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ABSTRACT. - A discrepancy between classical and quantum scattering
for Stark Hamiltonians is shown to exist for slowly decaying potentials.
Let Ho= -(l/2)A+~i and H=Ho+V(x) on L2 (~n). For 
0y~l/2, as I x ~ -~ ao, the usual quantum wave operators between Ho
and H do not exist. In classical one-dimensional scattering the classical
wave operators exist and are asymptotically complète for the correspond-
ing classical problem for V (x) = 9 (log (1+~)))~), ex&#x3E; 1, as ~ -~ 2014 oo .

RÉSUMÉ. 2014 Nous montrons un désaccord entre la diffusion classique et
quantique pour les hamiltoniens de Stark qui possèdent des potentiels à
décroissance lente. Soient Ho = -1/2A+~ et H = Ho + V (x) sur L2 (~n).
Pour 0y~l/2 si Ixl ~ 00, l’opérateur d’onde habituel
n’existe pas entre Ho et H. Dans le cas de la diffusion classique à une
dimension, les opérateurs d’onde classique existent et sont asymptoti-
quement complets pour V (x) = 0 ((log (1+|x|))-03B1), 03B1&#x3E;1, si x~-~.

(1) Supported by the Danish Natural Science Research Council.
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1. INTRODUCTION

In récent developments in scattering theory analogies between classical
and quantum mechanics have played an important rôle. This is in particu-
lar the case with the geometric method where one décomposes phase space
(or configuration space) into certain régions where the motion of the
quantum particle is closely approximated by the corresponding motion of
free classical particles. It is therefore of interest to investigate a case where
this analogy breaks down.

In this paper we study in détail the quantum scattering for the free
Stark Hamiltonian Ho=-(l/2)A+~ on and its perturbation
H = Ho + V by a slowly decaying potential, and the corresponding classical
problem in one dimension. Our main result can be summarized briefly as
follows: There is a discrepancy between quantum and classical scattering
theory. In quantum scattering theory the usual wave operators

= s- lim eitHe-itH0 do not exist for potentials with a behavior 

0 y ~ 1/2, as jCi ~ - 00. In the corresponding one-dimensional scattering
problem the classical wave operators exist and are asymptotically complète
for potentials with a decrease as slow as (9((log(l+~))*°’), ex&#x3E; 1, as

x -~ - oo . Thus the concept of a long range potential is différent in the

quantum and classical case. This is in contrast to the case of usual

Schrddinger operators (zéro electric field), where the borderline between
long range and short range behavior is the Coulomb potential c ~ x ~ -1
both in the classical and the quantum case.

This paper is organized as follows: In section 2 we give our result on
non-existence of quantum wave operators and discuss the concept of a
Stark short range potential in some détail. In section 3 we prove existence
and completeness of classical wave operators for the one-dimensional
problem with a slowly decaying potential. Section 4 contains various
remarks.

2. ON LONG RANGE POTENTIALS IN QUANTUM SCATTERING
FOR STARK HAMILTONIANS

In this section we give results that characterize a class of long range
potentials for the free Stark Hamiltonian. To explain the concept of a
long range potential we first give a review of the concept of a short range
potential.
We start by recalling the usual framework for quantum scattering. Let

dénote the free Stark Hamiltonian on It

is essentially self-adjoint on the Schwartz space The domain is
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231STARK HAMILTONIANS

denoted by ~ (Ho). The spectrum is the realline, i. e. and it is

purely absolutely continuous.
Let V dénote a symmetric operator with  (V) ::J  (Ho) and assume

that V is Ho-bounded with relative bound less than one. Then H = Ho + V
is self-adjoint with ~(H)==~(Ho). V is called the potential. The Miller
wave operators are defined as

for (p6~(W~)={(pe~f; lim e. g. [7], [11] ] for

général results on wave operators. The wave operator are said to be

asymptotically complète, in Range (W ±) _ ~p (H)1, where Yf p (H) dénotes
the closed subspace spanned by the L2-eigenvectors of H.
We introduce the following définition :

DEFINITION 2.1. - The potential V is said to be Stark short range

(or Stark-SR), if the wave operators W:f: exist and are asymptotically
complète.
We state briefly some sufficient conditions for a potential to be Stark-

SR. Let = -/?i. The following result is proved in [5]:

THEOREM 2.2. - Let V be a potential as above. Assume

(i ) (H + /) ’ ~ - (Ho + i ) -1 is compact.

(ii) There exist l~0 and a real number Jl&#x3E; 1 such that the
operator

extends to a bounded operator on ~.

Then V is Stark-SR.

