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W. LISIECKI
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BiaJystok Branch, Akademicka 2, 15-267 Bialystok, Poland

Ann. Inst. Henri Poincaré,

Vol. 53, n° 2, 1990, Physique théorique

ABSTRACT. - We show that an irreducible unitary representation (with
discrete kernel) of a (noncompact) semisimple Lie group admits a Kahler
coherent state orbit (i. e. a complex orbit on the space of all lines in the
representation space) if and only if it is a highest weight representation.

RESUME. 2014 Nous prouvons qu’une representation unitaire irreductible
(avec noyau discret) d’un groupe de Lie semi-simple (non compacte) admet
une orbite de Kahler d’etats cohérents (i. e. une orbite complexe sur

l’espace de toutes les droites de l’espace de la representation) si et seulement
si c’est une representation de poids maximal.

1. INTRODUCTION

The notion of coherent states goes back to the early days of Quantum
Mechanics, but it was only in 1972 when it was formalized (using represen-
tation theoretic terms) by Perelomov (see also [Pe2]). According to
his definition, a system of coherent states for an irreducible unitary
representation of a Lie group G on a Hilbert space 1%7 (or for a quantum
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mechanical system with symmetry group G in physicists’ terminology) is
a G-orbit on the projective space P (~f) (which is the quantum mechanical
phase space).
Of particular interest are orbits of coherent states which are "closest to

the classical ones". Geometrically, these are complex submanifolds of
P(J~). Now P (J’f) carries a natural Kahler structure (induced by the
scalar product on J’f) and this is inherited by any complex submanifold.
In particular, P (J’f) is a symplectic manifold, which allows one to treat,
formally, the quantum mechanics as a "classical mechanics" on 
(cf. [Tu]). In many cases a complex (or, more generally, symplectic) coher-
ent state orbit may be interpreted as the corresponding classical phase
space. Thus, in such a case, the classical phase space is embedded into
the quantum one. If we start from a classical system, then to construct
such an emedding amounts to the same thing as to quantize the system
(see [Od]).
Thus it is natural to consider the following problem: given a Lie

group G, classify all its (irreducible unitary) representations which admit
Kahler coherent state orbits; in particular, classify all groups possesing
such representations.

In case of compact G this problem was solved by Kostant and Stern-
berg [KoS] who showed that for any representation of G the orbit through
the projectivized highest weight vector is the only Kahler coherent state
orbit.

In the present paper we show that if G is semisimple (and noncomcom-
pact), this result still holds for the highest weight representations (and
only for them) [see Theorem (3.8)]. (Contrary to the compact case, these
representations (whose definition is now somewhat more subtle) form only
a small part of the unitary dual of G; moreover, they exist only for those
G which are of Hermitian type). Since the highest weight representations
are classified ([EHW], [Ja]), this gives a complete solution to our problem
in this special case.
We also briefly discuss "holomorphic realizations" of the representations

which admit a Kahler coherent state orbit and their connection with

geometric quantization and vector coherent state theory [RRG]. Finally,
we indicate that the above mentioned interpretation of Kahler coherent
state orbits as classical phase spaces is, in general, possible only for square-
integrable representations. The non-square-integrable case is illustrated by
an example concerning the ladder representations of SU (2,2).

Concluding this introduction let us remark that the general classification
problem stated above could be attacked along the lines of this paper. Our
main technical tool here is a structure theory (due to Borel [Bo]) of
homogeneous Kahler manifolds of semisimple Lie groups. Thanks to an
affirmative solution (due to Dorfmeister and Nakajima [DN]) of the
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247KAEHLER COHERENT STATE ORBITS

famous Vinberg-Gindikin conjecture [VG] such a theory is now available
for arbitrary homogeneous Kahler manifolds. A solution of the general
classification problem based on this theory would involve a classification
of homogeneous bounded domains which is, as yet, not complete. It is

possible, however, to obtain a complete solution for the, rather large,
class of all unimodular Lie groups. This will be carried out in a future

publication.

