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The temperature of an asteroid
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ABSTRACT. - The heat equation in a solid body with radiation boundary
conditions and periodic heating at the boundary - modeling a rotating as
teroid - is shown to have a unique time-periodic solution and it is globally
attracting. We find approximations to this solution for various cases
relevant to the possible existence of ice in the asteroid belt.

RESUME. 2014 Nous montrons que 1’equation de la chaleur dans un corps
solide avec conditions aux bords radiatives et une source de chaleur

periodique sur la frontière possede une unique solution periodique qui est
un attracteur. Cette equation sert a modeliser un asteroide en rotation.
Nous exhibons des approximations de cette solution que sont relevantes
pour 1’existence de glace dans la ceinture d’asteroides.

INTRODUCTION

We treat the temperature of a rotating solid body with no atmosphere,
heated at the surface by absorption of Solar radiation and also losing
heat by radiation. We have in mind an asteroid, typically a few kilometers
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720 D. B. HENRY

(or few tens of kilometers) in diameter, with escape velocity at most some
tens of meters per second, far too small to retain an atmosphere. We
don’t know what asteroids are made of, so our caculations will consider
a wide range of materials. It turns out that only one dimensionless
parameter (~/8) is important - depending on the material near the surface,
distance from the Sun, and period of rotation - but we also don’t know
this value. (Strictly speaking, this is for a circular orbit; we study the
effect of eccentricity later, and see it is negligible for almost any asteroid.)
The calculations are fairly simple when ~/8 is large - and it would be large
for most plausible Terrestrial materials - but are far more difficult when
it is small, and many problems remain for efficient computation in this
case. (The theory might be applied to Moon, but ~/5 is small - about

1 /70 - largely due to slow rotation, and the results are not satisfactory.
Nevertheless, it predicts temperature 68 K at the poles of Moon, indepen-
dent of ~/8, and I have some confidence in this number.)
We use coordinates fixed in the body; then the only effect of rotation

is a periodic or almost-periodic variation of the heating rate at a given
point of the surface. We show there is a unique long-term response, the
limit from any initial temperature distribution as time goes to infinity,
which is equally periodic or almost-periodic in time. With any plausible
values of the physical parameters of an asteroid, the thermal relaxation
time is far smaller than a billion years; we may be confident the limit is

attained. (Even for Moon, the surface temperature should be determined
by this theory, though radioactivity and residual "ancient" heat are impor-
tant in the interior.) The limiting solution varies far more rapidly with
depth than it does along the surface, so a one-dimensional model - depth
below a given point of the surface - should be a good approximation.
The solution of this one-dimensional model rapidly approaches a limit,
independent of time, as depth increases. (A few meters below the surface
should be enough.) This is used as a boundary value to determine the
temperature, independent of time, in the interior of the asteroid.
We calculate in detail only the case of a spherical asteroid, with constant

physical properties, though most asteroids are probably non-spherical and
inhomogeneous. The calculation of the surface temperature - actually, a
few meters below the surface - may be used directly for any convex body
with any distribution of conductivity. (Non-convex bodies may produce
troublesome shadows, and call for more complex computations, though
not different in principle.) The subsequent calculation of the interior

temperature will depend on the particular shape and conductivity. The
general theorems apply to bodies of any (smooth) shape with any (smooth)
inhomogeneities.
Mann and Wolf [5] treated a one-dimensional heat equation in (0, (0)

with a radiation boundary condition, constant conductivity, constant initial
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721THE TEMPERATURE OF AN ASTEROID

temperature, and asymptotically constant heating rate at the boundary.
They showed the solution approaches a constant as time tends to infinity.
Levinson [4] started from a different physical problem, which led to the
same mathematical problem. He showed, for a constant initial value and
periodic heating at the boundary, the solution approaches the unique
periodic solution with the same period. These authors worked exclusively
with the integral equation. We will also use an integral equation on the
boundary for questions of existence and smoothness, but we study the
asymptotic behavior using the maximum principle and dynamical systems
theory. We generalize the work of [4], [5] in several directions: the spatial
dimension may be greater than one, the region may have any smooth
shape and may be bounded or not, the physical properties (conductivity,
etc.) may depend on position, the initial temperature is quite arbitrary
(non-negative, bounded), and the time-dependence of the heating rate is
also general, though the periodic and almost-periodic cases recieve special
attention.
The interest of the mathematical problem is sufficient justification, but

I believe the problem is also important. At least, the temperature is a
crucial datum for an important question:

Is there ice in the asteroids?

It may not seem the question is important; have patience.
Comets are active only a short time - some 200 revolutions a few

thousand years.
It is a respectable conjecture that "dead" comets, which have ceased

visible emission, may very well end up in the asteroid belt. They cannot
remain very long in the inner Solar System before being swept away by
gravitational perturbations. Where’s "away"? The asteroid belt may be
the dust bin of the inner Solar System. (I am warned there are important
unsolved dynamical problems here.)
Dead comets are sometimes called "de-volatilized", for no good reason.

Photos of the nucleus of Halley’s comet show emission only from patches,
about 10 % of the surface, the rest being covered by dust. A comet dies
when its surface is completely covered.

If the comet nucleus is not too small - at least a few kilometers across - it
will still have a lot of volatiles (ices of H20, HCN, NH3 and though
CH4 and CO will probably be lost at temperatures above 100 K) when it
arrives in the asteroid belt. If the ice can survive for billions of years
under conditions encountered in the asteroid belt, an enormous stock of
ice may have accumulated out there. This would determine the course of

development of the Solar System for centuries to come. For example, it’s
easy to make air from water, cyanide or ammonia, and sunlight. (Now
do you believe it’s important?)

Vol. 55, n° 2-1991.



722 D. B. HENRY

The average temperature at the inner edge of the asteroid belt (2 A.U.
from the Sun) is nearly 200 K, dropping to 150 K at the outer edge (3.5
A.U.), and this is not very promising for long term survival of ice exposed
to a vacuum. However: ( 1 ) The average temperature is not the only
temperature; and: (2) The ice is not exposed.

( 1 ) Even at 2 A. U., with average temperature 200 K, there will be
substantial regions near the poles of an asteroid with temperatures below
150 K, and some below 120 K. (We may use the same estimates for dead
comets; see "The effect of eccentricity" below.)