The condition (ii) requires momentum decay. One can give other explicit
conditions for a multiplication operator. The first characterizations of

V (x) as a Stark short range potential were obtained in [ 1 ], [ 13] (existence),
and [2] (completeness). More general results were obtained by Yajima [ 15]
and Simon [ 12] . We state the following result from [ 15] : Let 
satisfy O~X:t ~ 1, X+ + x - =1, and X+ (x 1 ) =1 for 1, X+ (x 1 ) = 0 for
xl -- o.

PROPOSITION 2.3. - Let V be a real-valued function on Assume for
some Õ&#x3E; 1 /2

Vol. 54, n° 3-1991.
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with V1 (!R"), lim V1 (je) = 0, and V2 E L2loc(Rn) such that for some

v with 0v4,

Then V is Stark-SR.
Stated * in rough asymptotic form, the conditions of Proposition 2.3 are ’

essentially

where we wrote x = ’) x f~n -1.
There are other classes of potentials that are Stark-SR without having

this asymptotic behavior. The decay in the ~ -~ 2014 oo direction can be

replaced by an "oscillation" condition. We recall the following result from
[3], [4] :

PROPOSITION 2.4. - Assume n =1. Let V be a 

decomposable as where V 1 satisfies the condition in

Proposition 2.3, and where U = W" with bounded wbM
bounded derivatives. Then V is Stark-SR.
The results above characterize some classes of short range potentials

for the free Stark Hamiltonian Ho. We should note that potentials satis-
fying the conditions in either Proposition 2.3 or Proposition 2.4 also

satisfy the two conditions (i ) and (ii) in Theorem 2.2.
The définition of a long range potential can be given in the form of the

négation of Définition 2.1. This is not entirely satisfactory, since usually
other spectral properties should be preserved. For example, we would like
to have the property that where dénotes the

absolutely continuous spectrum, and also the invariance of the essential
spectra: It was conjectured in [13] that the borderline
for the short range potential should be the behavior O ( ~ xl I -1~2) as

For the purely homogeneous potential of the form 
~0, 1 /2 (y 1 /2 if n =1 ), this conjecture was proved in [ 10] . Hère
we présent a generalization of this result:

THEOREM 2.5. - 

1 /2 (y  1 /2 if n =1 ), and Vi is a symmetric operator satisfying the
conditions in Theorem 2.2. Let cp E H with Fourier transform î&#x3E; E C~0
Assume that the limit

exists in ~f. Then (p=0. The same result -~ 2014 oo .
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Proof. - The proof is obtained by modifying the first step of the proof
in [10]. Let cp E ~ with î&#x3E; E C~ be given. We note that cp E ~ ((Ho - i)k)
for any integers Let u + = lim Using the

général arguments in [7], [ 11 ], we get that M+ E ~ ((H - i)k) and furthermore,
(H-0~+=W~((Ho-~(p).

Let Redoing the first step in the proof of the theorem
in [ 10], we get

The first term in (2.3) is treated as in [10]. Namely, by a homogeneity
argument and the propagation estimate used in [1], we have for some
constant C&#x3E;O

for ail t &#x3E; s &#x3E; T with T &#x3E; 0 sufficiently large.
To treat the second term of (2.3) we recall the propagation estimate

used in [3], [5]: For we have

1 ~-- ~i2) S~2 e -’ itHp ( 1 ~- A2) S~2 I I ~ C ( 1-~- t2) 5~2, 
where ~.~ dénotes the operator norm on We rewrite the integrand in
the second term in (2. 3) to get

Hence we have

Collecting thèse estimâtes, we have

Vol. 54, n° 3-1991.
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The left hand si de of the inequality above is bounded by 2/1 q&#x3E; 112 and the
intégral in thé first term of the right hand side diverges as ~+00.
Therefore we have cp = 0.

Q.E.D.

Remark 2.6. - (i ) The result in Theorem 2. 5 can also be proved by
using the chain fuie for wave operators and propagation estimâtes for
Ho + Vo, where and Vo(x)=Vo(x) for 

(ii) The result in [ 10] can be strengthened slightly: Assume that
lim exists for some Then (p=0.

t -"±00

We can then also strengthen the result in Theorem 2.5 similarly under
the additional assumption that k = 0 in (2 . 2).

3. ONE-DIMENSIONAL CLASSICAL SCATTERING THEORY
FOR STARK HAMILTONIANS

In this section we prove a result on one-dimensional classical Stark
Hamiltonians. The main result is asymptotic completeness in the classical
scattering theory for a class of potentials with slow decay as x -~ - oo .
Throughout this section we consider only the one-dimensional case.

Some remarks on higher dimensions can be found in section 4.
The free classical Stark Hamiltonian is the function

on phase space !R2. Newton’s équation is

with the solution

where we used the dot notation for the time-derivative. We introduce the
following assumptions for slowly decaying potentials.