2. SYMPLECTIC AND KAEHLER ORBITS IN THE GENERAL
CASE

(2.1 ) Let H be a complex Hilbert space and the corresponding
projective space. For each we shall denote by [v] the complex
line C v. P (#) has a unique structure of a complex Hilbert manifold such
that the map

is a holomorphic submersion. Moreover, it carries a natural Kahler struc-
ture (Fubini-Study metric). This can be defined as follows. Consider the
unit sphere S (Jf) in Jf. This may be viewed as the total space of a
principal circle bundle over P (Jf) with projection v H [v]. There is a

natural connection on S whose horizontal space at v is the orthogonal
complement of v in Jf [identified in a natural manner with a subspace of
T" S (~)]. The corresponding connection I-form a is given by

where (v w) is the scalar product in Jf of v and w (which is assumed to
be linear in the second variable). It is easy to see that the curvature form
00 of ex is a type (1,1 ) symplectic form on P (Jf) and that it gives rise to a
Kahler structure. In the terminology of geometric quantization, (S (~f), a)
is a prequantization (in the sense of Souriau) of the symplectic manifold

o). Note that the Banach Lie group of unitary operators
in Ye acts via prequantization automorphisms (i. e. automorphisms of a
principal circle bundle with connection) on (S(~f), a) and via Kahler
manifold automorphisms on (P (~), co).

(2 . 2) Associated to the principal bundle S {~) -~ there is a holo-

morphic line bundle E - P (/) (Kostant’s prequantization of (P(~f), o))
whose fiber at [v] is the dual space [v]* of the line [v]. Each linear
functional p on Ye gives rise to a holomorphic section [v] H p of E.
Thus we obtain a natural mapping
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from the dual of Yf to holomorphic sections of E, which is easily seen to
be a linear isomorphism (cf. [Tu]).

(2. 3) Let G be a connected real Lie group with Lie algebra go and let
9V) be an irreducible unitary representation of G on a Hilbert space

3Q. Thus x : G -~ U is a group homomorphism and the corresponding
left action G x is continuous. This action induces a continuous
action of G on P(~f). Let denote the space of smooth vectors of

(x, It is well known that is a G-invariant dense subspace of ~f
and carries a natural structure of a g-module, g being the complexification
of go. Denote by P the space of smooth lines. Then we have the

following.

(2 . 4) PROPOSITION. - The orbit G. [v] is a smooth (immersed) submanifold
of P ~v~ E P 

is smooth. Thus the orbit map at [v], p~, is also smooth. Moreover,
it is a subimmersion (since G is finite-dimensional), which implies that
G . [v] is a smooth immersed submanifold of P (~).

Conversely, suppose that G. [v] is an (immersed) submanifold. For each
g E G, the corresponding transformation of is a diffeomorphism and
maps G. [v] onto itself, hence it induces a diffeomorphism of G. [v] onto
itself. This implies that the action of G on G . [v] is smooth (see [MZ],
pp. 208 and 212). Thus the orbit map p[v] is smooth. Since =p D pv, pv
is also smooth, which means that [v] E P (J’f00)..

(2 . 5) We say G. [v] is a symplectic orbit if it is smooth, i. e. [v] E P (J’f00),
and (G. [v], 1* 0)) is a symplectic manifold (1: G. [v] - being the
canonical immersion). If this is the case, the pull-back (1* S (~f), 1* a) is
a prequantization of (G . [v], 1*0). Since x is unitary and U (J’f) is an

automorphism group a), G acts on (1* S(J’f), 1* ex) by prequan-
tization automorphisms. Thus, by a result of Kostant ([Ko], Th. 4. 5.1 ),
(G. [v], 1* 0)) carries a natural structure of Hamiltonian G-space with
momentum mapping J : G [v] - 9Ó given by

where dot denotes the action of 90 and where we assume, as we

may, that Moreover, being prequantizable, (G . [v], t * (0) is inte-
gral in the sense that there exists a unitary character x of the stabilizer
G[v] of [v] such that L (X) being Lie algebra character
corresponding to x.
We shall now consider complex G-orbits on 
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249KAEHLER COHERENT STATE ORBITS

(2.6) Because of homogeneity, G. [v] is a complex submanifold of P (3V)
iff G. [v] is a complex subspace of It is convenient to

rephrase this as follows. Let

where is the subspace of antiholomorphic tangent vectors
and G. [v], the complexification of [vI, is naturally identified
with a subspace of T£j P (9V). Then G. [v] is a complex submanifold of

if

(here bar denotes the conjugation in G . [v]).

