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The Mourre estimate for regular dispersive systems

C. GÉRARD
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Ecole Polytechnique, 91128 Palaiseau Cedex, France

Ann. Inst. Henri Poincaré,

Vol. 54, n° 1, 1991 Physique theorique

ABSTRACT. - Dispersive N-body Hamiltonians arise when one replaces

the non relativistic kinetic energy for N particles 03A3- 1 0 xi by a general
1 2 mi

kinetic term 03C9(Dx) for a real fuction 03C9(03BE). We describe in this work a
class of dispersive Hamiltonians which we call regular for which we prove
a Mourre estimate outside a closed and countable set of energies called
thresholds which can be explicitly described. The regularity condition
depends only on the kinetic term co (~) and on the familly of coincidence
planes Xa which describe the N particle structure of the potential energy
term. As a consequence of the Mourre estimate we establish absence of

singular continuous spectrum and H-smoothness of (~c)’~ for s bigger
than 1/2, which is a basic tool in scattering theory. We then prove
some results on scattering theory for short range interactions. We obtain
existence of wave operators, orthogonality of channels and asymptotic
completeness of wave operators in the two cluster region.

RESUME. 2014 Les Hamiltoniens a N corps dispersifs sont obtenus en
remplaçant Ie terme d’energie cinetique non relativiste pour N particules

1 2mi 0394xi par un terme cinetique general pour une fonction

Nous decrivons dans ce travail une classe de Hamiltoniens

dispersifs que nous appellons réguliers pour lesquels nous etablissons une
estimation de Mourre en dehors d’un ensemble fermé et denombrable de
niveaux d’energie appeles seuils. La condition de regularite ne depend que
du terme cinetique t~ (~) et de la famille de plans de coincidence Xa qui
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60 C. GERARD

decrit la structure a N corps du terme d’energie potentielle. Comme
consequence de 1’estimation de Mourre nous montrons 1’absence de spectre
singulier continu et la H-regularite de ~ x ~ - S pour s &#x3E; 1/2 qui est un outil
de base dans la theorie du scattering. Nous montrons ensuite quelques
resultats sur la theorie du scattering pour des interactions a courte portee.
Nous obtenons 1’existence des operateurs d’onde, l’orthogonalité des
canaux et la completude asymptotique dans la region a deux corps.

1. INTRODUCTION

We describe in this paper a class of N-body dispersive systems for which
a Mourre estimate can be proved outside a closed and countable set of
points, called the threshold set. This threshold set can be described in
terms ,of eigenvalues of some suitably defined dispersive sybsystems. To
describe more in details this work, let us start by considering the standard
N body Hamiltonians.
The basic Hamiltonian describing N non relativistic interacting particles

is the following:

Here xi~R3 and mi &#x3E; 0 are the position and mass of particle number i.
The spectral and scattering theory of this type of Hamiltonians have

been the subject of an vast amount of study since the fifties. Concerning
the spectral theory, an important step was taken when Perry-Sigal-Simon
[PSS] succeeded in applying to H the abstract commutator method of
Mourre [M], generalizing earlier work of Mourre for N = 3. This proof was
greatly simplified afterwards by Froese-Herbst [F-H]. As a consequence of
the Mourre estimate, one gets absence of singular continuous spectrum,
some results about embedded eigenvalues, and local H-smoothness of the
operator (~)’~ for s &#x3E; 1 /2, outside a set of energies called thresholds,
which are the eigenvalues of some subhamiltonians. The H-smoothness of
~ x ~ -S for s &#x3E; 1 /2, is an important tool in the proof by Sigal-Soffer [S-S]
of asymptotic completeness for short range systems (i. e. with 

decaying faster s&#x3E;0). It allows for example to control
lower order terms in commutators of H with phase space operators (see
[S-S]).

Annales de l’Institut Henri Poincaré - Physique théorique



61MOURRE ESTIMATE FOR REGULAR DISPERSIVE SYSTEMS

Dispersive systems arise when one changes the kinetic energy in H. Let
us give two examples. In relativistic quantum mechanics, one can replace

the operator - - 0394xi by (- 0394xi+2m2i)1/2. Then

is a Hamiltonian where the kinetic energy is treated relativistically (but
not the interaction term).
Another example (which seems more difficult to treat) comes from solid

state physics. Consider N electrons in a perfect crystal, where one uses a
Peierls effective Hamiltonian to describe the interaction of each electron

with the crystal lattice. Then if one considers N electrons belonging to
the same band of the one electron problem, one gets (at least on a formal
level ) the following Hamiltonian:

Here E (8) is the Bloch eigenvalue of the band, which is r* periodic, if
r* is the dual lattice of the crystal. Other examples where the kinetic
energy is similar arise in the scattering of spinwaves for the Heisenberg
model.

Let us first give the definition of a general dispersive system (see [De 1],
[De2]). We consider a finite dimensional vector space X, with a familly

}a E A of vector subspaces of X. We endow X with a norm and with a
Lebesgue measure to be able to define Fourier transforms of functions
on X.
- The kinetic energy term is defined by a real valued function w (~)

on X*.
- The interaction term is equal to:

where Va is a real function such that For the

moment we may assume that Va (x) is a bounded function. Precise condi-
tions will be given in Section I. We ask that if one restricts Va to a
subspace supplementary to Xa, then Va tends to 0 at infinity.
On the familly {Xa}a~A one puts a partial ordering (see [Ag]), by

putting: if Xa~Xb. One asks that:

Vol. 54, n° 1-1991.