(2) We deal with dirty ice, which will shortly be covered by dust left
behind as the ice vaporizes, and the dust slows the evaporation of underly-
ing ice. (This point is treated in the Appendix.)
The prospects for survival of water ice, covered with dust, and ammonia

and cyanide ices embedded in water ice, are good.

axis vertical axis inclination 30°

average temperature 196 K average temperature 188 K

polar temperature 0 polar temperature 101 K
equatorial temperature 210 K equatorial temperature 207 K

Maximum surface temperature 280 K, "-/8= oo.
Approximate isotherms below the surface for a spherical asteroid at 2 

The amount of material involved is not trivial. A (reasonable) rate of
one new periodic comet every 30 years, of (modest) diameter 2 km and
density (at least) that of water, continued for 4 billion years, results in
total mass - almost 1021 kg - comparable to that of the entire asteroid
belt. But 2 km diameter may be excessively modest, and comets may have
been far more frequent in the early days. We show later tha. vad comets,
like asteroids, can easily retain their volatiles for billions of years, so it’s

l’Institut Henri Poincaré - Physique theorique



723THE TEMPERATURE OF AN ASTEROID

strange we don’t see more of them around. But perhaps we do see them,
in the asteroid belt.

Wishing doesn’t make it so, and expert opinion seems clearly opposed
to the notion of ice in the asteroids. In fact, I could find no local expert
on physical properties of asteroids. My caricature of expert opinion is

culled mainly from the last two decades of Icarus and the books: Asteroids,
T. GEHRELS Ed., Univ. Arizona, 1979 and The Evolution of the Small
Bodies of the ,S’olar Proc. Intl. School of Physics E. FERMI, 1985,
M. FULCHIGNONI and L. KRESAK Ed., North-Holland, 1987.
The opposing argument is indirect, consisting of three claims:
(i ) Unless everything we know, or think we know, about the asteroids

is wrong, they are virtually unchanged in nature and position since their
formation more than 3 billion years ago.

(ii ) The conditions of their formation, under any usual hypothesis,
preclude volatiles like water.

(iii ) The contribution of dead comets is negligible.
Conclusion : NO ICE!
Did you notice "Unless.. "?
The important point is (i ). If the claim of (i ) is wrong, (ii ) hardly

matters; the conditions of formation of Earth also seem to preclude water.
And the only reason to believe in (iii ) is to be consistent with (i ); there is
no evidence, for or against. The main evidence for (i ) - the correlation
of "type" ( = color) of asteroid with distance from the Sun - I consider
inconclusive.

It is assumed that "type", a surface property, reflects the internal
constitution of the asteroid. The fact that it’s been roasting in a particular
orbit for a long time is irrelevant, since type supposedly does not change
with time. It is also claimed that these orbits have hardly changed in
several billions of years, which should interest those who study chaotic
orbits. These points strike me as dubious, and certainly unproved.

If the question of ice in the asteroids were a theoretical point of minor
interest, we might be content with an application of Occam’s Razor to a
state of general ignorance. But it is immensely important.
The experts prefer to call them minor planets, but asteroids may be

radically different from all planets - not primordial rocks, but rather young
dust balls, with buried treasure. It’s worth finding out.

THE INITIAL BOUNDARY-VALUE PROBLEM

The body occupies an open set Q c Rn, lying on one side of the boundary
aS2, and aS~ is a compact smooth surface: class C 1 + r, (0r l)2014or C2 or
C2+r, in some later results. In D, are defined positive real functions of

Vol. 55, n° 2-1991.



724 D. B. HENRY

position p (density), C (specific heat), and the positive-definite symmetric
conductivity matrix K = On we have emissivity f: and absorptivity
a. It is very likely that E is close to 1; (’1, or an average value for a, is
measurable as 1 - (albedo). At a point x of aS2, the intercepted flux of
Solar energy, per unit area of aS~ and per unit time, is g (x, t); we suppose

is absorbed and ( 1- a) g is reflected. Then the absolute temperature T
satisfies

where N (x) is the outward unit normal to aS2 at x and 03C3 is the Stefan-
Boltzmann constant, approximately a=5.67x 10 - 8 W/m2 K4.
The case of physical interest is when Q is a bounded set in R3, but the

argument is the same for any dimension ~ 1, and it is important for the
calculations to also treat Q=(0, oo) in the case of constant K, p, C, etc.
For most of our calculations, Q could be bounded or not as long as aS2 is
compact; but convergence results as t ~ oo are delicate in unbounded
domains and the case n =1, Q=(0, CIJ), sufficiently illustrates the point.

If we model the Sun as a point source, in the direction s (x, t) from
x E aSZ at time t =1 ), then

Here ,f’ is the flux of Solar energy, or Solar constant: about

1,353 ±21 at the orbit of Earth, outside the atmosphere, decreasing
as the square of the distance from the Sun(338 ± 5W/m2 at 2 A.U.).
When the Sun is visible from x at time t, then so any
case. If Q is not convex, g will have discontinuous jumps as we cross a
shadow boundary. We usually want g to be at least continuous, and this
is physically reasonable since the Sun is not a point source, and g will be
roughly proportional to the area of the Solar disc visible at the moment.
It follows that g will be Lipschiptzian and probably better: C5/4 for generic
smooth surfaces 3Q. (If the horizon from a given point, in the direction
of sunrise or sunset, has curvature different from that of the Sun’s disc, g
will be locally C3/2; if equal, g will be ordinarily C5/4, and equality occurs
only at isolated points, for most smooth surfaces 
We will state our results, make some comments, and outline proofs

later.

THEOREM 1. - Let 0fl, n~1, and suppose 03A9 is an open set in Rn,
lying on one side of its boundary compact C1+

r surface.