(2 . 7) We shall now characterize complex orbits in terms of polarizations.
Recall that a positive totally complex polarization for f E g~ is a complex
subalgebra q c g with the following properties

where bar denotes the complex conjugation in g with respect to go, and 91
is the stabilizer of (the complexification of) f in g. If M is a homogeneous
Hamiltonian G-space with momentum mapping J, then, for a fixed m E M,
there is a 1-1 correspondence between G 1 -invariant positive totally com-
plex polarizations for f= J (m) and G-invariant Kahler structures on M
such that the symplectic form coincides with the imaginary part of the
Kahler metric. It is obtained by letting Tjjj where pm is the

complexification of the tangent of the orbit map at m, be the subspace of
antiholomorphic vectors at m.
(2 . 8) PROPOSITION. Let G . [v] be a .smooth orbit and let

= { X E g v E C v ~ be the stabilizer of [v] in g. Then the following
conditions are equivalent.

(i) G. [v] is a complex orbit;
(ii) G. [v] is a symplectic orbit and is a positive totally complex

polarization for f = J (m);

Proof . - Suppose G. [v] is a complex orbit and consider the tangent

of the orbit map at [v]. Viewing G . [v] as complex vector space, we
may extend this map to a complex linear map
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which can be written as the composition

of the complexification of (2 . 8 .1 ), the projection onto the subspace of
holomorphic vectors and the canonical isomorphism of this subspace onto

G. [v]. It follows that

and hence is a positive totally complex polarization for f. We have thus
shown that (i) ==&#x3E; (ii). The implication (ii) =&#x3E; (iii) is obvious. Finally, noting
that T£j F, where F is defined by (2. 6 . .1 ), we see that (iii)
implies (2. 6. 2) which is equivalent to (i), .

Remark. - Perelomov [Pe2] calls the algebras 9[v] with property (iii)
"maximal" and remarks that they are totally complex polarizations. This
is made precise by the equivalence (ii) =&#x3E; (iii).

(2 . 9) Let be a complex orbit and i:G. M-~P(~f) the
natural (holomorphic) immersion. The pull-back of E [see (2 . 2)] is
a holomorphic line bundle (Kostant’s prequantization of (G. [v], 1* (0)).
Write r (G. [v], L) for holomorphic sections of L and consider the composi-
tion of the natural isomorphism ~* ~ r ~) and the restriction
map F(P(~f), E) - r (G. [v], L). Since the linear span of G. v is dense in
~, the resulting G-equivariant mapping

is injective. Thus we obtain a "holomorphic realization" of the representa-
tion (1t v , contragredient to (7r, Yf). (x, Yf) itself has a holomorphic
realization corresponding to the complex orbit on which is the

image of G. [v] under the antiholomorphic isomorphism P (9V) - P 
induced by the Frechet-Riesz isomorphism.

3. THE SEMISIMPLE CASE

(3 .1 ) From now on we assume that G is a noncompact connected

semisimple Lie group. As before, go and g denote, respectively, the Lie
algebra of G and its complexification. Vector subspaces of go are denoted
by lower case German letters with subscript 0, dropping of which means
complexification. We fix once and for all a Cartan decomposition

and we let K denote the Lie subgroup of G corresponding to to.
If (~, J’l’) is an irreducible unitary representation of G, we shall write

[resp. for its kernel (resp. projective kernel). Note that

Annales de l’Institut Henri Poincaré - Physique théorique
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and the quotient group is discrete. From now on we assume
that K(x) is discrete (hence so is and x is nontrivial (i. e.