ASSUMPTION 3.1. - V is a real-valued differentiable function on IR such
that V, and V’ is Lipschitz continuous.

Furthermore, there exist C&#x3E;0~~1,(x&#x3E;l,~o0 such that

Annales de l’Institut Henri Poincaré - Physique théorique
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with

o

with the convention n (...) = 1.
j= 1

ASSUMPTION 3.2. - V is a real-valued continuons function on IR. There
exist ~&#x3E; 1, Po&#x3E; 1, and C&#x3E;O, such that for all !~!~P

where (pp is a function of the form (3.4) for some A;~ 1.
We note that a function P0152 from (3.4) satisfies

and

provided t is sufficiently large.
Let V satisfy Assumption 3.1. The full Hamiltonian considered hère is

H (x, p) = Ho (x, p) + V (x). We look at solutions to Newton’s équation

It is well-known that there exists a unique solution to (3 . 5), defined for
ait The initial conditions (xo, vo) in (3 . 5) are classified according to
the large time behavior of the solution. We write (xo, v0)~Mbound and call
the solution to (3 . 5) a bound state, if

i. e. the orbit lies in a bounded subset of phase space. We write

vo) E Mscat and call the solution to (3 . 5) a scattering state, if there
exist two free solutions ~ (t) [see (3.2)] such that

Asymptotic completeness in classical scattering theory means that there
are no other types of asymptotic behavior, up to a set of measure zéro,

Vol. 54, n° 3-1991.
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i. e. that we have

with a set of Lebesgue measure zéro. See [11] for further discussion
and références.
We have the following result:

THEOREM 3.3. - Let V satisfy Assumption 3.1. Then the classical scatter-

ing problem for (3 . 5) is asymptotically complete.
Proof - We shall only give the essential step in the proof. We consider

the t ~ + oo case. The other case is treated analogously. Let je (t) be a
solution which is not bounded in time, i. e. we assume

Arguing as in [3], we conclude from conservation of energy and bounded-
ness of V that we actually have

Using Assumption 3.1, we can find C &#x3E; 0 such that

for ail and then we can fix to &#x3E; 0 such that for ail we have

.x (t)  0 and

We integrate Newton’s équation from to to t to get

where we first used intégration by parts, and then Newton’s équation.
Using (3 . 6) in (3 . 7), we get

Annales de l’Institut Henri Poincaré - Physique théorique "
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for all for some Going back to (3 . 7), we conclude the
existence of the limit

The estimate (3 . 8) allows us to rewrite (3 . 7) as

We note the following expression for v + :

We use (3.9) to find t2 ~ t1 such that for ail 

Integrating both sides of the inequality above, we have

Thus there exists ~3~2 such that for ail ~3

We can now integrate both sides of (3.10) once more to get

Using (3. 11) and Assumption 3. 1, we see that the following limit exists:

We also get the expression

This complètes the essential step of the proof. The remaining arguments
are well-known. See, e. g. [3], [11].

Q.E.D.

Vol. 54, n° 3-1991.
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THEOREM 3.4. - Let V satisfy Assumptions 3 . 1 and 3 . 2. Let (ç, v) E 1R2
and , let y (t) = - ( 1 /2) t2 + t v + ç. Then there , exist solutions x + (t) and , x - (t)
to Newton’s equation (3. 5) such that

Proof. - We prove the result in the ~+00 case. The other case is
treated analogously. We omit the superscript + in the sequel. We look
for the solution in the form

where u E C2 and 1 + |u(t)| ~ 0 as t~+~. If x(t) satisfies New-
ton’s équation, then u (t) must satisfy

We transform this differential équation into a pair of intégral équations
by the arguments in the proof of Theorem 3 . 3. A solution is then found
by using a fixed point argument. To be more spécifie, we proceed as
follows:

Let to ~ 1 be a parameter to be fixed later. Let

and define on B (t0) the metric

With this metric B (t0) becomes a complète metric space.
Define a map by J (u, w) = (û, w), where

To continue the proof we need the following lemma :

LEMMA 3 . 5. - There exists T 0 ~ 1 such that for all To the map J is
well-defined on B (t0) and takes B (t0) into itself. There exists a constant
co, 0  co  1, such that for all t0~T0 and all (u 1, w 1 ), (u2, we
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have

i. e. J is a , contraction on  ,’ (to).

Proof of Lemma , 3 . 5. - For a fixed o (ç, v) E ~2 we can find so &#x3E;_ 1 and o
C &#x3E; 0 1 such that

for ail , and all (u, Using Assumption 3.1, we get from
(3.16) for all ,

Thus u is a well-defined continuous function, and M(~)~0as~-~oo. From
(3 .17) we get for ail 

Thus w is a well-defined continuous function, and w(~) -~ 0 as t -~ oo . The
estimâtes (3.19) and (3 . 20) then show that (u, w) E ~ (to), if to &#x3E;__ To, and
To is sufficiently large.