Annales de l’Institut Henri Poincaré - Physique théorique



725THE TEMPERATURE OF AN ASTEROID

Suppose p, C, (’1, E are positive and bounded from zero, or their reciprocals
are bounded, and they are uniformly of class Cr; K (x) _ (x)]n ~ -1 is

symmetric, bounded, uniformly positive definite, and K, are both

uniformly of class Cr.
Finally suppose B is a positive constant and B(1 : Rand

g : aS2 x [to, (0) ~ R are continuous with

Then the problem (PDE) has a unique solution T on Q x (to, (0), of class
1 +r/2~ continuous in the closure with T (x, 0, satisfying

the differential equation in the classical sense in the interior, and the

boundary condition for t&#x3E; to, when we use

This solution has always, and is an increasing ( = non-
decreasing) function of (03C8, g), that is: if 0~03C81~03C82~B in S2 and

the corresponding solutions Tj
satisfy in 03A9  (t0, oo).
For any compact and 0  8  1, t + 1] E Ce° e~2 is

bounded uniformly for t &#x3E;__ tl.
If g uniformly, then Tv  T uniformly on compact sets

in Q x [to, oo).
Remark. - The local problem is like that in Friedman [3], and we use

a similar argument, with a Volterra integral equation on the boundary.
To extend the solution for all time, we use the maximum principle to
show as long as the solution exist.
We assume aS2 is C~’ r to apply the integral method. Aside from

mathematical convenience, we can only plead engineering experience in
radiation problems to justify this hypothesis. In fact, for many asteroids,
there is evidence from polarimetry that the surface is dusty. But it is

difficult to avoid assuming at least a Lipschitz surface, even in very weak
formulations.

THEOREM 2. - Assume Q, K, p, C, 8, a satisfy the hypotheses of the
first paragraph of Theorem 1, and for convenience, suppose 03A9 is bounded.

Assume 03C8 and g are bounded and measurable with

almost everywhere on 0 or aSZ x (to, (0), respectively. For any continuous

~~, g~ such that 0 ~ ~1  ~ ~ ~2 ~ B, and 0 ~ g 1 ~ g  g2 ~ 6 B4 E/(’1, the corre-
sponding solutions T~ have O _ T 1 ~ T2 ~ B, and for t ~ to,

Vol. 55, n° 2-1991.
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fo~ a continuous function B (t), independent of the choice of the ~~, g~.
There is a unique T : 0 x (to, oo) -+ R with T 1 ~ T _ T2 a. e., for every

such choice of the ~r~, g~, and it is of class C2 + r,1 + r/2 in the interior

(0), T(x, t) --~ ~ (x) a.e. as For any 081, tl &#x3E; to, and
compact K c Q, T I K x [t, t + 1] is uniformly bounded in C8,8/2 for t &#x3E;_- to.
(The boundary condition holds in a weak sense we won’t specify.)
Remark. - This result serves mainly to justify restricting attention to

continuous g, but the integral estimate, or a similar estimate, will be useful
in another context.

THEOREM 3. - In addition to the hypotheses of the first paragraph of
Theorem l, suppose 00 is of class C2+r and : g(x, t)=KN(x). t)
where G is locally C2 +r° 1 +r~2 or equivalently:

t ~ g (x, t) is locally C(1 1 + r)/2’ x ~, g (x, t) is differentiable, and

(x, t) ~ ax g (x, t) is locally Cr, r/2 (where "ax" indicates first order operators
acting tangentially on 
A sufficient condition is that g be C1 

+Y in both variables.
We also suppose that 0 _- ~r (x)  B and 0 ~ g (x, t) ~ 6 B4 £/(’1.
Then if 03C8 is continuous, the solution T is C2 +r, 1 +r/2 in compact subsets

of Q x (to, (0), though merely continuous as t -+ to + .
and is compatable with g on 00 X ~ t = that is

on then the solution is C2 +r,1 +r/2 on compact subsets ofQx oo).
Remark. - Theorem 3 follows from the Schauder estimates, once we

have a sufficiently smooth solution [C3, 3/2] for the case of smooth data;
and this is proved by examination of the integral equation used for
Theorem 1. f

Outline of proof of Theorem 1

The argument is similar to that of Friedman [3], Section 2 of Chapter 5,
so many details will be omitted.
We first extend p, C, K to the whole space, preserving smoothness and

positivity properties, and construct the fundamental solution T (~, t; y, s),

for t&#x3E;s, and for any continuous bounded cp and any x~Rn, as t ~ s+,

Annales de l’Instiut Henri Poincaré - Physique theorique
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In case p, C, K are constants and 

and in general, this is the leading (most singular) part of r when p, C, K
are evaluated at the point y. Since the coefficients don’t depend on time,

The solution is represented as

where

for t&#x3E; to, is a continuous extension to all Rn with 0~B[/
(~)~B and p is a continuous function on oo) which is not too
singular as t  to:

uniformly for x E aSZ as t -~ to + .
In this case, T is a solution of the differential equation of class C2 +r,1 +r/2

in Q x (to, (0) which extends continuously to the closure Q x [to, (0) with
T (x, t) ~ BjJ (x) as t ~ to, uniformly for x in compact sets in Q. We will
choose p so the boundary condition holds, and we find that this implies
the "not too singular" condition above, so this is indeed a solution of

problem (PDE).
According to Friedman [3], Thm. 1 of Sec. 2, Chap. 5, the boundary

condition holds at (x, t) E aSZ X (to, oo) if and only if

This is a Volterra integral equation with a mildly singular (absolutely
integrable) kernel, and a local solution may be found by
iteration.

It is easy to show

Vol. 55, n° 2-1991.
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and

uniformly in compact sets of x, as t -~ s +, so by continuity of ~, BJ/, also

2014BJ/(;c, t) = o (t - to) -1 ~2 when t ~ to + , uniformly in compacts. It folows
3~

t) = o (t - to) -1~2, as desired.
It is also easily proved that, if Bfív ~ Bfí uniformly on Rn g,

uniformly on SQ x [to, the corresponding Tv  T, uniformly on com-
pact sets in Q x [to, t 1 ] .

Suppose the integral equation (* *) has a solution p on (to, t*),

tot*oo, such that f is bounded on

SQ x (to, t*). It follows that the solution p (x, t) converges as t ~ t*-,
uniformly on aS2, and the solution may be extended beyond t*. Thus an
a bound for T will ensure global existence, and such a bound follows
from the maximum principle.