(3 . 2) LEMMA. - Given a smooth line [v] E P (e1e00), let be its stabilizer

in G and its stabilizer in g. Then

(i) G[03C5]/PK (03C0) is compact;
(ii) is reductive in g.

being irreducible, the linear span of G. v is dense in e1e.

Thus gEG induces the identity transformation of G. [v] iff i. e.

acts effectively on G. [v]. Since G. [v] carries a G-invariant
Riemannian metric [induced from P (~f)], we conclude that (x) is
compact. Hence (i) is proved. Now (ii) follows from (i) since, in virtue of
the discreteness of PK (x), 9[v] n 9[v] is the complexification of the Lie
algebra of 

Recall that an element f E go is called elliptic if the element X E go that
corresponds to it under the isomorphism induced by the Killing form
is so, i. e. ad (X) is a semisimple endomorphism with purely imaginary
eigenvalues.

(3 . 3) PROPOSITION. - Suppose G. [v] is a symplectic orbit; let J be the

corresponding momentum map [see (2 . 5)] and f = J ([v]). Then
(i) f is elliptic;
(ii) rank go = rank fo;
(iii) G. [v] is simply connected and J maps it diffeomorphically onto G . f .

Proof. - Since G. [v] is symplectic, = and (3. 2) (i) implies
that c fo (for an appropriate choice of [v]). Thus f may be identified
with an element of fo and so is elliptic. In particular, it is semisimple
hence (go) f contains a Cartan subalgebra of go. This proves (i) and (ii).
Now (iii) follows from (i) and the well-known fact that elliptic orbits are
simply connected..

Remark. - Condition (ii) above coincides with Harish-Chandra’s criter-
ion for the existence of the discrete series of G. Now it follows easily
from the results of [MV] that for any square-integrable representation
(7i:, of G there exists a symplectic orbit on P (~). However, as we
shall see below, symplectic orbits may exist also for non-square-integrable
representations.
We now turn to complex orbits.

(3.4) PROPOSITION. - G. [v] is a complex orbit on ff is a

parabolic subalgebra of g.

Proof. - If G. [v] is complex, is a (positive totally complex) polariza-
tion for f = J ([v]) (2 . 8) hence it is a parabolic subalgebra by a result of
[OW].
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Conversely, suppose g[v] is parabolic and let n be its nilradical. Then

On the other hand, 9[c] D tt= {0 }, because n 9[v] is reductive in
9 (3.2) (ii), hence

Together with the previous equality this shows that

which according to (2.8) implies that G. [v] is complex..

(3.5) Recall that G is said to be of Hermitian type if G/K is a Hermitian
symmetric space (i. e. carries a G-invariant complex structure). In virtue
of our assumptions about G, this amounts to saying that, for each
noncompact simple ideal of go, the corresponding maximal compact subal-
gebra has one-dimensional center.

Identify p with the complexified tangent space at the origin of G/K and
let mcp be the subspace of antiholomorphic vectors for a given G-
invariant complex structure on G/K. Then m is an abelian subalgebra and
t+m is a parabolic subalgebra with nilradical m. Thus f + m contains a
Borel subalgebra b of 9 and any such b must be of the form

where a Borel subalgebra of ~. A Borel subalgebra b of g which is
contained in some f+ m will be called admissible. Since all Borel subal-
gebras of f are Ad (K)-conjugate, the Ad (K)-conjugacy classes of admissi-
ble Borel subalgebras are in 1-1 correspondence with the G-invariant
complex structures on G/K.