62 C. GERARD

This means that the system has no global translation invariance. For a E A,
one denotes by #a the maximal number of ai such that:

det

Finally if where ’ X, one defines a dispersive N-body
Hamiltonian to be:

Standard N-body Hamiltonians are obtained when the function ~ (~) is a
positive definite quadratic form q (~) on X*. It is important to notice that
this quadratic form adds a lot of structure to the problem. First of all,
one gets by duality a quadractic form q on X. The Jacobi coordinates
used in the three-body problem are just orthogonal coordinates for q. This
allows to define a good notion of subhamiltonians Ha for a E A, which
are the restriction of H to X~, where Moreover ~(~) gives a
intrinsic way to identify X and X*, which is important in defining the
propagation set of Sigal-Soffer [S-S]. All this structure is lost in general
dispersive systems. For example there is no a priori way to fix a space Xa
supplementary to Xa, or to define subhamiltonians. From these consider-
ations, it seems very clear that, except for two-body systems, general
dispersive systems can be very different from standard ones.

Derezinski [Del], introduced a set of hypotheses which imply that a
dispersive N-body system satisfy a Mourre estimate (see [M], [CFKS]) on
a given energy interval 0394. He introduces a quadratic form on X to define
supplementary spaces Xa and subhamiltonians. This also induces

a decomposition and allows to define subhamiltonians

~a) + ~ His hypotheses are actually independent
b=a

of the quadratic form but depend on some properties of the 03BEa dependent
eigenvalues of Ha (~), like differentiability and positivity of certain deriva-
tives of them, which seem very difficult to check on examples.

In this work we introduce a class of dispersive systems which we call
regular. The hypotheses we make depend only on the familly of spaces

and on the function ~ (~). They roughly state existence of "good
coordinates" (i. e. good choices of spaces supplementary to the Xa), in
which one can study the relative motion of clusters for a given cluster
decomposition. These conditions are stated in Section 2. They have the
advantage that one can check them quite easily on examples. However
contrary to the hypotheses of Derezinski, they are not intrinsic in the
sense that they depend on the choice of a familly of projections.
We give two classes of examples of regular dispersive systems. The first

class is obtained from a standard N-body Hamiltonian by replacing q (~)
for a function f(t) with f’(t)~C0&#x3E;0.
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63MOURRE ESTIMATE FOR REGULAR DISPERSIVE SYSTEMS

The second class is the Hamiltonian of three relativistic particles with
same mass, interacting with an exterior field and/or by pair interactions:

For a regular dispersive system, there is a good notion of subhamiltonians,
and a good notion of thresholds. In Section 3, we prove that a Mourre
estimate holds for regular dispersive systems, outside the threshold set,
which is closed and countable (see Theorems 3.5, 3.6). The conjuguate

operator is the generator of dilations 1 x + on X.

As a consequence of the Mourre estimate, we get absence of singular
continuous spectrum, discreteness of eigenvalues outside the thresholds
and local H smoothness of ~ x ~ -1 ~2 - E, Ve&#x3E;0, outside the thresholds. In
Section 4, we apply the Mourre estimate to prove some basic results on
scattering theory. Under additional dynamical conditions and
some implicit conditions on the spectral projections of subsystems, we
prove existence of wave operators for short range interactions and ortho-

gonality of channels. Using the Mourre estimate we prove asymptotic
completeness in the two cluster region.
Note added in proof: after completion of this work we received a

preprint by V. Iftimie where conditions for the existence of wave operators
for dispersive Hamiltonians are given. These conditions seem to be more
in the spirit of those of Derezinski [Del].
The plan of the paper is the following:
Section 2. Regular dispersive Hamiltonians.
Section 3. Proof of the Mourre estimate.

Section 4. Some results on scattering theory for dispersive systems.
Appendix A.
Appendix B.

2. REGULAR DISPERSIVE HAMILTONIANS

In this section, we introduce the class of dispersive N-body systems we
are going to consider, and we give two non trivial examples of them. The
first set of hypotheses on the kinetic energy function co (~) are standard
symbol properties used for example in the Weyl calculus of pseudodifferen-
tial operators. We refer to the book of Hormander [Hö] for more details.

Vol. 54, n° 1-1991.



64 C. GERARD

HYPOTHESES A:
is positive and tends to + oo when ~ tends to 00 .

(Aii ) there exist a slowly varying metric g~(8~) (see [Hö], Def. 18.4.1 )
such that:

This means that:

!D~ ~ ..., I -_ Ck (~ (~) + 1) ~i g~ (ti)1/2~ 
(Aiii ) co is g~ continuous and o, ~ temperate (see [Hö], Defs. 18.42 and

18.5.1). This means in our case that:

We introduce now the crucial set of hypotheses which are
needed to prove the Mourre estimate. These hypotheses correspond to the
implicit hypotheses C 1, C2 in the work of Derezinski [Del], and have the
advantage to be much easier to check on actual examples. They intuitively
mean that for each cluster decomposition, if one suppresses the intercluster
interaction, then some clusters will eventually more away from the others
under the classical motion.

HYPOTHESES B. - There exist a familly ~a for a E A of projections:
X  Xa such that:

Condition (Bi ) corresponds to the fact that if bca then XacXb (this is
implied by and also Xb~Xa (this is implied by 
Then 03C0b(Xa)~Xa and we denote this subspace by Xb. We put
~b - ~b ~p ~ X -~ X v and t ~b : X~* -~X* the dual application. Then we ask
that :

We now state some auxiliary hypotheses which do not have a direct
dynamical meaning:

HYPOTHESES C:

Poincaré - Physique theorique



65MOURRE ESTIMATE FOR REGULAR DISPERSIVE SYSTEMS

such that:

is bounded.