First assume the solution exists on { to _ t _- tl ~ and there is a constant
Ö such that 08B, 5~B[/~B-8 on Rn and ~~~(B-5)~, - ’Y - , - 

08 (x) 
_( )

on Then we show 0  T (x, t)  B on In fact,
5~B[/~B-8 always, and T(;c,/)-B[/(x,~)-~0 as x ( ~ oo, (so dist

(x, oo), uniformly in to __ t _- tl. Thus, if the result fails, there exists
(finite) x in Q and t in (to, such that 0  T  B in 03A9  [to, t), but T = 0
or T = B at (x, t). Perhaps x~03A9 - but then we violate Thm. 1, Sec. 1,
Chap. 2, of [3]. Therefore and [or ~0] where T = 0
[or, T = B] at (x, t), so ~~0 [or g &#x3E; 6 B4 E/a], both of which are false.
By continuous dependence, 0 ~ B[/ ~ Band 0 ~ ~ a B4 E/ (’1 imply 0 ~ T ~ B

on the interval of existence, so the solution exists for all The

representation of the solution and Friedman’s [3], Thm. 3, Sec. 4, Chap. 5,
give uniform bounds in 

Outline of proof of Theorem 2

We only prove the integral estimate for v = T2 - T1. We have

in Qx (to, oo), always, and on ~03A9  (to, oo),

with

Annales de 4 l’Institut Henri Poincare - Physique ’ theorique ’
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and then

For any ~&#x3E;0 there exists CE so that

for every (Q), hence with ~=1, we find for all t~ to,

Ontline of proof of Theorem 3

As noted earlier, we only need to show T is of class C3,3/2 when the
data are smooth. Assume that ~03A9, K, p C, f;(’1 are Coo and also 03C8 and g
are We will not yet assume compatability at 00. X ~ t = 

(1) Examination of the construction of the fundamental solution r in
[3], Chap. 1, shows -

where r’ (x, t; y, s; z) is for t&#x3E;s with

~t - S)~a +a’~~~ (i + I z )N ~ ~~t + as)°~,, a~ ~’ ~~x + r ~x’ ~; y’ s; z)

uniformly bounded for bounded and all choices of x, y, zeR"
and all non-negative N, oca’, ..., y. [In our case, T (x, t; y, s) = T
~x, t - s; y, ©)-~

(2) Define

for x~~03A9, t &#x3E; o.

LEMMA. - For any t* &#x3E; o and integer there is a number 
such that is a bounded operator on to itself with norm

andj= l, 2.
The kernel of the integral operator Fj may be expressed

t-n/2 I&#x3E; (x, t, y, 0; (x - y)/, Jt- s) where  satiafies estimates similar to

Vol. 55, n° 2-1991.
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those above for f, in particular, for any N~, there is a constant CN so

then

is bounded on 0~~* for ;ce3Q. If r is small, we may "straighten" the
boundary near x so

This gives the result for m =1.
Let a be a smooth tangent vector field on If cp is continuously

differentiable on aSZ and t&#x3E; 0,

where 1&#x3E;cr is obtained by differentiation of a and 1&#x3E;, and satisfies the same
sort of estimates or f, so the same argument gives the result for
m =1, and by induction, for all m.

(3) Choosing to = 0, the integral equation for p may be written

where For any ~0, B)/

(., are we may solve the integral equation for a continu-
ous /?: [0, (0) ~ C"" such that

so the compatability condition says precisely that p ’ (0) = 0.

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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Suppose and for small ö&#x3E;o define ~(~)=-(~(~+8)-~(~)).
Ö

Then

Since p (0) = 0, qõ (t) -~ p (t) as 8 -~ 0, where p is the solution of

Thus /?:[0, is continuously differentiable. Since we only
assumed zero-order compatability [~(0)==0], in general ~(0)~0, but a
similar argument shows/?(/) is C1 for with as

~ 0 +, so p E ([0. Cm (~Q)).
(4) In the interior Q, the solution is so it is enough to prove

smoothness near the boundary. Since p is quite smooth, it is easy to show
tangential derivatives extend continuously to the boundary. We find the
same holds for the time-derivatives using

From the boundary condition, KN.VT is smooth on the boundary.
Introducing appropriate coordinates near aSZ and changing variables in
the differential equation, we see the normal derivatives are also smooth
to the boundary, so T is locally C3° 3/2, as claimed.

Asymptotic behavior of solutions

Examination of the calculations for Theorem 2 shows we could find
much better estimates if we had a positive lower bound for the temperature
on We obtain such an estimate from the maximum principle on any
compact set in Q, such as provided aS2 is C2. With mild "compactness"
and "positivity" hypotheses on g, we obtain a positive lower bound,

Vol. 55, n° 2-1991.
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uniformly fot t ~ const., and thus obtain convergence as t ---~ oo . If the

heating rate is periodic or almost-periodic in time, the limiting "steady-
state" solution is equally periodic or almost-periodic.

LEMMA. 2014 Assume ~03A9 is C2 (ar has an interior sphere at each paint)
and the hypotheses of Theorem 1 hold. 7/) for and Q,
we have T(x, t)=0, then Q x t]. Equally, if 03C8~0 on 03A9 or g~0
on ~03A9  [to, t], then T (x, t)&#x3E;0.

Proo.f : - the result is immediate from Thm. 1, Sec. 1, Chap. 2
of [3]. If in Q x t] then T&#x3E;O in Q x (0, t) and in Q x {~}, while
T (x, t)=0, so KN . V T  0 at (x, t) and g (x, t)0, which is false. (Fried-
man’s, Thm. 14, Sec. 5, Chap. 2 of [3], does not apply, but a similar
argument - using a parabolic "cup" instead of an ellipsoid - gives the
result. For the one-dimensional heat equation, the argument is in
Cannon [2].)
We will use the following hypotheses:
The compactness assumption : For any compact interval J c R

and any sequence there is a subsequence such that

{g(., . + |~03A9 x J } is a Cauchy sequence in C x J, R).
The positivity assumption : For some positive constants ’to, co, we have

THEOREM 4. - Suppose a~2 is C2 or has interior spheres and the hypo-
theses of Theorem 1 hold. We also suppose that either Q is bounded or that
n =1, 0 = (0, (0), and p, C, K, E, a are constants. We assume given a
solution T of the problem (PDE) on S2 x (to, CIJ).

(a) I. f ’ the compactness assumption holds, any sequence tn ~ oo has a

subseguence tn. such that

exist uniformly on compact sets of aS2 x R, Q x R, respectively, and T * is a

solution of (PDE) - with g* in place of g - on all S2 x R, satisfying 0 ~ T* _ B
everywhere.