(3.6) Recall that, by a classical theorem of Borel [Bo], an effective
homogeneous space M of G admits an invariant Kahler structure iff G is
of Hermitian type and the stabilizer Gm of some point mE M is the
centralizer of a torus in K. Moreover, the fibration G/K is

holomorphic (with respect to an appropriate G-invariant complex structure
on G/K uniquely determined by that on M) and the fiber is a

simply connected K-homogeneous Kahler manifold (i. e. a flag manifold).
Now if G . [v] is a complex orbit on P (.1f), it is an effective homogeneous

Kahler manifold of Ad (G) [cf. (3.3)] so the first part of Borel’s theorem
implies that G is of Hermitian type and [v] can be chosen such that

c K, and the second part, together with (3.4), implies that g{v] is of
the form

where o f is a positive totally complex polarization for J ([v]) It
follows that contains an admissible Borel subalgebra of g.

Annales de l’Institut Henri Poincaré - Physique théorique
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(3 . 7) A vector is called K-finite if K . v spans a finite-dimensional
linear subspace of :Yf. Any K-finite vector is smooth (in fact analytic) and
the subspace HK of all such vectors is an (algebraically) irreducible g-
module, the Harish-Chandra module of (x, H). (One usually requires in
this definition that G has finite center, but for our purposes this is
inessential. As a matter of fact, if G has a symplectic orbit on P (~),
then must have finite center). We shall say that (~, is a highest
weight representation if G is of Hermitian type and is a highest weight
module relative to an admissible Borel subalgebra b of g., i. e. there exists
a nonzero vector v E J’l’ K such that b. v = C v. v is then called a highest
weight vector and [v] the highest weight line. For a fixed b, there is exactly
one highest weight line. (See [Ha], [Va]; note that if we fix a Cartan

subalgebra ~o of go contained in ~o, there is a 1-1 correspondence between
Borel subalgebras containing t) and positive systems of roots of (g, ~), and
admissible Borel subalgebras correspond to admissible systems in [Va].)
Remark. - By a result of Harish-Chandra [Ha], the assumptions about

go and b we have made above are necessary for the existence of highest
weight representations. We shall give a simple geometric proof of this fact
below [see (3.9)].
We can now state our main result.

(3.8) THEOREM. - Suppose G is a (noncompact) connected semisimple
Lie group and (~c, ~’) a nontrivial irreducible unitary representation of G
with discrete kernel. Then G has a complex orbit on if and only ~
(n, ~) is a highest weight representation. If this is the case, there is exactly
one such orbit, namely the orbit through the highest weight line.

Proof. - Suppose (n, is a highest weight representation (relative
to an admissible Borel subalgebra b and take the orbit G. [v] through the
highest weight line. Then b is contained in so the latter is parabolic
and G. [v] is complex by (3 . 4). [We could have also proceeded more
directly noting that b + b = g and then applying (2.8)]

Conversely, suppose there exists a complex orbit G. [v] c P (~j. Then,
as we have already noticed in (3.6), G is of Hermitian type and v can be
chosen such that contains an admissible Borel subalgebra b, i. e.
b . v = C v (recall that we have excluded the trivial representation). We shall
show that v is K-finite. Let ~ be the closure of the linear span of K. v
and (~ ~K, ~ ) the natural unitary representation of K on IF. With our
choice of v, K. [v] is a fiber of the holomorphic fibration G. [v] - G/K of
Borel’s theorem (3.6) so it is a compact complex K-orbit on Let
L - K. [v] be the holomorphic line bundle introduced in (2.9). K. [v] being
compact, the space r (K. [v], IL) of holomorphic sections of this bundle is
finite-dimensional. Considering the natural mapping W* - r (K. [v], L) of
(2.9), which is now injective by the very definition of we conclude
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that ~ * is finite-dimensional and hence so is ~ . Thus v is K-finite and
so (n, is a highest weight representation.

Finally, to prove the uniqueness assertion, it suffices to show that if v
and v’ are highest weight vectors of .1f K relative to admissible Borel

subalgebras b and b’ respectively, then b and b’ are Ad (K)-conjugate.
Suppose, to the contrary, this is not the case. We may assume without
loss of generality that go is simple, so that G/K has two G-invariant
complex structures corresponding to m and m, and take b = r + m,
b’ = r + m, where r is a Borel subalgebra of f. Since Yf K is a highest weight
module relative to b, any nonzero element Y of m acts freely on Yf K (i. e.,
for any Y. w = 0 =&#x3E; w = 0). On the other hand, v’ is a nonzero
vector annihilated by m, which contradicts the preceding conclusion. The
proof is complete..