Finally let us state the hypotheses on the potentials. Recall from
the Introduction that the potential V (x) can be written as a sum:

Va (x), where Va is a multiplicative operator which commutes
a~A

with the translation operators for all One can

then write V a (x) = V a x).

HYPOTHESES D:

into

Let us now make some comments on these hypotheses.
- One could weaken (Bii ) by asking strict positivity for ~a ~ 0 and

‘~a ~ ~ai~ f== 1, ..., n. Then the results of Section 3 still hold if one adds
to the threshold set the eigenvalues of H"(~)~= 1, ..., n. Section 3
for the notation).
- Condition (Ci ) ensures that for a given cluster decomposition a on

an energy level À, the relative momentum of the clusters is bounded.
- Condition (Cii ) is of a technical nature and condition (Ciii ) is used

to construct suitable partitions of unity on Xa (see Lemma 3.1 ).
- Condition (Di) implies that is selfadjoint with

domain D (H) = {M e L2 u E L2 (X) }. This follows from showing
that is co(Dx) bounded with relative bound 0, which in turn
follows easily from hypotheses A and writing 03C9 (DJ as the direct integral:

- Conditions (Dii ) and (Diii) are the standard hypotheses on multicom-
mutators needed to apply Mourre’s theory. We have assumed for simplicity
that Va (x) is a multiplication operator. To treat non multiplicative poten-
tials it suffices to look in the proofs where commutators between Va and

Vol. 54, n° 1-1991.



66 C. GERARD

multiplication operators arise and to write down the necessary hypothese
on Va to control these terms. We do not give the details.

Example 1. - Consider a function (R + ) such that:

We take on X* a quadratic form q(03BE) which we denote by 03BE2 for

simplicity. For aEA, we denote by 03C0a the orthogonal projection on Xa
for the dual quadratic form q of q. Then it is an easy exercice to check
that hypotheses A, B, C hold for ~ (~) = g (~2), for any set of subspaces

Example 2. - We consider a model of three relativistic particles with
pair interactions and/or in an exterior field. We assume that the particles
have all the same mass which can be fixed to one. Then the Hamiltonian

is of the form:

The set of subspaces {Xa} is described in appendix A. Then in case of
exterior field, H is a regular dispersive system. In case of no 
H commutes with translations of the whole system. If we restrict it to

the space {x E R91 xl + x2 + x3 = 0 } and to particles with total momentum
Dxl + Dx2 + Dx3 = 0 (this corresponds to separate the motion of the "center
of mass") then H becomes a regular dispersive system. The proof of these
properties is given in appendix A.

3. PROOF OF THE MOURRE ESTIMATE

In this Section we prove that for regular dispersive systems, the Mourre
estimate holds outside a set of points which can be described explicitely
(see Def. 3.4) in terms of some subhamiltonians and called the threshold
set of H.

Let us first introduce some standard notations. For a E A, we denote

by Ha the Hamiltonian:

We denote by Ia the potential H - Ha.

Annales de Henri Poincare - Physique theohque



67MOURRE ESTIMATE FOR REGULAR DISPERSIVE SYSTEMS

Since Ha commutes with the translations Ut for ’t E Xa, we can write Ha
as a direct integral:

Here Ha ~~a~ _ o ~a~ + Va (~) with domain

Here we consider V as a function on Xa by restriction. The facts that
Ha (~a) is self-adjoint with domain D (Ha) and that (Ha (~a) + i) 1 is weakly
measurable follow easily from (Aiii ), (Aiv) and (Di ) .
One also easily checks that the domain of Ha (written as a direct integral

in ( 1 )) (see the Definition in [R-S]) coincide with D (H). We will denote
by Ho the operator Hamin with domain D (H).
As a first step we state without proof a lemma about existence of

suitable partitions of unity. These partitions of unity are a standard tool
in the geometric method in scattering theory (see for example [F-H], [S-
S], [C- F - K -S]). The important hypothesis for their existence is condition
(Ciii).

We will denote by Aa the generator of dilations in Xa, which is the

Weyl quantization of the function xa, 03BEa&#x3E; on and put 
It is not difficult to check that Aa is selfadjoint with domain

We now check that A satisfies the technical hypotheses needed to apply
Mourre’s method.

Proof - The proof uses hypotheses A and D and is left to the
reader. D

Finally let us state one more Lemma, which will be useful in the sequel.
We denote by IE Co (R) a cutoff function and by Ja (x) a function in a
partition of unity on X constructed in Lemma 3.1.

Vol. 54, n° 1-1991.



68 C. GERARD

(iii) Ça H f(Ha (03BEa)) is continuous for the norm topology.
(iv) Ça H f(Ha (03BEa)) [Ha (03BEa), i Aa) f(Ha (03BEa)) is continuous for the norm

topology.