(b) If the compactness and positivity assumptions hold, then for any
compact K c Q, T (x, t) ~ const. &#x3E; 0 on K x [to + io, (0). Given any sequence
tn ~ oo, such that lim g ( . , . + tn) = g* exists uniformly on every campact

set in aSZ x R, it follows that

Annales de Henri Poincaré - Physique theorique



733THE TEMPERATURE OF AN ASTEROID

exists uniformly on compacts in n x R, the limit sotution T* depends only
an g* (independent of the initial value and the sequence tn) and satisfies
T* ~const.&#x3E; 0, uniformly in time, on each compact subset of Õ.

( c) If t ~ g ( ., t) is uniformly almost periodic [or periodic with period
or constant], 0~g~B as usual, and g~0, then the compactness and

positivity assumptions hold.
There is a unique non-negative bounded solution of on all

n x R, and it is almost periodic in t, uniformly for x~03A9, with frequency
module contained in that of g [or is periodic with period ~; or is constant
in time, respectively], and it is bounded from zero on every set K x ~, I~
compact iri Q. Any solution T of {ta, oo)
satisfies

uniformly on compact sets of x, and the convergence is exponential when
Q is bounded.

(~x) ( . , t), is bounded in Co (K), for any compact
K and 06 1, it is in a compact subset. We may choose; by the diagonal
process, a such that g (., . + ~ g* and also

exists uniformly on compact sets in 03A9 for 1,2,3, ... It follows

easily that T* = lim  (.,. + tn,) exists uniformly on compacts in R and
n’

is the limit solution claimed in (a).
is compact and liminf There exist

so ’~’ (xn, tn) --~ o. We may assume, by (a)&#x3E; that T
(.,. + tn) ~ T*, uniformly on compacts, and xn -4 x*, so T* (x*, 0) = 0. By
the lemma, T* = 0 on 03A9  (- oo, 0] so g*=0 on (2014 oo, 0], contracting
the positivity hypothesis. Thus  ~ const. &#x3E; 0 on K x [ta + to, (0). If

g ( . , . ~- t~) -~-~ g*, by (a), we have convergence of translates of T by som~
subsequence of {tn} . But we prove the limit solution T* is unique, depend-
ing only on g~, so in fact, T (.,. + t,~) --~ T* uniformly on compacts.

Indeed, T* (x, t) ~ c &#x3E; 0 on (recall on is compact) so for any
bounded, non-neatie solution t of on all Q x R --- with g~‘ in place
of g - the difference ~ == T* -1 satisfies

and |v|~const.~ on so 0c1~Q for some constant
c~. We show r=0.
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If Q is bounded, there is a C3 &#x3E; 0 so that

Thus,

so

when ~ ~. Let s -~ 2014 oo to 
If Q is not bounded, Q=(0, (0) and p, C, K, a, E are constant.

From the maximum principle, ~)~Mw(~, t - s) for t &#x3E;__ s, where
M = max I v (., s) I and w is the solution of

and

with w =1 for /=0, It suffices to show as too,
uniformly for x in compact sets.
We rescale t and x to get at x = 0, with w = 1 at 

By Laplace transformation in t, we find

which is (9 (t -1 ~2) as t ~ oo with x bounded. In fact,

and, from another representation, 01-w(x,t)exp-x2/y, for :c &#x3E; 0,
It is tather weak "convergence to 0" since w(x, t) -~ 1 as x  oo for

(c) By almost-periodicity, we may choose tn -&#x3E; oo so that

uniformly; for any solution T, lim T (. ,. + tn) = T exists uniformly on
compacts, and T is the unique positive bounded solution of (PDE) on
Q x R. The argument above shows T (x, t + tn) - T (x, t) -+- 0 uniformly on
compact sets of Q x R, but we need uniformity on K x R for every compact
Kc=Q.
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Let vn (x, t) = T + tn) - T (x, t) ; then

where gn = g ( . , . +f’n) and * 0 1 for all n, t, x.
Define w (x, t) as the solution of

with w =1 when ~=0. Then for any real s,

where M = sup T (Q x R) and En = g I Allowing s -~ - oo , we find
9QxR

on QxR. When n -~ oo, and 

uniformly, proving almost-periodicity: see Ameiro and Prouse [ 1 ] .
If g is periodic with period p, and if T is a "limit" solution, bounded

and defined for all time, then T (x, t + p) is another limit solution; there is
only one limit solution, so it is periodic in time with period p. If g is

constant in time, it is p-periodic for every p &#x3E; 0, so the same is true of the
limit solution, which is constant in time.
The convergence results are proved as above, by comparison with w.

Consider a homogeneous, isotropic ball of radius R in R3 ;
the solutions of

tend to the surface temperature Ts like exp ( - where

is the thermal relaxation time. For water-ice and various types of rocks,
the diffusivity K/p C is about 0.005 m2/s, so for R =1 km [10 km, 100 km],
the relaxation time is about 2,300 years [230,000 yr, 23 x 106 yr]. Thus we
can expect thermal equilibrium in any asteroid.

APPROXIMATE SOLUTIONS

An asteroid’s "day" - with few exceptions, from 3 to 50 hours - is many
hundreds of times smaller than its "year" - 3 to 6 of our years. We will
first neglect the yearly variation, consider periodic (daily) heating, and
find the temperature a short distance below the surface (perhaps a meter).
This is independent of the daily rotation but still varies during the year.
A second ( yearly) average gives a temperature independent of time, still
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near the surface, which we use as a boundary value for an equilibrium
problem in the interior.
We rescale time so the daily variation has period 2 ~. We also rescale

depth in units § (the skin depth, specified later-probably less than 10 cm).
The daily variation is confined to a depth of order 8, far smaller than the
diameter of the asteroid, and the variation of temperature with depth is
far more rapid than the variation along the surface. Thus the heat equation
becomes approximately

at depth ös below a given point of the surface, 2 03C0/(period of

rotation). We choose S= /2014~20142014 . 2014 ("skin depth") and also define
"conduction depth" 03BB = To N . f and "maximum surface temper-
ature" To=(03B1/~03C3)1/4. (Applied to Moon and Mercury, we find To = 390
and 700 K respectively, which are in fact close to the observed maximum
surface temperatures. A temperature gradient T o/À produces heat flux

equal to the maximum absorbed heat flux a ~‘’.)
Normalizing temperature and the heating rate g/a .,~’= y, as

functions of normalized time t and normalized depth s, we obtain

where y is 203C0-periodic in (angle from zenith to Sun) when the
Sun is visible, y=0 when it is not visible, This equation has a
unique non-negative bounded solution M on { 2014oo/oo, ~0}, which
is in fact strictly positive (0M1) and 203C0-periodic in time. We write

00

~) = ~ where ~ == (:I: so ~ = ~ 
2014 00

and the boundary condition becomes

The important quantity is Mo= lim the limit is essentially attai-
s -+ +00

ned when so the temperature at a depth
5.8, independent of daily variation.

