
0 + Do Q where form in Hm, o (W) generated by

n ... /B ... 

5. BEREZINIAN LAGRANGIAN DENSITIES

Let us recall the intrinsic construction of the Berezinian shearf given
in [5]. The Berezinian sheaf can be globally described as follows: Let
(X, A) be a graded manifold of graded dimension (m, n) and let 

l’Institut Henri Poincaré - Physique theorique



17HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

be the sheaf of k-order differential operators of A. This sheaf has two
essentially different structures of A-module: The left structure is given by
( f . P) (g) = f . P (g), and the right structure is given by (P./)(g)=P(/.g)
(over every open subset). One has that are A-coordinates in an

open subset U c X, then pk (A (U)) is free with basis

for both structures of A-module.
Let Q~ be the module of m-forms on (X, A).
Let us consider the sheaf of m-form valued

k-order differential operators and for every open subset U c X, let Kn (U)
be the set of operators such that for every

with compact support, there exists an ordinary of

compact support, (o fulfilling ~co=P(/)". Hence Kn is a submodule of
pn (A, QD for its right structure and one obtains the following description
of the Berezinian sheaf (see [5] th. 2.2):

According to this description a local basis of PÃ (A) can be given
explicitly: are A-coordinates in an open subset U c X, then

where [ ] stands for the equivalence class modulo Kn.
Now the Berezin integral can be defined over the sections with compact

support of the Berezinian sheaf by means of the formula:

where X is assumed to be oriented and the right hand side integral is
taken with respect to this orientation.

If (X, A) is the standard linear graded manifold (~ (~m)(8)A ~n)
and f~C~ (Rm)~^Rn, then

Vol. 57, n° 1-1992.



18 J. MONTERDE

where f 1, 2, ..., n} is the last coefficient in the development f=03A3f03B2.s03B2 in
p

products of the sJ’s.
Let us remark that

Note that this definition is fully opposed to the definition of the graded
integral. The Berezinian integral is defined by means of the last (or higher)
coefficient of the development, instead of the graded integral, defined by
means of the first (or independent) coefficient.

Infinite order Berezinian sheaf

Let p : (Y, B) -~ (X, A) be a submersion of graded manifolds with graded
dimensions and Given
P E P k (A, let pH: .9100  H be k-order operator defined by

We will call PH the total or horizontal lifting of P. Let us denote by
H~) [resp. KHn (.9100)] the sheaf consisting of those operators
H~) that are horizontal liftings of operators [resp.

Kn (A)]. Then, the infinite order Berezinian sheaf is defined as

According to this description a local basis of (A (0) can be given
explicitly: If are the graded A-coordinates for the coordinate
open (U, A (U)), and {xi, yj, SI, are the graded B-coordinates for the
coordinate open (V, B (V)) with a suitable then if W is an

open subset of X~ such that W ~ q-~ 1 (U) we have

where ’ [ ] stands for the equivalence ’ class modulo 0 KHn.

DEFINITION. - A Berezinian Lagrangian density is an element

Let 03C3 : (X, A) ~ (Y, B) be a local section of p. Let us define

Note and that if then, by definition,
PEKn(A).

l’Institut Henri Poincaré - Physique theorique



19HIGHER ORDER GRADED AND BEREZINIAN LAGRANGIAN DENSITIES

We will need the following lemma that relates Lie derivatives with

differential operators of PH" (.9100, 
J

LEMMA 5.1. - Let Z be a vertical vector field on (Y, B) and let

PH E PH" (.9100, Then, as operators acting on .9100,

Proo, f : - The question is local and linear. Let us suppose that locally
P H is written as

such that |03B1|+d(03B2)=m and |03B3|+d(03B4)~n, where we identify g~A and
Then, for f~A~,

Note that by lemma 2.1, for vertical and homogeneous Z, we have

and also

Thus

Finally, for vertical Z, (g) = 0 because gEA, and thus

This lemma suggests to give the following definition of Lie derivative
of Berezinian Lagrangian densities with respect to the prolongations of
vertical vector fields.