Together with (3.4) this theorem implies the following.

(3.9) COROLLARY. - G and (x, Yf) being as above, suppose that there
exist a smooth vector v and a Borel subalgebra b ~ g such that b . v = C v.
Then G is of Hermitian type, b is admissible and v is K-finite, so that
(x, Yf) is a highest weight representation..

4. HOLOMORPHIC REALIZATIONS OF REPRESENTATIONS
AND PHYSICAL INTERPRETATION OF KAEHLER COHERENT

STATE ORBITS

(4 .1 ) It is clear that Theorem (3.8) holds, with obvious modifications,
also for compact G (we have excluded this case to simplify the statement).
This is the result of Kostant and Sternberg [KoS] mentioned in the
introduction. Note that in this case the natural map (2 . 9 .1 ) is an iso-

morphism, which is just a restatement of the celebrated Borel-Weil theorem
(cf. [GS].

(4 . 2) Returning to the situation of section 3, consider a complex G-orbit
G . [v] on P (.1f). Let G. [v] - G/K be the holomorphic fibration of (3 . 6)
and K. [v] the fiber over the origin of G/K. According to (2 . 9), there is a
natural holomorphic line bundle L over G. [v]. Its restriction ~ ~~] to

K. [v] is still holomorphic. The space V = r (K. IK. [v]) of holomorphic
sections is finite-dimensional and naturally isomorphic to the dual of the
space spanned by K. v [see the proof of (3.8) and (4.1 ); note that K need
not be compact but we may always pass to its compact quotient K/K(7t)].
Let W be a holomorphic G-bundle over G/K having V as the fiber at the
origin. Each holomorphic section B)/ of L determines a holomorphic section
of V whose value at the origin is The resulting map

Annales de l’Institut Henri Poincaré - Physique théorique
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r (G . [v], L) - r (G/K, V) is easily seen to be a G-equivariant isomorph-
ism. We thus obtain an injection

which realizes (jr", ~f*) as a vector coherent state representation in the
sense of [RRG]. From our point of view there is no principal difference
between "vector coherent states" (dim V &#x3E; 1 or, equivalently, dim K. [v] &#x3E; 0)
of [RRG] and the "scalar" ones (dim V = 1) of [Pe2]. The realization
corresponding to V is just technically more convenient than that corre-
sponding to ~, since V is holomorphically trivial while L is never so (in
the "vector" case of course).

(4.3) Suppose for the moment that G is unimodular (not necessarily
semisimple) and (x, J’l’) is a square-integrable (mod K (x)) representation
such that G has a complex orbit G. [v] on It is not hard to show
that the image of (2 . 9 .1 ) consists of those sections that are square-
integrable with respect to the Liouville measure. Thus (n v, ~f*) can be
recovered by the quantization of J (G. [v]) with respect to the polarization

If G is semisimple and of Hermitian type, "most" of the highest
weight representations are square-integrable; they constitute the so-called
holomorphic discrete series of G [Ha]. For non-square-integrable ones
(which exist for any such G [EHW], [Ja]) there seems to be no general
description of the image of (2 . 9 .1 ) which would fit the "quantization
picture". Moreover, J (G. [v]) is then not the orbit one should associate
with (7rB ~*) according to the Orbit Method.

(4.4) Remaining in the above setting, let G . f = G . J ([v]), where J is
the momentum mapping (2. 5). If (n, is square-integrable, the orbit
associated with it via the orbit method is the "dual" G . ( - f) of G . f . It
is clear that the map G . ( - fl - G . f, g . ( -, f’) H g . f, is antiholomorphic
with respect to the complex structures corresponding to the positive totally
complex polarizations and for - f and f respectively. Composing
it with the inverse of J [cf. (3. 3)] we get a G-equivariant antiholomorphic
immersion

If (n, .1f) describes a quantum mechanical system with symmetry group
G, G ( - f ) may be interpreted as the corresponding classical phase space.
(4 . 4 . 1 ) is then the "quantization of states" studied in [Od]. For non-
square-integrable (n, ~P), G . ( - f) may not, in general, be given such an
interpretation, as is shown by the following example.