Using Assumption 3 . 2, we get after some straightforward computations
that (3 .18) holds, provided To is chosen sufficiently large.

Q.E.D.

Proof of Theorem 3 . 4 continued. - For to &#x3E;_ To, Lemma 3 . 5 and the
contraction map theorem imply the existence and uniqueness of

(u, w) E  (to) with

It remains to verify that oo)) and satisfies (3.15). We write out
(3 .12) explicitly using the définition of J to get for ~ to

Vol. 54, n° 3-1991.
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and

It follows immediately from (3.22) and (3.23) that u~C1((t0, (0)) with

M(/)=wM. (3.24)
We introduce the abbreviations

Then/, g E C 1 oo )), and we can rewrite (3 . 23) as

or

The discriminant is given by

Since both f and gare bounded functions, there exists t1~t0 such that
for aIl t &#x3E;_ t~ we have D(~(l/2)~. It follows that either solution to
(3 . 25) is in C1 oo)). Hence oo)) and M=w. We differentiate
both sides of (3 . 23) and make a substitution w = û to get

This expression can be rewritten as

Taking we get

and hence, for 

By uniqueness and global existence of solutions to (3.5), we extend this
result to ail ~e!R. This concludes the proof of Theorem 3 . 4.

Q.E.D.

Annales de l’Institut Henri Poincaré - Physique théorique
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Let (ç, and let Xi be the solutions from Theorem 3 . 4 satisfying
(3.14). We define the classical wave operators by

We can reformulate the results of Theorems 3 . 3 and 3 . 4 as

COROLLARY 3 . 6. - The classical wave operators defined by (3 . 26)
are bijections from 1R2 onto Mscat.
Remark 3.7. - The decay condition in Assumption 3.1 is almost

optimal for asymptotic completeness. This can be seen by examining the
expression (3.13) for a potential of the type V (x) = cp 1 (x),
xxo, x&#x3E;xo+ 1, where (pi is the function from (3 . 4) with a =1.
In this case we find that the limit

does not exist.
It is possible to extend the result of Theorem 3 . 3 to include the class

of "oscillating" potentials from [3].

THEOREM 3 . 8. - Let V = V 1 + U, where V 1 satisfies Assumption 3 .1

and U = W’, with W, W’, and W" is Lipschitz
continuous. Then the classical scattering problem for (3 . 5) is asymptotically
complete.

Proof - The result follows by combining the proofs of Theorem 3 . 3
above and Theorem 4.1 in [3].

Q.E.D.

The conclusion of Theorem 3.4 has not been obtained for the class of

potentials considered in Theorem 3 . 8.

4. REMARKS

If we compare the quantum scattering results in section 2 with the
classical scattering results in section 3, then we observe a remarkable

discrepancy between the two cases. The classical scattering is asymptoti-
cally complète for potentials with slow logarithmic decay, e. g.

whereas in the quantum case no state
is asymptotic to a free state (in the sensé of lim ~e-itH cp 

- = 0)
. 

for potentials with decay 0y~ 1 /2, as ~ -~ - oo . This seems to be
the first discrepancy of this type, which has been observed. For the case
of Schrôdinger operators with magnetic fields a discrepancy in the opposite
direction has been observed. For magnetic fields with decay rate
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B (x) = (3 () x ~ -s), 3/2  S ~ 2, as x ~ -~ oo, the quantum system is asymptoti-
cally complète, whereas the corresponding classical system need not be
asymptotically complète, see [9].
The quantum scattering for Stark Hamiltonians with long range poten-

tials satisfying ~~V(~)~C(1+~~)’~’’’~ for some

081/2 and ail multi-indices a has been studied in [ 14] by using the
stationary modifier analogous to the one used for ordinary Schrôdinger
operators in [8]. A time-dependent modified free évolution of Dollard-
type has been constructed in [6], and asymptotic completeness proved in
the one-dimensional case. The results in [6] show that a very mild modifica-
tion of the free évolution is needed to get the existence and completeness
of the modified wave operators.

It would be of considérable interest to study the classical system in the
higher dimensional cases, to see whether the completeness holds for poten-
tials with slow decay (in the sensé of Assumption 3 .1 ) as x 1 --~ - oo .
Preliminary computations indicate that this may be the case. Détails of
thèse computations will be given elsewhere.

In [1] the classical scattering problem for Stark Hamiltonians is discussed
in fR" for a force with decay C(~i ~’0’ Some growth in the x’-variable
is permitted. As the authors remark, this class is too general to hope for
completeness to hold.
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