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ABSTRACT. - When two dynamical systems of nonlinear partial differen-
tial equations differ by a term that can be considered as a perturbation,
their solutions equal at the initial time, can be related by a linear integral
equation. Due to this equation, if the solution of one of these systems is
known, let us call it free, the solution of the other one, the perturbed one,
can be written as a perturbation expansion, the terms of which are

completely explicit expressions of the free solution. This generalises the
usual perturbation theories around free solutions satisfying linear equa-
tions. The perturbed Burgers equation is taken as an example. w

RESUME. 2014 Quand deux systèmes dynamiques d’equations non-linéaires
aux derivees partielles different par un terme qui peut etre considere
comme une perturbation, leurs solutions égales a l’instant initial sont
reliees par une equation integrale linéaire. Grace a cette equation, si la
solution de l’un des systemes est connue, nous l’appelons la solution libre,
la solution de l’autre, solution perturbée, peut etre représentée par un
developpement en perturbations dont les termes sont completement expli-
cites en fonction de la solution libre. Ceci generalise les theories de

perturbations autour de solutions libres satisfaisant des equations linéaires.
L’equation de Burgers perturbee est traitée comme application.
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344 M. IRAC-ASTAUD

INTRODUCTION

A dynamical system is called perturbed when it differs by a perturbation
term from a free one, the solutions of which are supposed known. Denoting
by F the space of the smooth mappings of [Rn in RN

and 6 the set of the mappings from ~ into ~

we consider the system

where v (t) belongs to ff and F to 6. This system is assumed to be solved
for v satisfying the initial condition

it is what we call the free system. The most general perturbed system can
be written on the form

where S~)=F(~+~N(~) belongs to C. The functional F (t) is the free

part of S~ (t), and N (t) its perturbative one. These functionals depending
on t can be local and contain differential operators with respect to x, for

instance F t y]=a(t)~ ~x1 ~ ~x2y3. They can as well be nonlocal and asso-

J - o0

interested with the solution of (5) satisfying the same boundary
condition as v

The parameter X that multiplies the perturbation term can have a physical
significance (for instance, X can be a coupling constant) or can be artfully
introduced in a system that cannot be exactly solved in order to get an
approximate solution. Numerical physical perturbed systems correspond
to dynamical systems submitted to external forces that may be random or
not, the perturbation term is then a stochastic or a classical function.
When an exact closed-form solution of the system (5) can’t be found,

we intend to relate it to the solution of the system (3), assuming that the
solutions of the two systems (3) and (5) corresponding to the same initial
conditions (4) and (6) are close, at least in a neighbourhood of ~=0,
t = s. Supposing analytical the solution u of the perturbed system, the
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345PERTURBATION AROUND EXACT SOLUTIONS

perturbation method consists in seeking it in the form of a power series
in ~, u = ~ The coefficients Un can be recursively determined, they

n&#x3E;_0

satisfy a linear system [1], the coefficients of which depend on the Ui,
i  n, Uo being the solution v of the free system. Solving this system is
not always possible and when it is, not always easy [2]. We propose here
an explicit expression of these coefficients in terms of the free solution v.

This expression is obtained by iterating a linear integral equation relating
the solutions u and v ; we establish this integral equation in Section I.

In the case where the free equation is linear, we show on an example
that this perturbation theory leads to the usual one where the perturbed
solution is expressed with the Green function corresponding to the free
equation.

In this paper we obtain the solution of the perturbed system (5) in
terms of the solution of the free one even when this last is nonlinear,
these solutions coinciding at the initial time ~==~. This approach differs
from approximate methods that look for particular solutions, solitons,
nearly periodic [3]...

In Section II, we apply this result to the case of the perturbed Burgers
equation rl1 that is

Here, is equal N being an arbitrary
6~ 6~

functional of u. The solution of equation (7) with ~=0, the Burgers
equation, being known [4], the coefficients U~ are completely explicit.

I. INTEGRAL EQUATIONS RELATING THE PERTURBED AND
THE FREE SOLUTIONS

First we deal with a more abstract and general problem that we will
use to solve ours in the following.

