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ABSTRACT. - We analyze the lagrangian formalism for singular lagran-
gian systems in a geometrical way. In particular, the problem of finding a
submanifold of the velocity phase space and a tangent vector field which
is a solution of the lagrangian equations of motion and a second order
differential equation (SODE) is studied. Thus, we develop, in a pure
lagrangian context, an algorithm which solves simultaneously the problem of
the compatibility of the equations of motion, the consistency of their solu-
tions and the SODE problem. This algorithm allows to construct these solu-
tions and gives all the lagrangian constraints, splitting them into two kinds.
In this way, previous works on the same subject are completed and improved.

RESUME. 2014 Nous analysons par des methodes geometriques les systemes
lagrangiens singuliers. Plus concretement, nous etudions Ie probleme de
trouver une sous variete de l’espace des vitesses et un champ de vecteurs
tangents qui sont solutions des equations de Lagrange et d’une equation
differentielle du second ordre (SODE). C’est-a-dire que nous developpons
dans un contexte purement lagrangien un algorithme qui resout simultane-
ment Ie probleme de la compatibilite des equations du mouvement, la
consistance de leurs solutions et Ie probleme SODE. Cet algorithme permet
de construire ces solutions et donne toutes les contraintes lagrangiennes
en les separant en deux categories. Ce travail complete et ameliore des
resultats anterieurs sur ce sujet.

Classification A.M.S. : 58F05, 70 H 99; PACS: 032i, 0240 m.
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28 M. C. MUNOZ LECANDA AND N. ROMAN ROY

1. INTRODUCTION

Since Dirac and Bergmann ([ 1 ], [2]) started the study of the dynamical
systems described by singular lagrangians, this theme has been matter of
interest for theoretical physicists and mathematicians.
The key of this interest is dual. From the mathematical point of view,

it is due to the fact that the differential equations involved are not regular
and this leads to the study of their compatibility and consistency of their
solutions. From the physical point of view, the fundamental fact is that
all the theories exhibiting gauge invariance are necessarily described by
singular lagrangians, and these theories are of maximal interest in Modern
Physics.

Although in the beginning the study of these systems was done by
means of coordinate-dependent descriptions (see [3], [4] and references
quoted therein), it was early seen that the use of techniques of Differential
Geometry [which were successfully applied in order to formulate both the
lagrangian and hamiltonian formalisms of Mechanics, as well as other
related topics ([5]-[8]) allowed to treat these systems in a very natural way,
inside the framework of the Presymplectic Geometry ([9]-[ 12]).
On the other hand, and thinking in the subsequent quantization of the

models, the first descriptions paid special attention to the hamiltonian
formalism (see [ 13] and references quoted therein). Later, some authors
begin to be interested in the study of the lagrangian formalism and the
equivalence between both formulations (see for example [ 14], [15]), and
their geometrical description ([ 16], [ 17], [ 18]). In all these works the prob-
lem of the compatibility of the equations of motion and consistency of
their solutions, as well as the question of the equivalence between the
lagrangian and hamiltonian formalisms are studied from different points
of view.

But a characteristic feature in the lagrangian formalism is that varia-
tional criteria as well as physical motivations demand that the solutions
of the presymplectic equations of motion were second order di. f ’, f’erential
equations (SODE) ([19], [20]). In the case of singular systems this is an
additional problem to study, because the solutions of the equations of
motion do not, in general, satisfy this condition. One of the more complete
analysis of this question is done in [20]; in this work a submanifold of the
velocity phase space where any SODE solution exists is found, but it is

not, in general, the maximal one, as it can be deduced from [21] and [22]
(see also the examples in the last reference).

In the last years, several works have been devoted to the study of this
and other related problems. Thus, in [21] ] and subsequent papers ([23],
[24]), an algorithm is developed for the lagrangian formalism in order to
find the maximal submanifold of the velocity phase space where consistent
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29LAGRANGIAN THEORY FOR PRESYMPLECTIC SYSTEMS

solutions of the Euler-Lagrange equations exist. This procedure is equiva-
lent to find a submanifold where there exist some SODE solution of the

lagrangian equations of motion [25]. In addition, the complete equivalence
between the lagrangian and hamiltonian formalisms for singular systems
is shown and a quantitative discussion on the gauge degrees of freedom is
performed. In these papers, the treatment is local-coordinate, although
the main aspects of the theory have been intrinsically reformulated later
([22], [26], [27], [28]) (see also the treatment done in [29]).