Proof - We will use the Stone-Weierstrass gavotte (see [C.F.K.S])
and assume (~2014z)’~ for zeCBR. To prove (i ) we compute:
[(Hb - z) -1, F]= (Hb - z) -1 J1(H,-z)-’. Ja] is a pseudodifferen-
tial operator with principal symbol bounded by C (co (ç) + 1) ( x ) ’ B which
shows that [(Hb - z) -1, Ja] is compact.
To prove (ii ) we use the first resolvent formula:

where K is compact by (i ). Then (ii ) follows from the fact that

(iii ) is easy and left to the reader. Using (iii ), we remark that it suffices
in order to prove (iv) to show that

is norm continuous for some N big enough. Then we write:

By (Dii) (, is bounded from which it follows
that is norm continuous
using (iii). We then remark that

is continuous in the L 00 (Xa*) topology by (Aii ), (Cii ), which proves that

is norm continuous.

Finally (v) is an immediate consequence of (Ci) and of the fact that
Ha (o) is bounded from below. D
We will now define the set of points where the Mourre estimate fails.

DEFINITION 3.4. - For a E A, the set of a-thresholds denoted by ia is the
union of the eigenvalues of Hb (o) for b # a.
We will denote by i the set 03C4amax and by 03C3a for a E A the set of eigenvalues

of Ha (0). We now state the main result of this Section.

THEOREM 3.5. - Let À an energy level such that Then there exist

Co&#x3E; o, 0 neighborhood of À, K compact operator such that:

Annales de Henri Poincare - Physique ° theorique ’



69MOURRE ESTIMATE FOR REGULAR DISPERSIVE SYSTEMS

Proof. - Our proof will be inspired by the beautiful proof of Froese-
Herbst [F-H] of the Mourre estimate for standar N-body systems, which
uses an induction on the number of particles. Let us first describe our
induction hypothesis. We consider the set of aEA with N(a)=j, jN,
and we fix some compact sets Ua in Then we assume the following:

(H . j 1 ) Vs&#x3E;0, neighborhood compact opera-
tor such that:

(H . j 2) If there exist Co &#x3E; 0, Va neighborhood of 0 in Xa ,
L neighborhood of À, and Ka (~a) compact operator such that:

’ 

= 0 ~ .

The proof is divided in two steps:
Step 1. - In Step 1, we prove that (H . j ) imply the following properties:
(H . j 1 ) Vs&#x3E;0, 6 neighborhood of Â, such that:

L neighborhood of À such that:

Let us fix some then converges
strongly to 0 when A tends to {~}. Hence tends to
0 in norm when L tends to {~.}. Starting from (2) with E/2, we can find

_ 

some neighborhood A 1 of À such that:

If then we can use the argument of Froese-Herbst (see
for example [F.H], [C.F.K.S, Thm 4.21]) and apply the virial theorem to
Ha (03BEa0) to get a neighborhood 03941 of À such that (6) holds. If we compose
(6) to the left and right by for a cutoff function 
~=1 on 03942~ 03941, and use the norm continuity of: and
of: (see Lemma 3.3), we get: Vs&#x3E;0,

neighborhood neighborhood of À such that:

By the compactness of Ua, we can find some finite covering of Ua made
of neighborhoods Vi of some points ~ai and some smaller L 4 such that
(4) holds with ~ _ ~ 4. Let us prove now (5). Since 
by the arguments above (5) holds for ~=0, for some neighborhood L
of À. Then the continuity argument above proves that there exist a

neighborhood Va of 0 in Xa such that (5) holds.

Vol. 54, n° 1-1991.
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Step 2. - In Step 2, we prove that (H . j ) implies (H . j + 1). Let us denote
b:

a partition of unity constructed in Lemma 3.1. Then we have:

where K (ç) is compact by Lemma (3.3 i).

Here K2 (~a) is again compact since the commutator between

[Ha (~a), and Ja is a pseudodifferential operator with principal sym-
bol which is compact after composition by
x (Ha (~a)), using (Cii ). Using again Lemma 3 . 3 (i ) we get:

where K3 (~a) is compact. We also have:

where K4 (~a) is compact. This follows from Lemma 3.3 (ii) and from writing:

as:

Finally we get:

where K (~a) is compact. To check this it suffices to notice that:

Annales de l’Institut Henri Poincare - Physique ° theorique °
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is compact, where

Combining (9), ( 10), we get:

where K (~a) is compact, and T~ is equal to:

By Lemma 3.3 (v) we see that if Ça stays in Ua and if

~ ~ We use here the fact Xb is isomorphic to
Hence in ( 11 ), we integrate only on a compact set U~ in X~*. "

Using the induction hypotheses (H . j ) for Hb (~b), and condition (Biii ), we
get that neighborhood of À such that:

Hence by ( 11 ) we get by taking x with small enough support:

Using (9) and the arguments in the beginning of Step 2, we get (2) for a.
It remains to check (3). Since we can apply (5) to each Hb with

a, b ~ a. So there exist co&#x3E; 0, L neighborhood of Â, and some 0  1

such that if ~! then:

Here x is a cutoff function with support in L. On the other hand,
condition (Bii) and the fact that gives:

Hence there exist c 1 &#x3E;0, 82&#x3E;0 such that, if I ~ E2 one
has:

If we take and such that (4) holds for L 1 and

Eo, we get:

for E2), and x a cutoff function supported in 01.
Then we can use the same arguments as in the proof of (2) and we get

Vol. 54, n° 1-1991.
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(3) for a. To complete the proof of Theorem 3.5, it just remains to start
the induction. For N(a)=l, i.e. a=amin, the operator is the
operator of multiplication by 03C9 (03BEa) on C, and Aa = o. Then (4) is obviously
satisfied. To check (5) we note that if 03BB~ 03C3amin, then (0). Then there
exist a neighborhood Va of 0 in Xa = X*, a neighborhood 0394 of À such
that Eo (Ha (~a)) = 0 for Ça E Va. Hence (S) is satisfied. Then the Theorem
follows by noticing that H = Hamax (0). This completes the proof of the
Theorem. 0

We will now state some consequences of Theorem 3.5.