Let iF be any vector space and the space of the mappings from
W into ff o. The flow belonging to is defined by the following
semi-group properties

where O is the composition law for the mappings in lff 0 and

where I is the identity in ~o .

Vol. 53, n° 3-1990.



346 M. IRAC-ASTAUD

Let us introduce now the substitution operator ~ s related to the flow
belonging to 2 ($0’ $0) and defined by

In particular when F is equal to the identity I, this formula reads

The semigroup properties of the flow give

where the product in the right hand side is the product of operators. From
the formula (9), we have

where I is the identity in 2 (fff 0’ 
The field S~ (t) associated to the operator ~ s is defined by

From the equations (12) and (14), we deduce

that reads

The property ( 13) acts as the initial condition. Equation (12) where 
and equation ( 13) lead to

The differentiation with respect to t of this last equation and the using of
formula (16) give

Assuming that the field Sf (t) takes the form F* (t) + A N* (t), we introduce
the flow 03A8 and the operator Bf* reducing to 0 and 1&#x3E;* when A vanishes.

The problem we are interested in is to relate the operator ~ s that

satisfies the equation ( 16) with A equal to zero that is

To this aim, let us calculate
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and

The integrations of these equalities on the interval [s, t] lead to

and

These two equations relate the operators 03A6*ts and 03A8*ts. Their iterations can
be performed and lead to analogous results, the one corresponding to (23)
gives

In this relation the operator ~ s is expressed in terms of ~F*. Let us
summarise this result:
Let a substitution operator 03A6*ts belonging to 2 (80, E0), E0 being the

space of the mappings from a vector space F0 into itse f, satisfy a differential

e uation: ~ ~t 03A6*ts= 03A6*ts( F* t + 03BB N* t with the condition that 03A6*ts is the

identity when t = s. The operator ~ s is related to W*, its value when ~, = 0,
by a functional equation (23) that can be solved by iteration giving an
expression of og in terms of ~I’* (24).

This result was already established in the case where ff 0 is a real
manifold of dimension N and applied to ordinary differential equations [5].
We now use this result to deal with the initial problem which we were

interested in. We first formulate it in a convenient form. We consider the
case where the space 3’ is the space ff defined in formula ( 1 ). Remarking
that u (t), solution of the equation (5) and (6), is a functional of y,
depending on the initial time s, we can express it with the help of the
flow 

~ belongs to the space $, defined in formula (2).

Vol. 53, n° 3-1990.
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We introduce several linear operators acting on ~:
We will use the operator Vx that associates to any element of 6 its value

in x; for instance

This is the analogous to the operator "projection on a component" in a
finite vector space. Here both exist:

The operators Pi and Vx commute.
We associate to an element of  F (t), the field, F* (t), belonging to

let us remark that F* (t) is an operator depending on y.
In particular, we have

In the following we will denote

To the two functionals and F (t), appearing in the equations (5) and
(3), correspond by the definition (28) the fields Si (t) and F* (t), belonging
to ~ The operators 0~ related to the flows and 

are solutions of the formulas (16) and (19) if the functions u (t) and v (t)
are solutions of the systems (5) and (3). The problem of relating u (t) to

v (t), solutions of (5) and (3), reduces to that of relating O* to B}I* satisfying
(16) and (19) for which we can apply the previous result. The two equations
(22) and (23) acting on an arbitrary functional Q of lff furnish two integral
equations relating the functions Q [u (t)] and Q [v (t)]

Annales de l’Institut Henri Poincaré - Physique théorique
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and

These equations correspond to that obtained in [V] when the variable x
does not appear in the dynamical system. They relate, by an inte-

gral equation, any physical quantity of the perturbed system, expres-

sed in terms of u, to the corresponding one of the free system. For

instance, when the dynamical systems are the Burgers equation, (7)
with 03BB=0, for the free one and the Korteveg DeVries equation, that is

~u+u~u+03B1~3 ~x3u=0 for the perturbed one, the corresponding
at ax ax 

p

physical quantities are related through the formula (31) with

, v .n. / v rw

The formula (31 ), when Q is equal to Vx Pi I, reads

This integral equation is linear with respect to u and therefore easy to
iterate. The analogous one obtains by using (32) is linear with respect to
v and nonlinear with respect to u

This last formula is interesting because it furnishes an explicit functional
equation for u, the integrand can be calculated as soon as v is known.