Nevertheless, two questions remain unsolved: The above mentioned
algorithm is not purely lagrangian in the sense that, in order to find the
lagrangian constraints and fix the gauge degrees of freedom, it uses

on each step the correspondent hamiltonian algorithm. Moreover, some
geometrical aspects (for instance, in relation to the removal of gauge
degrees of freedom in the solution) are not clarified.

Thus, in this paper, our aim is to develop a geometric and purely
lagrangian algorithm which gives us the maximal submanifold of the
velocity phase space where a SODE solution of the lagrangian equations
of motion exists and, in addition, allows us to describe how this solution
is. In this way, we complete the geometrical description of ([21 ], [23], [24])
and, as we are going to see, we recover as a particular case the result of
[20] and the lagrangian version of the Presymplectic Constraint Algorithm
(PCA) [16]. We will follow the same method as in reference [30].
The organization of the paper is the following: In section 2 we establish

some notation and terminology and we state the general problem.
Sections 3, 4 and 5 are devoted to the study of the compatibility conditions,
which give rise to the first generation constraints and confine the gauge
freedom of the general solution to its vertical part. Then the splitting into
dynamical and non-dynamical constraints is achieved in an equivalent way
as in reference [22]. In section 6 we analyze the stability condition, obtaining
the general result concerning the new generations of constraints and the
removal of gauge degrees of freedom in the general solution. Finally we
study the FL-projectability of the solutions in section 7 and we analyze
some examples in section 8.

2. STATEMENT OF THE PROBLEM AND NOTATIONS

Let (Q, L) be an almost-regular Lagrangian system [ 16], where Q is a
differentiable manifold, the configuration space of the system, TQ is the
coordinate-velocities phase space and L: TQ ~ [R is the Lagrangian func-
tion of the system.
We denote by J: ~(TQ) -~ the vertical endomorphism, 

being the module of vertical fields on TQ. The lagrangian 1-form is defined
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30 M. C. MUNOZ LECANDA AND N. ROMAN ROY

on TQ by and the lagrangian 2-form is In addition,
the function A: is given by A=A(L), where 1B is the Liouville
vector field on TQ. Then the energy of the system is E = A - L. For more
details on notations see [7], [ 19], [31 ] .

In the finite dimensional case, if dim Q = n and (U, q‘) is a local chart
in Q, then (7~(U), qi, vi) is a local chart in TQ (7r is the canonical
projection from TQ onto Q). In this chart the expressions of these elements
are:

The trajectories of the lagrangian system (Q, L) are the curves

o: [a, b] -~ Q such that minimize the variational problem given by the
integral :

where ~ : [a, b] ~ TQ is the canonical lift of 6 to the tangent bundle.
Notice that actually we don’t consider TQ but TQ x IR with the natural
projections on TQ and IR, and the curve o: [a, b] ~ Q x [R given by
~ (t) _ (~ (t), t). Then the curve o is the natural lift of o to TQ x f~.

It is known that this variational problem is equivalent to the one
given by:

Using the techniques of variatonal calculus (see for example [32]), and
the presymplectic character of o, this problem leads to the following: To
find a vector field and a submanifold S~TQ such that:

(i) (iX ~ - d E) IS = 0 (the dynamical equation)
(ii ) X is a Second Order Differential Equation (SODE) on the points

of S.

(iii ) X is tangent to S.
The condition iX ~ - dE = 0 is the intrinsic version of the Lagrange

equations. When the system is degenerate, or singular, then 00 is presym-
plectic and the equation iX ~ - d E = 0 has not any solution all over TQ,
but only in a subset of points of TQ.
The second condition is equivalent to say that the integral curves of

the field X are canonical lifts to TQ of curves on Q. Another statement
of this condition is (J (X) - 0) IS = 0.
The third condition is the geometric translation of the fact that the

trajectories of the system must remain inside the submanifold S.
Conditions (i) and (iii) are called compatibility and stability (or consist-

conditions respectively. If you only consider them, you can solve the
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31LAGRANGIAN THEORY FOR PRESYMPLECTIC SYSTEMS

problem by means of the known Presymplectic Constraint Algorithm,
PCA [9]. In the case that L is regular, the equation has one 

’

unique solution on TQ which is automatically a SODE.
Our aim is to obtain an algorithm which gives us the submanifold S

and the SODE vector field X on it. To this end we study the constraints
induced by every one of the conditions. This algorithm will be a generaliz-
ation of the before mentioned PCA. At every step we make the following
assumption:

GENERAL HYPOTHESIS. - Every subset 6~ TQ obtained by application of
the algorithm is a regular closed submanifold and its natural injection is an
embedding.