THEOREM 3.6. - (i) The singular spectrum o. f ’ a regular dispersive Hamil-
tonian H is empty.

(ii) the eigenvalues of H can accumulate (with multiplicity) only at the
threshold set of H.

(iii) if ""0 ~ i U 6pp (H), there exist a neighborhood ~ of Ào such that:

(iv) ( x ) 1 /2 is locally energy U 03C3pp (H).
Proof. - (i ) and (ii ) follow from Theorem 3. 5 and Lemma 3.2 by the

abstract Mourre’s method (see [M], [C. F. K. S]), and the fact (see comments
below) that ’t is countable. To prove (iii ), it suffices to prove that

(A + i ) ~ x ~ -1 E (H) is bounded. By (Di ), this is equivalent to prove that
(A + i ) ~ x ~ -1 x (Ho) is bounded for a cutoff function This is
an easy consequence of the pseudodifferential calculus and of the fact
co (ç) tends to +00 when I ç tends to +00. Finally (iv) follows from (iii )
(see [R.S]). 0

Let us now make some comments on this result. (i ) and (ii ) show that
the behavior of the spectrum of H is quite similar to that of a standard
N-body Hamiltonian. In particular one can easily verify that for 
Ha (0) is again a regular dispersive N-body Hamiltonian on L 2 (Xa). Hence
the eigenvalues of Ha (0) can accumulate only at the eigenvalues of Hb (0)
for the last accumulation point in this hierarchy being the "N-body

threshold" 03C9(0). In particular the threshold set ’t is closed and countable.

Property (iv) for standard N-body Hamiltonians is an important tool in
the proof of asymptotic completeness by Sigal-Soffer [S-S]. It allows to
control all lower order terms when one constructs positive commutators
to estimate the propagation set. In particular (iv) was used as an implicit
hypothesis by Derezinski [De2] in his study of H-smoothness for dispersive
N-body systems.

Annales de l’Institut Henri Poincaré - Physique theorique
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4. SOME RESULTS ON SCATTERING THEORY
FOR DISPERSIVE SYSTEMS

In this Section we give some basic results on scattering theory for
short range N-body dispersive systems. We introduce a set of dynamical
conditions which together with some implicit conditions on the
spectral projections on the point spectrum of subsystems are sufficient to
ensure existence of channel wave operators and orthogonality of channels.
These conditions strengthen conditions B in the following sense. Condition
B (ii ) intuitively means that some clusters separate from the others under
the classical motion. To have existence of wave operators one needs to be
sure that all clusters move away from the others. This is ensured by
condition (Ei) below. Finally we apply the Mourre estimate of Section 3
to prove asymptotic completeness of wave operators in the two cluster
region.

Let us now describe the conditions For 
we know that {0} since Let us denote by Xab~Xa the
space Ker 03C0b|xa. If we choose a projection we denote by
Xa the space Ker 03C0ab, by the projection 1-03C0ab and by

X b -~ Xa* -~ Xa the dual projections. We sometimes identify
t a and t03C0ab with and We ask that ba can be choosen to
satisfy:

It is straightforward to check that the dispersive system of Example 1
in Sect. 2 satisfies Hypotheses E, if one takes 7~ to be orthogonal pro-
jection on Xa. The Hamiltonian considered in Example 2 in the case
without exterior field satisfies (E). Indeed we can easily check that for
any b, a with one has so (Ei) follows from (Bii).
If then one has Xab=Xb, and (Ei) is also satisfied [see Appen-
dix A, (A.4)]. In case with exterior field, there exist clusters a, b with

such that (Ei ) is not satisfied. Let us now define the wave opera-
tors. For aEA, we denote by P the direct integral:

a

The fact that is weakly measurable is well known (see
for example [C.F.K.S., Proof of Thm. 9.4]). To prove existence of the
wave operators, we need an extra assumption on the decay and regularity
properties of the We ask that the following condi-
tion hold:

(Eii) the map belongs to the space
2(L2(xa))) for some so &#x3E; 1. Here CS, denotes the usual local

Holder space of exponent so.
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We define ( 1 ) the wave operator 0.: to be:

The result of this Section is the following theorem:

THEOREM 4.1. - Assume that A, B, C, D, E are satis.f’ied with ~&#x3E;1.
Then:

(i) the wave operators 03A9±03B1 exist.
a ~ b, Im SZa is orthogonal to Im 

Proof : - To prove (i ) we will use the Cook argument. We take u in a
dense subset of L2 (X) and we will prove that lim eitHe-itHaPau exist.

t ~ ± ~

By the Cook argument, it suffices to show that

Here Ia (x) _ 03A3 Vb (xb) and let us consider one term II ~Vb (xb) e - tr Ha Pau~,

b~a

We can write:

Let us take u such that for some interval A c R,

(Here u is the Fourier transform in It is easy to see that the set of u
satisfying these conditions for any and for some Eo is dense in L2 (X).
We take then a cutoff function )((~) supported in ~~So/4, equal
to 1 in ~~Eo/2. Then we have for u as above.
Let us denote by A~ the Weyl quantization of ~ xa, ~a ~ x 1 (~a), where

is a cutoff function equal to 1 in ~R. We introduce
Xl (~a) to avoid having to consider what happens for large ~a. We have:

where:

It is easy to see that if then x 1 (~a) -1, provided we take R
large enough. Indeed this follows from (Ci) and (Di). Using now (Ei), we

(1) This definition was suggested to us by J. Derezinski.
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get that:

Hence Ha satisfies the following estimate:

This can be considered as a refined version of the Mourre estimate. Indeed
the Mourre estimate is a positivity condition on commutators which holds
locally in energy with respect to a given Hamiltonian H. In our case Ha
and commute with all operators The estimate (17) is a
version of the Mourre estimate which is local not only in energy but also
in Dxa. In Prop. 4.2, we will prove that one can extend the local time
decay estimates of Jensen-Mourre-Perry [J.M.P] to cover the case where
only ( 17) is satisfied. Of course the time decay estimates will hold only
locally in Dxa. The next estimate is proved in Proposition 4.2 below:

Recall that u is such that:

Let us choose some number 1 sso. Then we get:

where Pa is equal to By (Di) the term
is bounded. Using also (Eii), one proves that Pa is

bounded (see Appendix B). Finally (~)~(~)’’(~)’ is bounded

since ( ~ ) ~ C and since we can always take s such that 1  s  ~,.
So we get:

Since s &#x3E; 1, we get that is in L 1 (R), for any which

prove the existence of the wave operators Let us now prove (ii): it
suffices to show that for each u, v in a dense subset of L2 (X), and for a
sequence ~-~ ±00,
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tends to 0 when n tends to +00. We have so we can assume that
Then:

We have

converges simply to 0 if Rn is a sequence tending j to
+00, and o 0~~,(~)~M(.,~)~2~, hence by Lebesgue dominated o
convergence Theorem:

So L 2 tends to 0 when n tends to + oo . Let us consider now In,1,

As in the proof of (i), we can choose v with Fourier transform 
supported away for ~=0. By the same arguments, we get for such v:

Taking yields that lim which proves (ii). This completes
n -~ + 00

the proof of the Theorem. D

Let us now state the Proposition used in the proof of Theorem 4.1.
Since we do not aim for generality, we will not prove the most general
abstract result in this direction. Let us just remark that our method could
probably be used to prove other existence results for wave operators in
cases where the stationary phase technique cannot be applied.

PROPOSITION 4.2. - Let ~(03BEba) a cutoff function supported where the
function ~ in (17) is equal to 1. Then for any s, there exists c&#x3E;O
such that the following estimates hold:

Proof - We will follow closely the proof of [J.M.P., Thm 2.2] and use
similar notations. We will also sometimes refer to the book [C.F.K.S]. To
simplify notations, let us put Ha = H, Aa = A and xo - xo for a cutoff
function 3(0 (~) supported in a region where the estimate ( 17) holds. We
will also denote by F the operator f (Ha) for a smooth cutoff function f
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supported in A, and by D the operator (A~+l)~. We will denote by
II ~0,2 the operator norm from L2 (X) into D (H). The proof will be
divided in several steps.

Step 1. - We put

and for we consider 
For later use, note that xo commutes with GM (E) and with F. One knows
that GM (E) exists by the standard argument of [M] and the positivity of
F B1 F. We will sometimes drop the subscript z in for simplicity of
notations. Let us prove the following estimates:

By the same arguments as in the proof of Lemma 4.14 in [C.F.K.S.],
we get:

Then one has:

Since is bounded from L2 (X) into D (H), and F [H, A] is

bounded, (22) will follow from (21 ). To prove (21 ), we write:

From this it follows directly So we have proven
(21 ), (22). To prove (23), we introduce From

(24) with cp = D B)/, we get:

Hence:

So (23) will follow from the fact that is bounded. This will be a

consequence of Mourre’s differential inequality technique. Indeed one has:

where:
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1 is bounded since ( 1- F) GM (E) (H + i) is bounded. To estimate Q2 it
suffices to estimate ~ xo GM (E) which is bounded by

Let us consider now Q3° One can write as in [C.F.K.S., Lemma 4.15],
Q3=Q.+Q,, where:

Q4 is bounded by by expanding the commuta-
tor. Since 3(0 is smooth, A~20D is bounded by an easy application of
pseudodifferential calculus. So we get by (26), (22):

Qs is bounded by:

since [F B1 F, A] is bounded. Finally we get the inequality:

From this the fact I is uniformly bounded follows by the
argument of Mourre (see for example [C.F.K.S., Prop. 4.11]).

Step 2. - In Step 2, we introduce A]Xo? for j~2 and put:

We will prove that G (E) == (H - z + Cn (E)) -1 existes as a bounded operator
and satisfies (21), (22), (23). This can be done by following the proof of
[J.M.P., Lemma 3.1]. Let us indicate the principal steps. One first defines:

exists for 1 by (22).
Then it is not difficult to check that GO (E) satisfies (21 ), (22), (23) and 0 is
the inverse ’ of F). Then one " defines:

One uses here that ~ ( 1- F) GO (E) Xo ~ is bounded by a constant by (22)
for Again we check easily that G1 (E) satisfies (21), (22), (23) and
is the inverse of (H - z + E B 1), which proves (21 ), (22), (23) for ~=1. For
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~ ~ 2, we remark that:

By (21 ), (22) for G 1 (E), we get So for
0  s ~ 1, we can define:

Then is the inverse of(H-z+EB1) and satisfies:

Let us now prove that Gz (E) is norm differentiable and satisfies on D (A):

To give a meaning to (30), let us first check that and
are bounded on D (A) and that A] 3(0 defined on

D (A) extends to L2 (X) as a bounded operator. Since

is bounded, is bounded on D (A). Also

which proves that is bounded on D (A) and that

A] xo extends to L2 (X) as a bounded operator. The verification
of (30) can now be done as in [J.M.P., Lemma 3.1].