Before studying (* *), we compute À and S for various materials for the
case To = 280 K, f = 300 kcal/hr.m2, a =8=1, which we might expect at
2 A.U., and for period 6 hours. (Recall 8 is proportional to /period, so
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8 should be doubled if the period of rotation is 1 day.) The following
values come mostly from Kreith, Principles of Heat Transfer. (I’ve seen
various values cited for Moon dust and don’t have much confidence in

these.)

It is not claimed that asteroids are made of window glass or ice at 0°C;
we only wish to display possible values of ~/8. For Moon dust, under
conditions on Moon, - Ta = 390 K, period = 29 1/2 days - ~/8 is about 1/70,
largely because of slow-rotation.
When ~/8 is large - excluding rockwool and Moon dust from the list

above --- equation (* *) is fairly simple. We have

or in the second approximation

Consider, for example, a sphere with vertical axis of rotation and
(x=8==l. At colatitude 6 (latitude ~/2-9), Y=(cost~)+.sin6, where the
normalized time has period 2 ~ and midday is t = E~ Then

In the limit 1../0 -+ 00 we have a = 03B31/40 = ( ; sin e) 
1/4 

at colatitude e. Even

for À/ö = 4, at the equator (8 = ~/~) the second approximation above gives
uo -- 0.7413, only 1 % = 0.7511 for À/&#x26;= 00. same applies
to nonspherical convex bodies, as noted later.)
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Another simple limit is when ~/8 2014~ 0: the boundary condition becomes
or

~ (sinO) ~.(0.4297+0.2964 cos t + 0.0477 cos 2 t + ...)
so Mo ~0.4297 (sin 8)~~. This is substantially below 0.7511 (sin 8)1/4 pre-
dicted for the other limit, À/ö ~ oo . It is quite possible that Moon dust is
a better thermal model for an asteroid surface than ice or solid rock.
There is some evidence that asteroid do have dusty surfaces, but it may
be dust sticky with hydrocarbon tars, which would have higher conductiv-
ity than Moon dust. Still it is important to know what happens when ~/8
is small. (For Moon itself, ~/8~0.014; this is a difficult case, but it’s the
only case where we have believable measurements.)
To study the variation with ~/8, we use the Galerkin method: for some

k, set for and choose uo, so that (so u
is real valued) and (* *) holds at least for frequencies 0, ±1, ..., db~.
This leads to the systems of algebraic equations

We take as before, and use the system for k =1 1 with
e=n/2:
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For colatitude 9, use where uo is found above with

This gives Mo=.74228 for ~/8=4, ~ compared
Ö Ö J
to .7413 computed earlier. The limit À/ö ~ 0 should have Mo= .4297 rather
than .5453, but this will (one hopes) improve for larger k. Note the rapid
variations as ~/8 -~0: a 12 % increase in uo when ~/8 increases from 0 to
1 /8, but only 5 % from 1 /8 to 1 /4 (or 1 /4 to 1 /2, or 1 /2 to 1, or 1 to 4).
The axis of Moon is not vertical (to the ecliptic) but its inclination is

only 1.53°, so this should apply if we avoid the poles. At latitude 20° (the
landing site of Apollo-17) we would expect

In fact, ~/8~1/70 and the average subsoil temperature is about 250 K.
This is far from satisfactory, but at least shows variation of ~/8 suffices
to explain the difference from 288 K which would be expected if ~/8== oo .
(The value of ~/8 is uncertain, and there may be other changes when we
consider Galerkin systems with k &#x3E; 1.)
Take 03BB/03B4= 1/8 and consider the variation with latitude. Note the "effec-

tive 03BB/03B4"=1 (coslat))-3/4 becomes large near the poles. We compare the
8

solution Mo (for k=1) with that expected u~0 = (1 03C0cos Oat) / B1/4 for 03BB/03B4 = oo .

("Effective ~/8"=0.78 or 2.6 at latitude 85° or 89°.) This gives approxi-
mately uo ~0.626 (cos (lat))1/5. The temperature of Moon, measured opti-
cally from Earth, varies more nearly as the sixth root of cos (latitude),
rather than the fourth root expected for ~/8=oo. This may be, in part,
due to ~/8-though it’s not entirely clear which "temperature" is being
measured.
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Calculation of y for a convex body

The geometry is simplest for a sphere, but calculation of y - the cosine
of the angle from zenith to Sun. while the Sun is visible - is the same for
any convex body. (There would be complications for non-convex bodies,
due to shadows.) ..
At a point of the surface 9Q, define the "local co-latitude" as the angle

from the zenith N (unit outward normal) to the positive axis of rotation.
Taking (0,0,1) as the axis of rotation and as the direction
of the Sun from positive axis of rotation to the Sun, 0  ~ : n]
for a point of ~03A9 with local co-latitude 8, hence coordinates
(sin e cos t, sin e cos e) at local time Of hour angle t, we find

The 1 03B3 is, for 003B103C0/2,
2~Jo

To treat ri&#x3E;1t/2, exchange poles: y is unchanged when we use

(7c-e,~-a) in place of (6,~). In the extreme ease x=~/2, we have

Vo == ~ sin e. as expected for vertical axis.
1t 

.

Note

~ ---~ - ~ 0 ’

Other Fourier coefficients of 03B3 may be computed similarly, but yo
suffices when ~/6 is large.
Of course, ~ will vary during the Suppose the axis of rotation

makes an with the normal to the plane of revolution, and let (p
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be the season angle [(p==0(mod2~) at Northern hemisphere mid-summer].
The axis of rotation has a fixed celestial direction (2014 sin P, 0, cos P) and -

the direction to the Sun is - (cos (p, sin (p, 0) so

For ~/8== oo, the daily average Yo was computed above and then
the yearly average of (for a circular orbit) is

where we used the average of the "summer averages" at e e to

keep 03B1~03C0/2. (We study non-circular orbits similarly - see "The effect of
eccentricity" below.)