3. COMPATIBILITY CONDITIONS: DYNAMICAL FIRST
GENERATION CONSTRAINTS

In the case we study, the 2-form o has non trivial kernel, so the equation
dE has no solution everywhere in TQ in general. Hence we have to

restrict the problem to the subset

In order to analyze this situation, as usually we assume:

HYPOTHESIS. - dim ker 03C9 is constant.
And we have the following known result:

PROPOSITION 1 ([9], [16]). - (i) The equation iX03C9 = dE has solution only
in the points of the set:

(ii) On solutions of the equations are Xo + Y, where Xo is a
particular solution and Yekerco.

Proof - (i) (=&#x3E;) Let xETQ and suppose there exists uETx TQ with
iu co = d E (x) . If z E ker 03C9 (x) then iz d E (z, u) = 0.
(=) Let that is for all Then if we prove

that the existence of a solution is assured.
In order to prove this inclusion observe that

dim Im co (x) = dim Tx TQ - dim ker co (x) = dim (ker co (x)) ~
and if then hence We have
then that and both have the same dimension. Conse-

quently (We denote by F~ the annihilator of the subspace

Vol. 57, n° 1-1992.



32 M. C. MUNOZ LECANDA AND N. ROMAN ROY

Note. - This is a finite dimensional proof. You can find another in [9]
which is also valid for the infinite dimensional case.

(ii) The equation is linear on X and since P1 is a closed submanifold of
TQ, the result follows. 0

DEFINITION 1. - (i) The submanifold P1 is called the submanifold of
dynamical first generation constraints.

(ii) I, f ’ Z E ker 00, the function 03B6 1= iZ d E is called dynamical (or presymplec-
tic) first generation constraint generated by Z.

This terminology will be justified later.

4. SODE CONDITION: NON-DYNAMICAL

FIRST GENERATION CONSTRAINTS

In general, the solutions {Xo + Y; Y E ker of the dynamical equation
(ix dE) Ip1 = 0 are not SODE on P l’ then we state:

PROPOSITION 2. - Let E P 1; :) Y E ker ro, (JXo + JY - 0) (x) = 0 }
where 0 is the Liouville vector field on TQ. Then

(i) S1 is the maximal set of points of P 1 where there exist vector fields
D = Xo + Y E ~’ (TQ) such that

(a) dE) IS1 = 0.
(b) D is a SODE on Sl.

(ii) Let Do be a vector field which satisfies conditions (a) and (b) and
W E ker 03C9 ~ Xv (TQ) then Do + W satisfies (a) and (b) too. Conversely if
D1 and D2 verify (a) and (b) then D1- D2 is an element of ker 03C9 n (TQ).
(Remember that ker 03C9 ~ Xp (TQ) = ker FL*, where FL: TQ ~ T* Q is

the Legendre transformation associated to the lagrangian L. See [20], [22]
for the details.)

Proof - (i ) Evident from the definition of Sl.
(ii) If then and JW = 0 therefore Do+W

satisfies (a) and (b).
The converse is trivial. 0

Now we are going to describe the submanifold S1 inside P1 as the zero
set of a family of functions.

PROPOSITION 3. - Let Y E ~’ (TQ) such that Xo + Y is a SODE, that is

J X +Y = 0. Then

Annales de l’Institut Henri Poincare - Physique theorique



33LAGRANGIAN THEORY FOR PRESYMPLECTIC SYSTEMS

Proof. - Consider the set then

we make the proof in three steps:
(a) C is independent of the chosen vector field Y.
Take T = Y1- Y2 where Y and Y2 verify that Xo+Y, are SODE. Then

T is a vertical vector field, because it is the difference of two SODE. So
T = JU for some then:

since JZ E ker FL* c ker G) and we have used the relation iJU co == 2014 iU 03C9 ° J
for any (see [ 19]).