Step 3. - In Step 3 we will consider for ~~2, ~&#x3E;~- 1/2, Imz&#x3E;O, s&#x3E;0,
operators of the form F1, 2 (E) = DS 3(1 Gz (E)n 3(2 DS. Here xi (Dxa) where
Xi (ç:) is a cutoff function such that ~i~0=~i. we will prove that F 1,2 (E)
has a norm limit when E ~ 0 by adapting Mourre’s differential inequality
technique (see [J.M.P., Lemma 3.3]). However there is a somewhat subtle
point here: in [J.M.P.] one has xl =1 and one uses a differential inequality
satisfied by F (E) to prove by induction a weaker and weaker singularity
of F (E) on E = 0 to get the desired result. In our case, due to the insertion
of the cutoffs ~i one has to use different ~i at each step of the induction.
Let us describe this more in details. One has:
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We estimate II (E) by:

Here 3(3 is a cutoff function such that ~0~3=~3, ~i~3=~i. Hence:

If we exDand the commutator in I E we et:

Let us just consider the first term. One has:

We have that:

Using the same interpolation argument as in [J.M.P., Thm 2.2], we get:

By (21 ), (22), (23) one gets:

Finally we have:

if ~3~2~X2’ Using again pseudodifferential calculus and interpolation,
one sees that D-S [A, is bounded. Putting all these estimates together,
we get:

Also 21 22 (23) give:
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Inserting (32) into (31 ), we get:

where y=S= (~- 1), P= (~- 1/2)/~. The argument of [J. M.P.,
Lemma 3.3] gives:

This is better since rJ.  1, P1. Since the estimate (33) also holds for
II F1, 3 F2, 3 we can use it instead of (32) and insert it into (31 ) .
Integrating again, we get a better decay. After a finite number of steps,
we get that:

Then by the same arguments as in [J.M.P., Theorem 2.2] one gets that
for ~&#x3E;~-1/2, the norm limits lim D~(H-~±s)’"D’ exists and

E -~ 0

are equal to 2014 )n-1Ds~(H-03BB±~)-1 DS, if ~ is a cutoff function sup-
ported where Xo=L Using then that is bounded, one

gets that ~/E~(H)~(D~}~(~ is en in norm for ~&#x3E;~+1/2. By
integration and interpolation [J.M.P., Theorem 4.2]) one gets finally
the estimate (20). This completes the proof of the Proposition. D
As an application of the local H-smoothness of (jc)’~&#x3E; 1/2, we will

prove now the asymptotic completeness of wave operators in the two-
cluster region. This is the exact analogue of asymptotic completeness below
the three-body threshold for standard N-body systems [C], [S], [E]).

DEFINITION 4.3. - A point 03BB~R belongs to the two cluster region (TCR)

if there exist a neighborhood L of 03BB such that E0394(Ha)=0, for any a~A
with #a~3.

In Exemple 1, any point in is in TCR.
In Exemple 2, any point in O[ is in TCR. We will prove the
following result:

THEOREM 4.4:

Proof. - We will only sketch the main steps of the proof, since it is a
quite standard application of the Mourre estimate and of the geometric
method. We will use some partitions of unity aEA, having
the following properties: is homogeneous of degree 0 outside

~1} and supported in:
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for some constants Ea. Also one asks that ~ cpa (x) =1 in
a ~ amax

A proof of their existence can be found for example in [S-S, Sect 4]. Fix
and L a neighborhood of À such that $~3.

Then it suffices to show that:

such that:

To prove that (34) implies Theorem 4.3, one has to use orthogonality of
channels, Theorem 4.1 (ii). Let be a cutoff function supported
in TCR such that x =1 on 0 . Using the arguments of Sigal-Soffer [S-S,
Sects 2, 3], it suffices to prove that the Deift-Simon wave operators defined
by:

exist for and that Wb = 0 
From the proof of (35) will also follow that for #~=2, 

(remark that from which (34) follows easily. So it
remains to prove (35). Since we can replace u modulo an

k

arbitrary small error by a finite where and
1

xi E C~ (R) is a cutoff function supported in TCR and outside all thresholds
and eigenvalues of both H and the Ha for ~=2. In fact one just has to
use the fact that the eigenvalues of H can accumulate only at thresholds
of H, see Theorem 3.6. So we may assume that It is also easy to
see that:

where xi is a cutoff function such that (use Lemma 3 . 3 (i ), (ii ),
and the fact that From now on, we drop the index i in x~, x~.
Again by Lemma 3.3, we get that:
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where {03C6a} is another partition of unity similar and K is a

compact operator. Since ~ is supported in TCR, we get:

To prove existence of the limit (35), we write using also (36):

One can choose the partition of unity cpa such that: is supported
near 0 if # a = 2, b ~ a. Since all terms in (38) containing H compact
operators will give 0 in the time limit t -~ ± oo, we get Wb = 0 for $~3.
For # b = 2 one has:

Denote by

for vEL2(X). We have:

Now H = Hb + Ib (x), is bounded by (Di).
So in the right hand side of (40), the term containing

as integrand is integrable in t, by Cauchy-Schwartz inequality and H
(resp. Hb) smoothness of ~ x ~ - ~‘~2 on support of x (resp. support of x).
The other term in the right hand side of (40) has the integrand:

An easy extension of Lemma 3.3 gives that:

for some partition of similar (with the Xa for 
deleted) satisfies: is bounded. So since x is

supported in TCR and $&#x26;=2.
Using now hypotheses (A) is bounded. Hence the

first term in the r.h.s. of (41) is of the form: ~ x ~ -1 Kb ~ x ~ -1, where Kb
is bounded. The second term is similar, and both give integrable terms

Vol. 54, n° 1-1991.