DEFINITION. - Let Z be a vertical vector field on (Y, B) and let

[P H] . f E ~ °° (~l °° ) be a Berezinian Lagrangian density. The Lie derivative
of .fwith respect to Zoo is defined, for homogeneous P and Z, by

We can now define the Berezinian variational principle. A local section
(X, A) -~ (Y, B) is a Berezinian critical section for the functional

defined by the Berezinian Lagrangian density [P H] . f E ~ °° (~ °°) if for

every Z vertical vector field on (Y, B), whose support has compact image

Vol. 57, n° 1-1992.



20 J. MONTERDE

on the domain of or, we have that

Let (W, .9100 (W)) be a coordinate open of JOO (B/A) with coordinate
functions {xi, yj, si, 

If [P ~] . f E ~ °° (~ °° (W)) is a Berezinian Lagrangian density defined on
(W, .9100 (W)) then we can define the graded Lagrangian density

o(W)’ This association is, in a certain sense, unique. Two
graded Lagrangian densities are equivalent if they define the same func-
tional and the same graded variational problem. Let us suppose that

(W)) and that f~A~ (W), then the graded Lagrangian P"(/)
defines a trivial functional and a trivial graded variational problem. Indeed,
if 03C3 is a local section of p whose support has compact image on p~(W),
then

and, by definition of K (A), this expression is equal to d03C9 for an (m -1 )-
form, 00, on (X, A) whose support thas compact image on p~ (W). Then
the integral vanishes and the functional is trivial.
Note that if [PH].f is a k-order Berezinian Lagrangian density, then

P H ( f ) is an (n + k)-order graded Lagrangian density. The order grows as
many times as indicated by the odd dimension of the base manifold.

THEOREM 5.2 (Higher Order Comparison Theorem). - Let

(W, .9100 (W)) be a coordinate open of JOO (B/A) with coordinate functions
~ xi, y’, sI, and let [PH] (.9100 (W)) be a Berezinian Lagrangian
density defined on (W, .9100 (W)). Then, PH ( f ) ~ Hm, o (W) is a graded
Lagrangian density defined on (W, .9100 (W)) that defines an equivalent
variational problem because they have the same critical sections, i. e., a local
section 6 is a Berezinian critical seetion for the Berezinian variational

problem defined by and only if it is a graded critical section for
the graded variational problem defined by PH ( f ).

Moreover, if

then
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Proof. - By application of definitions and lemma 5 .1.

6. EULER-LAGRANGE EQUATIONS FOR THE BEREZINIAN
LAGRANGIAN DENSITIES

Let T the total odd multiindex T=={1,2,...,~}.
We will study the Euler-Lagrange equations of theorem 4 . 2 for the

graded Lagrangian densities that come from Berezinian Lagrangian densit-
ies, i. e., graded Lagrangian densities that locally are written as

for a suitable open subset or equivalently, that locally are written
as

where denotes the Lie derivative with respect to the vector field Z.
By corollary 4.3 we know that, in a coordinate open, can be

uniquely written as where (~)~o denotes the part in H,o
of dh,.

Let us denote by P the operator, defined in a coordinate open,

° ~ ~ ~ ° ~a~a~~ Then, ~ ~, is another graded Lagrangian density defined
in the same coordinate open, and by the corollary 4 . 3, (dP ~,)m, o can be
uniquely written as But, by definition of f!J, d~ ~, _ ~ da,,
and then (d~ ~,j~, o = (~ da,)m, is a form in the

image of Do because, by definition of P and Do, we have that
And now, by uniqueness, The coefficients

of such differential form will give the variational equations.
Let us note that the differential is D-closed.

Indeed D (~ ~’~) = D 1 (~ c~’~) and this form is a sum of terms like

By definition of, Thus, 
This property allows a kind of partial integration for the odd coor-

dinates.