(b) (CcS1) Let x ~ C, then for every Therefrom
then there exists any such that (see [22]).

Hence (Xo + Y) (x) + v verifies the conditions of the above Proposition, so

(c) (S 1 c C) Let x ~ S1. There exists U~ker 03C9 with (Xo + U) (x) verifying
conditions (a) and (b) of Proposition 2 (i), therefore (i~ iU ~) (x) = 0, so
x~C. 0

COROLLARY. - For any S’ODE D we have:

Proof - Since we can take Y = X0 - D the proof is trivial. Cl

DEFINITION 2. - (i) S1 is called the submanifold o.f’ first generation
constraints.

(ii) Given Z E 9Jl and Y E ~’ (TQ) such that Xo + Y is a S’ODE, then the
function 111 = iZ iY 03C9 is called non-dynamical (or non presymplectic) first
generation constraint generated by Z.

5. GENERAL EXPRESSION
OF FIRST GENERATION CONSTRAINTS

PROPOSITION 4. - For any SODE D we have:

Proo, f : - Consider the set

where D is a SODE.

Taking into account that ker 03C9~m (see [22] for the proof), we have:
If Z ~ ker 03C9 ~ m then which are the dynamical

constraints.

Vol. 57,n" 1-1992.
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On the other hand, taking but then if D = Xo + Y is a
SODE for some Y we have:

which are the non-dynamical constraints. D

Summarizing, we have arrived to a submanifold S 1 of TQ and to a
family of vector fields

such that

Observe that Xo and Yo are fixed vector fields, meanwhile V is arbitrary
with the only condition that it belongs to ker FL*.
The submanifold S 1 is defined as:

for any SODE D. The constraints that define S 1 are of two different
kinds:

Dynamical constraints: 03B61=iZ dE, Z~ker 03C9.
Non-dynamical constraints: ~1=iziY 03C9=0, Z~m, Zekerco, 

with Xo + Y a SODE.
It is known that the dynamical constraints can be expressed as FL-

projectable functions, whose counterparts in T* Q are all the secondary
constraints in the hamiltonian formalism ([16], [33]). But this is not the
situation for the non-dynamical ones, as we are going to prove.

PROPOSITION 5. - ~f r~ is a non-dynamical first generation constraint,
then it cannot be expressed as a FL-projectable function.
We need the following results: ’li

LEMMA 1. - For every V ~ Ker FL*, there exists such that JZ = V
and Z is FL-projectable.

Proof - It is evident that is FL-projectable, then we can
choose an FL-projectable vector field with JX = V (in fact, the
only problem is to take the vertical part which is arbitrary). In particular,
~V~ker FL*, we have FL* V = 0, this implies they are FL-projectable,
hence there exists some Z E 9M which is FL-projectable and JZ = V. D

Proo, f : - Let be a vector field such that JX=V, then

Annales de l’Institut Henri Physique " theorique "



35LAGRANGIAN THEORY FOR PRESYMPLECTIC SYSTEMS

where use is made of the properties (see [19]):

LEMMA 3. - If SODE, then [V, for every
V E Ker FL*.

(Consequently, ifD is a SODE, it is not FL-projectable.)

Proof : - It is a straightforward consequence of the above lemma. 0

Comment. - Observe that if D is a SODE then

because for all we have that then
X - [JX, D] is a vertical vector field.

Proof of the proposition. - If ~ is a non-dynamical first generation
constraint then, according to the proposition 4, B Z E 9M, Z ~ ker co, such
that

(and, moreover, Z cannot be a vertical vector field since the 1-form
is horizontal and then ~(~co2014~E)=0). Now, suppose that 11 is

FL-projectable, then ~ V ~ ker FL* we have

but, by the lemma 1, Z can be chosen FL-projectable and, since dE is
also FL-projectable, so is iZ dE; therefore V (iZ dE) = 0 and

Using again the lemma 1 we have that iZ 03C9 is FL-projectable and then
Therefore

But, for all X in taking into account the above comment,
X = [V, D] + V’, for some VEkerFL* and so we have

since iV’ iZ co = lJy iZ 03C9 = - ly lJZ co = 0, for some Y ~ X (TQ), because

JZ ~ ker FL* ~ ker 03C9. Hence we conclude that Z~m and therefore
But and ker 03C9~m defer only on their vertical

part, hence, since Z ~ (TQ), we have Z E ker a) which is absurd
because Z ~ ker co by hypothesis. 0

A consequence of the non FL-projectability of the non dynamical
constraints is that these constraints remove degrees of freedom on the
leaves of the foliation defined by ker FL* [33].