Let us illustrate this property on an example: the perturbed diffusion
equation, that is

with

After introducing the diffusion kernel

Vol. 53, n° 3-1990.
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that satisfies

the solution of the free equation, linear in this case, takes the form

The integral equation (34) reads in this case

This integral equation furnishes the power expansion with respect to A of
the solution u of (35) in terms of the diffusion solution v (39). We can
compare it to the integral equation obtained directly from (35) by using
the Green function e (t) ~ corresponding to the free linear equation

To furnish a power series in ~, this integral equation has to be modified,
that is it must be put on the form (40). This is obtained by suitably
introducing in the equation (41 ) the initial condition (36) written as follows

Therefore the formula (40) and the usual perturbation expansion lead to
the same result in this particular case, this is the same for any free linear
equation.
The iteration of (33) gives the same result as the formula (24) applied

to it furnishes the i-th component of the function u [t, s; y] as a
power series in À. The coefficient Uk of À k is a triangular integral of order
k the integrand of which ffk [t, r;1,’ .., r;k, s, x; y] is completely explicit in
terms of the function v and its derivatives with respect to y:

It can be recursively constructed from the preceding one

In the next section we apply these results to the case of the perturbed
Burgers equation (7).

Annales de l’Institut Henri Poincaré - Physique théorique
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II. PERTURBED BURGERS EQUATION

First let us recall that the equation (7) when ~, is equal to zero, can be
linearized by introducing the function v such as [4]:

where v t, s, x; y] is a primitive of v with respect to x. We can wrtie v on
the form

The function v is solution of the diffusion equation

with the initial condition deduced from equations (4) and (45)
~ ~ 1

where y(x) is a primitive of y. The solution v of (47) and (48) takes the
form

~..J,.."" ". - v

where ~ is the diffusion kernel defined in (37). This expression replaced in
formula (46) gives the Burgers solution v ; for theorems of existence see
for instance [4].

Considering now the equation (7) with X different from zero, we try to
linearize it as previously; let us define the function (D such as

and

where ~, ~-; ~] is a primitive of M with respect to ~-. Taking back this
expression in equation (7), we get

~ ~7 ~

where ~ is the functional equal to a primitive with respect to x of
N [t, x; u]; the constant of integration with respect to x, C (t), depends on

Vol. 53, n° 3-1990.
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the choice of the primitive ii, and can be taken off without changing u.
The function 03C9 fulfils the same initial condition (48) as the function v.
The theory of the diffusion with an external source [2] gives for the

solution of (45)

Substituting (o and v by their expressions (45) and (50), we obtain an

integral equation relating the perturbed solution u to the free one v. This

equation is obviously nonlinear in u and in v and does not suit to find

easily the coefficients Uk, when the direct application of the result of the

previous section furnishes integral equations very convenient.
The straithforward application of the formula (43) gives the expression

of the coefficients Uk

The kernel Jf involved in the chronological integral are given by for-
mula (43)

where the free solution v is given by (46) and (49); the operators ~I’ s and
N* being defined in (10) and (28) with the help of the functional ~
representing the flow associated to v and of the perturbation term N
involved in the equation (7).