Verticat axis of rotation, 03BB/03B4 = 00

This is the simplest case. For rapid rotation or ~/8 large we take
on the surface. Assuming constant conductivity inside, and

normalizing 03A9 to a unit ball, we must solve

00

The solution 03B8 = 03A3 C2nr2nP2n(cos03B8) where

for even n, and . Co = - 2 1tl/4 (1/8) !/(5/8) !  0.69920328 t is the average value.

We have used 0

and

for all ~t. The last [with Po=l, P~(x)==~] is used to compute the
it is a stable iteration, trustworthy for hundreds of steps - which

are needed near the poles. We have C~ 2014 0.3860 ~"~ for large even ~
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and Pn (cos o) ~ = O (n -1~2) away from e = 0 or n, but convergence near
the poles is very slow, so we record values near the pole (0=0, r =1 ).

The temperature is T = To. u, where To is the maximum surface temper-
ature. (The effect of finite ~/8 is probably to decrease u except near the
poles.)
The temperature near the poles is very sensitive to small changes in the

inclination of the axis, as we see below, but the rest of the structure seems
quite robust.

Inclination of axis 30°

Near the surface (for rapid rotation or large 03BB/03B4) u = yearly average
Yo -
For P=30° we compute summer average 03B31/40 for steps of 15°:

Note the (Northern hemisphere) summer average has maximum about
colatitude 60°, the Tropic of Cancer. From this we obtain an approximate
solution u of 0394u = 0 in {r1}, u = avg 03B31/40 on {r=1},
u (r, 8) = 0.670 - .183 r2 p 2 (cost 8) - .0773 r4 p 4 (cos 8) - .0286 r6 P6 (cos 8)
by approximating avg at e=OJ5°, 30°, ..., 90° with a polynomial in
cos28 (so it will be even with respect to the equator), then writing it using

On r =1, for 8 = 0,15°, 30°, ... , 90° we have
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The error is probably less than .01 [or 3 K], except near the poles where
it may reach .022. This is the basis for the isotherm sketch given earlier.

The effect of inclination of the axis

For the poles, has no "daily" variation and

avg ~yo~4 ^-_J 0.4297 x (sin Ø)I/4. (Applied to Moon, with P==1.53° from the
ecliptic and To = 390 K, we find 68 K as the polar temperature.) Away
from the poles avg is found by numerical integration. We take
To = 280 K and suppose ~/8 is large.
When the axis is vertical [or is 30°, 60°, 90° from the vertical] we can

expect surface temperature T  150 K within 15° of the poles [or 26°, 38°,
42°] and T  120 K within 6° of the poles [or 14°, 6°, 0°]. For

inclination 90°, with the axis of rotaton lying in the plane of revolution,
the minimum temperature (at the poles) is 120 K.

The theoretical "zero" polar temperature for p==0 disappears under
small perturbations: it would be 44 K When 03B2 is small, the
angle of incidence is always small so the polar temperature could be
unusually sensitive to roughness of the surface, and our implicit hypothesis
that absorptivity is independent of the angle of incidence could also
fail significantly. The effect of finite ~/8 is probably to decrease the

temperature.
Finally we note that, if the direction of the axis of rotation has a

uniform distribution, we can expect a fraction cos P of asteroids to have
inclination angle &#x3E;__ ~3, and half will have inclination ~60°.

The effect of eccentricity

We assumed a circular orbit; for simplicity, but we may consider a
general Keplerian ellipse with a bit more work. Most asteroids have small
eccentricity (~0.2), when - according to calculations below - the effect is
negligible. Nearly all asteroids have ~0.4, when the effect is slight (4%
in the extreme q)o=0)- But we would also like to treat "dead"
comet nuclei, covered with dust, when the eccentricity is not small, and
the is also significant variation with the perihelion angle cpo. In every case
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computed, however, the equatorial temperature for given semi-axis a -
while varying eccentricity ~, angle of perihelion cpo and angle of
inclination a maximum for a circular orbit with vertical axis of
rotation (P==0). Among present comet orbits, the highest temperature
(smallest a, smallest period) occurs for comet Encke: period 3.3 years,
~=2.2 AU. Thus all (present-day) comet orbits give temperatures below
that expected at the inner edge of the asteroid belt, at 2 A.V. A dead
comet nucleus, covered with dust, which is not very small and does not
break up into small pieces, and which does not pass very close to the Sun
(so it doesn’t lose its dust blanket), could retain its volatiles during billions
of years in cometary orbits.

Consider an orbit with major semi-axis a. Let To be maximum surface
temperature at disance a from the Sun, À/ö the corresponding parameter
value, leading to temperature To ~o (cp, ~/8) [daily average] slightly below
a given point of the surface, when the season angle is po Note uo depends
implicitly on the point of the surface considered, as well as P, the inclin-
ation of the axis of rotation. At distance r from the Sum, the subsurface

temperature is To a and the time-average on an orbit
r

with perihelion angle cpo and eccentricity e - i. e.,

where

The case "e = o" was considered above; we write for the

average of For small e, it is reasonable to expect
where

We study Q below and see it is decreasing with limit

as e ~ 1- . For large e, the body spends most of its time near aphelion,
with season angle near (For example, the comet Halley with
~=0.967 spends 50% of its time within 32° of aphelion, and the effect is
stronger for larger e). Thus in the limit ? -~ 1- ,

We compute TQ Mo at the equator (colatitude 90°) for a convex body with
~/8 = oo for various choices of eccentricity e, inclination P, and perihelion
angle (p=0°/q)o=90°. (Note or 180° give the same results, as do
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(p= ±90°.) When e = 0 1 or P==0, there ’ is no variation with (po, so we give "

only one temperature.

Subsoil equatorial temperature ’ for a ’ =2 A.U., To =280 K, Ã/8 = oo, for perhelion angle
Po = 

The "zero" for e =1, P=90°, (po=0, should not be taken too seriously;
it would be 69 K for 1°. 103 K for 5°.

We note the usualy monotone dependence on e. For P=73°, (po=90°,
it is not monotone. For p=75°, the temperature (apparently) decreases
with e when (po ~ 60°, increases when (po ~ 75° and for P = 90°, it decreases
when cpo ~ 30°, increases when 60°.
The values for e =1 are computed from

2~/2/TT~ x 
which has a maximum (and is independent of Ø) for (po==?r/2. In general,
Mo is unchanged when we replace (po by - (po cpo, so it is reasonable
to expect extreme values at and (po=7i:/2. This certainly holds when
e =1 and is computationally verified below in other cases.