Vol. 57, n° 1-1992.
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LEMMA 6 . 1. - Let E Hm, o. Then = 0 if and only if for each coordi-
nate open (W, .9100 (W)) in Joo (B/A) there exists a differential form

such that, in W, =P03B3, where P=Ld/dsI°...°Ld/dsn.
Let us suppose that Jl = ¿ dx1 A ... A dxm A ~zj03B1, Ø j03B1,03B2 . (Subin-

dexes of j03B1, (3 and 03B3j03B1 denotes components.)
Then

This expression is equal to zero if and only if, for all I and for all B
such that I E P

By induction, we can see that for all p

k 

( k- 

1)where if 03B2={03B21,...,

Thus, if we put 03B3j03B1 = j03B1, T, then it is easy to see that  = q; y. N
Let us apply this lemma to

As we have seen above, then, its coefficients satisfy the following
relations: the coefficients with 03B2T are horizontal derivatives, with respect

of the coefficient with P=T.

Let us remember that the variational equations of theorem 4. 2 for the
graded Lagrangian density are

Thus, substituting, we get
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By definition of the horizontal lift, we have that

But these scalar equations are equivalents to the following equations in
the graded ring

Then the system of scalar equations of theorem 4 . 2 has
been reduced to just m 1 + n 1 equations, one for each fibre coordinate, but,
the equations are now defined on the graded ring. This fact is the corner-
stone of the deduction of the variational equations of the graded Lagrangi-
ans that come from Berezinian Lagrangians.
Note that we need all the equations of theorem 4.2. Even for

0-order Berezinian Lagrangian densities, the associated graded Lagrangian
densities are of order n.

To go on with the deduction we need to compute the brackets

Let hE .9100, then,

where the following convention is used: if 1ft P then the second term does
not appear. The other bracket is computed in a similar way.
Hence we can state the following.

We can see by induction that

where c (P) = (~ + 1) ~(P) + (~ + ~(P)) (~ (z) + ~).
Applying this lemma to the 

yoo (6)* (~«, T) = 0, we can state the following.
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THEOREM 6 . 3. - Let (W, A~(W)) be a coordinate open of (B/A).
The variational equations for the graded Lagrangian density

are

for all ..., ~1; ~ ..., and where 

(1) Note that the natural morphism does not appear. The
equations live in the graded ring.

(2) These are the standard Euler-Lagrange equations one would expect

for the Berezinian Lagrangian density /B ... /B dx(m)~d ds1 o... °2014 ./~ ~y ~&#x26;"J

(3) If, f~A1 (W), the above equations are reduced to

7. AN EXAMPLE

As a curious example let us study the variational equations when both
graded manifolds are of zero even dimension, i. e., when X and Y are
reduced to a point. Thus

A local section, 6, of p : (X, A) ~ (Y, B) induces a Z2-algebra homomorph-
ism, o*, such that o*(~01)=~. Then, a local section is determined by a
Z2-algebra homomorphism from A* into A* and such homomorph-
ism is determined by the image of the generators of A* 

Let us fix the number of generators, n = 3 and nl = 1, and let s2, s3 ~
be a coordinate system of (X, A) s2, s3, t ~ be a coordinate system
of (Y, B). Thus a local section, o, is determined by
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Let us consider the element of A1, f=1 2 03A3 hI (tI)3, where tI are the
3 1=1...3

coordinate functions of the graded manifold of first order graded jets, and
where h1, h2, h3 ~ A.
Note that, in this case, a graded Lagrangian density is a 0-form. The

variational equations for the graded Lagrangian density 2014_ are
~

Substituting, we get

Let us choice hI = CI SI, with It is easy to see that the equation
becomes equivalent to the following set of equations:

Thus, the points of the conical surfaces cl (ql)2 + c2 (q2)2 + c3 (q3)2 = 0
and q 12 3 = o give solutions of the variational problem. Taking, for instance,
c~ = 1, C2 =1, C3 = -1, we have that the graded Lagrangian density

achieves a minimum at sections of p given by

where (ql, q2, q3) is a point of the cone x2 + y2 - z2 = o.
Another possible choice for h’ would be hi = cj sI + dI S1 S2 s3, with

d, dI ~ R such that ¿ I 2 = o. The variational equations are now
I = 1 ... 3 (d) 2

equivalent to the following set of equations:

Solutions are " now found o with arbitrary q 12 3 and i=1, 2, 3.
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