Let us calculate the first kernel

The functional derivative of v is obtained by using (45) and (49)

Recalling the property of the functional derivative

Annales de Henri Poincaré - Physique théorique
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and replacing v by its expression (49), we obtain

Putting this result in the formula (56) and remarking that

we finally have for the first kernel

In this expression appears a modified diffusion kernel

Its primitive with respect to x’

can be written on the form

We remark that ~ trivially belongs to [0,1].
The modified kernel satisfies a condition deduced from (38)

Let us note that

and

A relation analogous to (67) holds for ~.
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Introducing (62) in (61), the first coefficient U 1 can be written on the
form

After performing an integration by parts with respect to xl, it reads

where

JV being a primitive of N with respect to xi already introduced in (52).
The expression (70) does not depend on the primitive JV choosen, for

The term U 1 is the boundary term

We can check that Ui satisfies the same linear partial differential equation
as U1; this equation is obtained by sustituting u by 1 in (5) and
taking the first order in À, it reads

Moreover the functions Ui and Ü 1 fulfil the same initial condition

Therefore if they exist, these two functions are equal, we say that they
are formally equal. In practice we have two expressions for the first

coefficient (68) and (70), we have to verify their existence, the one that
exists is the coefficient we were looking for; we give an example at the
end of the section.

By an analogous calculus we can find the first order in A of the cinetic

energy E[MJ=1/2~~ when the velocity u satisfies the perturbed Burgers
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equation (7); using (31), we have

The term in À can be easily calculated and is equal to the expected result
mvU1.
Now, and this is the main advantage of our method, the upper orders

are obtained by a calculus quite analogous to the preceding one, that is
very easy, though the direct calculation of these terms by using the

expressions (51 ) and (53) is quite difficult. Let us apply the formula (44)

Let us first calculate by using (59), (60), (62) and (63)

The straighforward calculus of (76), using (59), (61 ), and (77), leads to

As for the first order, an integration by parts can be performed on this
kernel. It replaces the first term of the right member by the following one,

Vol. 53, n° 3-1990.
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formally equal to it

Let us denote

the primitive of Ui 1 in which we specify the functional dependence with
respect to JV. The contribution of the first term to U2 is equal to

The last term is just

It corresponds to the first order kernel of

as we can see by writing with the help of the formula (24). This term
happens too in the calculation performed from the expression (53) of (o.
If we don’t use the result of the preceding section to calculate this kernel,
we have to do the Taylor expansion of composed functionals and this is
not very easy. Therefore, already for the second order kernel we can see
the advantage of the method proposed in this paper. For the following
terms, the straighforward application of this method leads to calculations
that can be performed without difficulties because they use always the
same intermediate result (77).

Finally let us test our result in the case where the forced Burgers
equation can be explicitely solved, that is in the case where N (~, x ; y] is
equal to a time dependent function 11 (t)

Let us consider the Miura transformation [6]

and

Annales de l’Institut Henri Poincaré - Physique théorique
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where 11 (t) and 11 (t) are respectively the primitives of 11 and 11 vanishing
for t = s. The substitution of (83) and (84) into (82) shows that u’ fulfils
the free Burgers equation with the same initial condition as u, we therefore
have

This explicit solution developped with respect to À gives for the two first
terms

and

Let us check that this last term coincides with (70) when N [t, x ; y] = 11 (t).
We choose the primitive of N, ~’ [t, x ; y] to be equal to 11 (t) x and we
replace it in (70)

using the equality

we obtain

that is equal to (87). Let us remark that contrarily to 11 that is well
defined, the expression (68) giving U in this case is ambiguous, it is why
we have to choose the expression (70) to test our result. By an analogous
calculation, the expression (79) leads to the second order expected result

To end let us give the integral equation deduced from (34) for the
present example

Vol. 53, n° 3-1990.
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after a integration by parts. In particular, when

this integral equation stands for the solution u of the Korteveg Devries
equation.
The expression (91) does not trivially reduce to the already found

equation (53). However by stressing that the equation (53) can be obtained

by applying the relation (31 ) to the functional Q[M]=co=exp( - 2014 ~ we
establish that both these equation result from the same equation (31 ) or
(22) and therefore we relate them though it is difficult to directly connect
them.

In conclusion, the fact that the perturbation theory developped in

this paper furnishes completely explicit expressions for the terms of the
perturbation expansion may be of course very useful for the study of the
convergence properties of this expansion or for the study of the stability
of the solution, for which we have to examine each particular problem.
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