It appears that Q(~)Mo(~==0) is a reasonable approximation to u4 unless
both e and P are large, so there is substantial variation with (po.

Variation of subsoil eguatorial temperature with perihelion angle cpo.

(*: value not computed.)

Calculation of Q:
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where

00

and as ~-~1-, Q(~)-~ lim ~=2/2/7r. Also 
1

is decreasing, since cj~_~=l-l/4~l, and the series converges in

0~~ 1, though slowly for large ~.

Q may be readily expressed as a hypergeometric function, in case we
need more detailed information.
The comets of period less than ten years are most interesting for our

purposes. There are 53 of these, and 35 (about 2/3) have eccentricity in
0.41  e  0.67, with 9 (about 1 /6) below and 9 above (maximum e = 0.85
for Encke). For the orbit of Encke (a = 2.2 A.U., e = 0.85), we find

for perihelion angle ((po=0)/((po=90°). The calculations are for ~/8=oo;
finite ~/8 would probably give lower temperatures. The orbit of Encke
has the shortest period, yielding the highest temperature, of any ( present-
day) comet orbit. It thus appears that, in any cometary orbit, the temper-
ature is no higher than would be expected at the inner edge of the asteroid
belt, which permits long-term survival of ice.

APPENDIX

Rate of evaporation of ice

A Maxellian distribution of velocities at temperature T results in a mass

flux F = - /2014 2014~2014 where p is the pressure [N/~] and v the r. m. s.
v B 27t 

speed v = at T kelvins, for water molecules. This

is the equilibrium rate at which mass crosses a surface, and if p is the

vapor pressure, the rate at which mass hits or leaves a solid surface of
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the material. The speeds are typically several hundreds of meters per
second; when they strike solid, they probably bounce off except for a
small fraction a which "stick". Then a F is the rate of addition of mass
to the surface and inequilibrium, also the rate of loss of mass by evapor-
ation. We assume the same rate of loss in a vacuum; the only difference

is that no mass is added. If p is the density of the solid, a F / p 2014 is the

rate of evaporation of ice in a vaccum.
Unfortunately we don’t know the value of a; fortunately this doesn’t

matter in our problem. The ice is covered by dust and conditions near
the ice surface will be near equilibrium, so the important flux there is F,
not a F. For water-ice, with specific gravity 0.9,

(For the last two, vapor pressure was extrapolated in the form a exp ( - b/T)
with constants a, b). This is not the rate of evaporation; we have not
considered the effect of the dust blanket.

Moon dust, by mass, has 30% of its particles of diameter less than
50 and 30% between 50 and 100 ~,m (in a sample from Apollo-12).
Dust expelled from comets is also predominantly small, micron-size.
Smaller particles make more effective "blankets", and we will use the
probably conservative figure of 100 ~.m for the mean free path in the
interstices between the dust particles.
A simple-minded model of the process has a water molecule proceeding

in discrete steps: it may stay where is, with probability 1-p, or go one
place to the right or left with equal probabilty /?/2, 0/~ 1. At one end,
the ice, the flux F is given; at the other end, there is no inward flux from
the vaccum. (ICE) (VACUUM). In equilibrium, the value of p doesn’t
matter, and we have flux F/(N + 1 ) into the vacuum. At the ice surface,

the flux F is nearly all reffected F out, ’ F in ), justifying the

hypothesis of thermodynamic near-equilibrium at the iceface, for large N.
If each "step" has length l and the dust blanket has thickness L=N/, we

find 2014 . 20142014 as the rate of evaporation. ( A meter of micron-sized particlesp L+l
reduces the rate by roughly 10 - 6.)
A more realistic model gives nearly the same result. A water molecule

~ travels in a straight line, with given speed v, until it hits 
the has an exponential distribution with average value l. It
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may "stick" to the particle, with probability 1-p, for an exponentially
distributed waiting time, before being emitted with and direction
uniformly distributed on the unit sphere. Or, with probability p, it may
be immediately scattered to a new direction, uniformly distributed, with
the same speed ~. The inward flux at the ice surface (X = 0) is given,
following Lambert’s law; there is no inward flux from the vaccum, at
X==L, In equilibrium, the possibility of "sticking" doesn’t matter and we
obtain a standard transport equation

with f (o, ) = 2 F  on 0 1, f (I,, ) = o on -1 o. Here  is the
cosine of the angle of flight with respect to the X-dirction and

2 1 f (X,.) is the flux at X or those particles with angle 6 in

 cos 03B8  2.[The total inward flux at X = 0 is f (0, )d  = F; the

rate oh evaporation is 1 03C1 f f (L, d
we use the "discrete ordinate method", replacing the integral by a

Gaussian integration scheme,

where ( -k=- k) are the roots of the polynomial P2m

and ck=1-1 P2m(X)/{(X- k)P’2m( k)}, so the result is exact 
when (p is a

polynomial of degree ~4m - t. Then/(X, k)~fk(X) where

The flux to the vacuum is
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Discarding terms exponentially small, 0(~ since L~~ we find

evaporation rate _.1 p /(L, times
p Jo

We will use - 201420142014- Md recall the factor 20142014 of the simple scheme
p L+L4/L L+/

above].
Suppose. the ice has fraction /(by volume) of dust; then assuming

constant temperature, the thickness L of the dust blanket satisfies

and 0 for large times, L ~ ~ we have

We choose /== 100 I 1 100 em.!""" 1/2. and o then L i!! approximately

For I;;:;:; 1 11m [Or 1 em], multiply by 1 [Of 10]. The factor /f is
between - and 2 when .2~/~.8.
2.n", 

n.’

If L is not very small compared to the size of the asteroid, there may
be significant variation of temperature, contrary to hypothesis. But this
will usually mean a decrease in temperature, hence in L. As an example,
consider a one-dimensional (radial) model for a ball of radius 3 km with
constant temperature 210 K at the surface. 196 K at the center, supposing

the conductivity of ice is -2014 that of ice, and the vapor pressure is 

(a,b constants). Then. instead of 1 billion years, it takes nearly 7 billion

Vol. 55, n° 2.,1991.



750 D. B. HENRY

years to melt through-or 4 billion years, considering only the temperature
effect (supposing the dust has the same conductivity as the ice).
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