Vol. 57, n° 1-1992.
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6. STABILITY CONDITIONS:
NEW GENERATIONS OF CONSTRAINTS

In general none of the fields of the family ( 1 ) of solutions on S 1 is

tangent to the submanifold S 1. So we must search for the points of S 1
where there exists any vector field V~ker FL* such that is

tangent to S 1. In order to solve this problem we define:

But S 1 is the zero set of a family of functions. So a vector field D is
tangent to S 1 if (D f ) (x) = 0 for every f in the family and Hence
we have:

Where we have used the above expressions of the constraints.
But the dynamical constraints can be expressed as FL-projectable

functions, so we have for every V~ker FL*. Hence condition
( a) is

which, in general, gives us new constraints.
On the other hand, for the non-dynamical constraints, we have

This is a system of linear equations for V, and we have:

LEMMA. - The system (2) is compatible on all the points of S 1.

Proof - Locally you can take a finite set of non-dynamical independent
constraints, 111’ ..., from the expresssions Y) for As we

said above, these constraints remove h degrees of freedom on the leaves
of the foliation defined by kerFL~. Then the matrix of this linear system
for V has maximal rank h, hence the system is compatible at least locally.
(See another different proof of this result in [21].)
For any collection of local solutions we can construct a global one on

S 1 using a partition of unity on this manifold, hence the system is

compatible on all the points of S 1. 0

So the stability of these constraints does not give new constraints but
eliminates gauge degrees of freedom of the solution.
Now the dynamical vector fields which are solution of the problem can

be written in the form where is tangent to

l’Institut Henri Poincaré - Physique theorique



37LAGRANGIAN THEORY FOR PRESYMPLECTIC SYSTEMS

S1 on the points of S2’ Vo is a solution of the above system and

V’ ~ ker FL* is tangent to 81 on the points of S2 and contains all the

gauge freedom. In addition V’ is any solution of the system Y) = 0
for all Z~m.

All this discussion can be summarized as:

PROPOSITION 6. - (a) Let

Then S2 is the maximal subset of Sa such that there exists V E ker FL*
verifying:

contains all the vector fields belonging to ker FL* such that Xo + Yo + V
verifies those conditions.

(c) If V 0 E 1/ then:

(Note that these last vector fields V’ are tangent to Si.)

DEFINITION 3. - (i ) The functions (Xo + Yo) (iz dE), for Zekero, are
called second generation constraints.

(ii) 8z is the submanifold of second generation constraints.

The situation is the same that at the end of section 5: We have a

submanifold 8z where the solution is Xo+Yo+Vo+V and 
This solution is a SODE and is tangent to Sl at the points of Sz but in
general it is not tangent to S2.
Now we must look for the points of 8z where some of those solutions

are tangent to S2. In order to solve this problem we need to split the
second generation constraints in two different kinds, dynamical and non-

dynamical and stabilize all of them. This procedure is the same at each

step of the algorithm.
Then the general situation is the following: In order to obtain 

~2, from S~, we have to

(i ) classify the constraints defining Si and

(ii) stabilize them.
The dynamical constraints will originate new constraints, but the non-

dynamical ones will remove gauge degrees of freedom, as we are going to

prove.

Vol. 57, n° 1-1992.
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THEOREM. - Let Si (i &#x3E; 1) be the closed regular submanifold obtained at
the i-th step of the above procedure.

(a) The following subsets of Si are the same:
(i) A= {x~Si; XoiTdE(x)=0, Y0 iT dE|Si=0}

(ii) B= {x~Si; iTdE(x)=0, 
(iii) C = The submanifold of S~ of zeros of FL-projectable (i + 1 )-th genera-

tion constraints.

The functions Çi + 1 defining this subset will be called dynamical (or presym-
plectic) (i + 1)-th generation constraints.

(b) Let be such that Y0 iT dE|Si ~ 0, then the function
1= (Xo + Yo) iT d E can not be expressed as a FL-projectable function.

All these functions will be called non-dynamical (or non-presymplectic)
(i + 1 )-th generation constraints.