84 C. GERARD

in (40), using again Cauchy-Schwartz inequality and H (resp. Hb) smooth-
ness of ~ x ~ -1 on support of x (resp. support of x). The proof of the
existence of the limit (35) follows as in [S-S], which completes the proof
of the theorem 4.4. D

APPENDIX A

In this appendix we prove that the Hamiltonian of 3 relativistic particles
with same mass with pair interactions and in an exterior field is regular.
By a change of scale we can fix the mass to be equal to 1 and the

Hamiltonian is:

The set of subspaces is the following: for

Finally one has three Xa corresponding to the exterior field: for a = i,
X~= {xeX~=0}. Let us first consider the case without exterior fields,
i. e. X1, X2, X3 are suppressed.

The case without exterior field:

As it stands our system is not dispersive system since {0}
(in other words H commutes with translations of the whole system).
To reduce the problem one has to fix the total momentum. One must be
aware of the fact that there is no a priori way to do that.
We consider the following matrix on R9:

and put ourselves in the coordinates x = A x. A is suited to the study of
the cluster {1, (2, 3) ~ .

Since we have ç = H can be rewritten as:
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To separate the "center of mass" motion we restrict H to L2 where

Xamax=Ker03C0amax, by replacing by 0 in (A.1). This
amounts to fix the total momentum to be 0. Then one checks that
X"max= {~eR~~~+~+~3=0} is independent of the choice of cluster
we made, so every thing will work similarly for clusters {(1, 2), 3} and
{(1.3), 2}.
- To check (Bii) (2, 3)} with 03C0a defined above we have to

show that if (l+ (Ç2 + Ç3)2)1/2 + (1 + (Ç3 - Ç2)2)1/2 + (1+4~)~ one
has:

The condition (Biii ) has to be checked only if 2, 3 }, for
which and ~b = ~a. Then one has to check that:

Note that (A.3) implies (A.2). Let us check (A.3):

Let us set

Then

Let us check that x+~+zx+jc(l+~)~(l+~)~-2~~0. This is equi-
valent to:

which is obvious. Hence (A.3) and (A.2) hold, which shows that the
conditions B hold. For conditions A, C, we take the metric

and restric it to T* The verification of conditions A, C is easy and
left to the reader. Let us now consider the case with exterior field.
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The case with exterior field:

Then Xamax - {0}, which corresponds to the fact that H does not
commute any more with translations of the system. Let us describe the
set of projections we use. For a=1,2,3,Xa={x~X|xa=0} we take 03C0a
to be the projection on Xa with kernel {x~X|xi=0, i~a}. For example
if a = 1, then we have to check that:

(A.5) and (A.6) are immediate. For ~= {1, (2, 3)} we take the matrix:

and put ourselves in the coordinates x=Ax. Then Xa= {~=0}. and we
take x2, x3) _ (xl, o, x3). The kinetic term can be rewritten as:

From (A.4), we get that:

and: (- ~03C9 ~2, 2~~0. Hence conditions (B) hold for exterior field. Condi-
tions (A) and (C) can be checked as in the preceeding case. 0

APPENDIX B

In this appendix we will prove the boundedness of P~ used in the proof
ofThm.4.1. Recall that P, is equal to 
If we conjuguate everything by the Fourier transform in ~, we see that
this property is equivalent to the following: on L 2 (X:, L 2 (X")), one
consider the following multiplier:

Then Pa is bounded if and only if A is bounded from the Sobolev space
into itself, or equivalently the multiplier A* of symbol

Xi ?.) E~ (H~ (~))!! is bounded on H~ (X:, L 2 (X~)). Since Xi ?.) has
compact support, and the function: is in the
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Holder space ~ (L2 (Xa))), this will be a consequence of (a vector
version of) the fact that the operator of multiplication by a compactly
supported function is bounded on for all 
A simple way to prove this fact is by means of the Littlewood-Paley
decomposition (see for example [Bo]). For completeness we will sketch the
proof. In the sequel the variable x will denote the actual variable on Rn.
Let us take functions cp (~ B)/ (ç) E C~ (R") such that ~ (~) =1 1 /2,
’" (ç) = 0 for I ç I ~ 1, cp is supported in the shell 1/2 ~ ~ ~ 2 and:

p-1

For MeS’(R") let us put Mp=(p(DjM, and uq.

Then the spaces and are caracterized (with norm equiva-
lence) by the properties:

Let us now write for u~Hs, the product au as:

For No big enough, the terms in E1 have their Fourier transform supported
in {(1/2 - s) 29 _ ~ ~ ~  2 + E 29 ~ One can hence estimate by:

Similarly I I E ~ I ( 2 can be estimated b :

which is bounded since Finally it is very easy to see that Eg is also
in HS. D
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