(4. 5) EXAMPLE. - Let G = SU (2, 2), the group of linear automorphisms
of C4 of determinant 1 preserving a Hermitian form 03A6 of signature
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(++20142014). We shall need the following homogeneous complex manifolds
of G.

(here flag means a pair consisting of a plane and a line contained in it,
and positivity of a subspace W c C4 means that ~ ~ ~ w is positive definite).
Note that M+ is G-isomorphic to G/K [where K = S (U (2) x U (2))] is a
maximal compact subgroup of G), which gives rise to one of the two G-
invariant complex structures on G/K.
G has a remarkable family (Ttn, of non-square-integrable

unitary highest weight representations, the so-called ladder representations
We shall consider those with The contragredient

representation .1f:) is also a highest weight representation, so accord-
ing to (3.8) G has a unique complex orbit G . [vn] on P (~n ). Its image
J,~ (G. [vJ) under the momentum mapping Jn (2 . 5) is a 10-dimensional

elliptic orbit on As a complex manifold, G. [vn] is naturally isomorphic
to [F+ (the holomorphic fibration G . [vJ - G/K (3.6) corresponds to the
natural map F+ - It follows from (4 . 2) that (1tn, .1fn) has a holo-
morphic realization

is now a spinor bundle).
As is well known ([Ja V], [Ma]), (1tn, describes a massless particle

with helicity s = n/2. The classical phase space of such a particle is a 6-
dimensional elliptic orbit c 9Ó [as a homogeneous space,

~=SU(2,2)/S(U(l)xU(l,2))]. Clearly (Note that (~n
cannot be embedded into P (~,*), even as a sympletic manifold, because
its points have noncompact stabilizers (3.2) and (3 . 3)].)
We see that G. cannot be interpreted as the classical phase space of

the quantum system described by (1tn, .1fn). Nevertheless there is a certain
connection between G. [vJ and the "true" phase space ~ which is pro-
vided by the twistor theory. First note that (!)n has a (nonpositive) totally
complex polarization (it satisfies the conditions (i)-(iii), but not (iv), of
(2.7)) which gives it the structure of a complex manifold isomorphic to
)PB Next consider the "quantum which is the restriction

to P + of the ( - n - 2)nd tensor power of the hyperplane bundle P (C~)
(whose dual is the bundle E of (2 . 2) for af = (:4). Let ~I1 ([JJ&#x3E; +, 2) be
the 1 st Dolbeault cohomology group of Then the celebrated

Penrose transform

is an isomorphism onto the (k4 +) of holomorphic solutions
of s = n/2 of the zero-rest-mass. field equations on M

+ The
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natural representation of G on H~ (P~, H -" - 2) is not unitary. It can be
unitarized using a representation theoretic version of the Gupta-Bleuler
procedure in QED [RSW], and the resulting unitary representation is

equivalent to (1tn, This means that we may view as a subspace
of H 1 ((~ + ~ Due to the irreducibility of (1tn, ~n), the restriction
~ coincides (up to a constant factor) with (4.5.1). itself may also
be interpreted within the framework of coherent states. To this end
consider the subspace of analytic vectors in an and let Jf; co be
its dual (the space of hyperfunction vectors in the terminology of [Sch]).
Since G. passes through a K-finite line, it is contained in the subspace

of analytic lines, and so (4 . 5 .1 ) can be extended to a G-
equivariant injective map

[cf. (2 . 9) and (2 . 2)]. Now there is a natural isomorphism
~ 1 (~ +, due to the fact that both of these spaces are
"maximal globalizations" of the Harish-Chandra module (~,~~~ [Sch].
Composing this isomorphism with (4. 5.2) we get the Penrose transform
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