(c) The stability condition for the dynamical (i+ 1)-th generation con-
straints can be written as:

for T E ~ (S1 _ 1 )1 such that Yo iT d E Isi = 0, and these functions are a new
generation of constraints.

(d) The stability condition for the non-dynamical (i + 1)-th generation
constraints does not give any new constraints but remove gauge degrees of
freedom from the solution.

In order to prove it we need the following results:

LEMMA 1. - If P c TQ is a submanifold defined by FL-projectable
constraints and S c P is a submanifold defined in P by non FL-projectable
functions, then X (P) = H (S)1-.

Proof - It is a consequence of proposition 3.1 of [33]. 0

LEMMA 2. - There exists one FL-projectable solution Xo of the equation

Proof - Similar to the proof of the lemma in section IV of [20]. 0

Proof of the theorem. - The proof of these statements is the same for
every generation of constraints. For simplicity we make it for i =1. In this
case we have that H (Si- 1)1 = ker 00.

(a) (C = B) By lemma 1, the constraints defining B are the lagrangian
PCA constraints (see [ 16]). But it is known that every lagrangian PCA
constraint can be expressed as a FL-projectable function ([16], [33]). On
the other hand, according to the theorem 1 of [24], the only FL-projectable
constraints are the PCA constraints. Hence the result follows.

(C c A) By lemma 2, the constraints defining A can be expressed as
FL-projectable functions, then the results is trivial.

Annales de I’Institut Henri Poincare - Physique theorique



39LAGRANGIAN THEORY FOR PRESYMPLECTIC SYSTEMS

(A c B) The second generation lagrangian PCA constraints are conse-
quence of the stability condition of the first generation ones. These are

Tekero, and the set of solutions along P 1 is Xo + Y, Yekerco.
Therefore the stability condition is (Xo + Y) iT dE 1st = o.
We obtain new constraints only if T~ker 03C9 verifies that 

for every Yekerco. Hence the second generation lagrangian PCA con-
straints are

Then these constraints define B. But all these constraints vanish on the

points of the set A.
(b) Immediate from part (a).
(c) The expression of these constraints is Ç2 = Xo iT dE for T E ker 03C9 and

Yo iT 0 hence the stability condition is:

but 03B62 are FL-projectable, then (Vo + V’) 03B62 = 0 and we obtain the desired
result.

(d ) The expression of these constraints is for
Tekerco and Yo iT dE IS1 ~0~ so the stability condition is

that is:

This system is compatible for the same reason that in the lemma before
proposition 6, and then the result follows immediately. 0

Observe that the expression 1 only uses the particular solution Xo
of the dynamical equation Meanwhile the expression 
contains the vector field Yo, coming from the SODE condition. This
comment justifies the above terminology.
The physical interesting case arises when there exists a final constraint

submanifold S f, that is, an integer k such that Sk + 1 = Sk = Sf with
Then, on this submanifold, there exist SODE solutions D

which are tangent to Sf. They have the form Xo+Yo+Vg+V, where
Võ’ VEkerFL* and Võ is completely determined, meanwhile V, which is
also tangent to S f, denotes the remaining arbitrariness or gauge freedom.

7. ON THE FL-PROJECTABILITY OF THE SOLUTIONS

As we have said in the introduction, the problem of finding a SODE
solution to the presymplectic lagrangian equations has been studied in
reference [20]. There, the obtained final constraint submanifold where this

Vol. 57, n° 1-1992.
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SODE exists only contains one point in every fibre of the foliation defined
by ker FL* and, on this submanifold the SODE solution is FL-projectable.
But we are going to prove that this is also a necessary condition for a

SODE solution to be weakly FL-projectable (that is, FL-projectable on
the points of the final constraint submanifold Sf) (see [33] for the terminol-
ogy). In fact, suppose S f contains two different points in the same fibre
of that foliation, denoted A = va) and B = vb) in a local chart of
TQ. Then qa = qb but since the fibres of the foliation are contained
in the fibres of TQ. Now, if D is a SODE solution, then

D (A) = D (B) = 

and FL (A) = FL (B) but and the result follows.

Taking into account this result together with the above mentioned of
reference [20], we can state the following:

PROPOSITION 7. - The necessary and sufficient condition for a SODE
solution of the presymplectic equations of motion to be weakly FL-projectable
on the final constraint submanifold Sf, is that this submanifold only contains
one point of every fibre of the foliation defined by ker FL*.
As a consequence, this weakly FL-projectable SODE solution does not

contain any gauge degree that is, it is unique.

8. EXAMPLES

(a) Consider the dynamical system defined by the lagrangian

partially studied in reference [26]. We have

then, a local base for ker co is

, and for the non-vertical part of 9M we take

The compatibility condition of the presymplectic equation leads
" to the dynamical constraint

and the solution on P is
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Now, if we search for a SODE solution D of this equation, we obtain,
in addition, two non-dynamical constraints:

(Do is an arbitrary SODE), and this solution, on Sl is

with Yo = v2 and vl v3 (on S1).
The stability condition originates, in a first step, a new non-dynamical

constraint and fixes two arbitrary functions

Finally, in a second step a new arbitrary function is determined

and the final SODE solution on Sz is

The Legendre transformation is given by

Using the constraint one can see that the SODE solution D is weakly
FL-projectable on S2, since we are in the conditions stated in proposition 7.

(b) Another example is given by the lagrangian

which is a modified version of the one given in reference [9]. We have

Local basis for ker co and the non-vertical part of 9K are now

The compatibility condition of the presymplectic equation 
leads to the dynamical constraints

The solution on P 1 is

Vol. 57, n° 1-1992.
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A SODE solution D is obtained from this vector field by taking the
particular element in the non-vertical part of ker co,

(that is, c = v3 and A = v2), whereby first generation non-dynamical con-
straints do not appear. Hence, on P1 we have

At the successive steps, the stability condition only originates two new
dynamical constraints and a non-dynamical one

Finally, one arbitrary function is determined D(r~)==C==0, and the final
SODE solution on S4 is

The Legendre transformation is given by

hence, the vector field D is not weakly FL-projectable on S4 due to the
component v2 a/~q2. Then in order to obtain a weakly FL-projectable
SODE solution we have to restrict the final constraint submanifold by
introducing a new (non-dynamical ) constraint of the form

(notice that f is a FL-projectable function). Its stabilization determines
the remaining arbitrary function B in D

and so the final SODE solution on SS is

which is, in fact, weakly FL-projectable on SS (using the constraint 11t).
For example, the simplest solution is to take/=0, and then B==0.

CONCLUSIONS

We have done a complete study of the lagrangian equations of motion
of dynamical systems described by singular lagrangians. Our goal has been
dual. On one hand, we have found the maximal submanifold of the
velocity phase space of the system where these equations are compatible
and there exists some tangent vector field solution of the equations of

l’Institut Poincaré - Physique theorique
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movement, with the condition that it is a SODE. On the other hand, we
give the maximal information about the structure of such a vector field.
The procedure has been algorithmic. First of all we have determined

the submanifold where the lagrangian equations are compatible and have
a solution which is a SODE. This manifold is usually defined in TQ by
constraints of two different kinds: The so-called dynamical (or 
tic) constraints and the non-dynamical (or non-presymplectic) ones. The first
ones arise from the compatibility condition, meanwhile the second ones
born from the SODE condition (all these results were already known. We
include them here in order to give a complete unified exposition). In
addition, the SODE condition compels that the arbitrariness of the sol-
ution (gauge freedom) lies in its vertical part, which is in ker FL*.

Next, the stability procedure (tangency condition) generally leads to new
generations of constraints and removes some degrees of the gauge freedom
of the solution. Thus, on each step, the stability of the non-dynamical
constraints eliminates the same number of gauge degrees of freedom as
the number of independent constraints of this kind there are at the

previous step; meanwhile, the stability of the dynamical constraints can
originate new constraints. Some of them are equivalent to the presymplec-
tic constraints obtained in the PCA (which is an algorithm that does
not consider the SODE condition) and are also called dynamical (or
presymplectic) constraints. The others are new constraints which are related
to the SODE character of the solution, and they are also called non-
dynamical (or non-presymplectic) constraints. As a consequence of the

analysis, we also prove that only the dynamical constraints can be expres-
sed as FL-projectable functions.

Finally we prove that, in the final submanifold, the SODE solution is
FL-projectable if, and only if, this submanifold contains just one point
on each leaf of the foliation induced by ker FL*. So the result of [20] on
this problem is recovered and reinterpreted.
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