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Postfach 700822, D-2000 Hamburg 70, F.R.G.

Ann. Inst. Henri Poincaré,

Vol. 53, n° 2, 1990, Physique théorique

ABSTRACT. - A quasilinear hyperbolic system of second order differen-
tial equations, each having the same principal part gab Oa Ob (where ga~ is
indefinite) is considered. For example Einstein’s vacuum field equation (in
harmonic coordinates) are of this type. Initial data are given on two
intersecting null (i. e. characteristic) hypersurfaces. At first an existence
theorem for the corresponding linear case is proven. This theorem is so

strong that it allowed to set up an iteration (for the quasilinear case) with
the following properties:

There will be no loss of differentiability orders (in the sense of Sobolev
spaces), when one proceeds from one iteration step to the next one.

Moreover, within each iteration step the solution fulfils an energy inequa-
lity, whose energy inequality "constant" remains (~) unchanged when one
makes the domain, on which the solution is considered, as small as one
likes. (This domain has to be made sufficiently small in order to prove a
local existence theorem for the quasilinear case.) Furthermore the energy
inequality "constant" is stable against small variations of the coefficients
(those variations are induced by the iteration).

In order to obtain a solution for the quasilinear case it remains to be
shown that the iteration converges; this convergence will be shown in a

forth-coming paper.

(~) At first one shows that the energy inequality "constant" c remains bounded (see
Theorem 4.2). Then one replaces c by c, where c is the upper bound of c.
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160 H. MULLER ZUM HAGEN

In order to obtain a s-times differentiable solution (in the sense of
Sobolev spaces) one has to assume that the data are (2 s-l)-times differen-
tiable (with sufficiently large s) and that certain assumptions on the coeffi-
cients hold. This means that there is a gap of differentiability orders
between the solution (s-times differentiable) and the data [(2 s - I)-times
differentiable]. It will be proven, that - in the generic case - this gap cannot
be reduced by more than one half of differentiability order (in the sense
of Sobolev spaces of fractional orders of differentiability). - This paper is
an extension and improvement of the previous paper [3] of Muller zum
Hagen and Seifert.

RESUME. 2014 Prenons en consideration un systeme quasi lineaire hyper-
bolique d’equations differentielles du second ordre, dans lequel chaque
equation a la meme partie principale gab ~a ~b (gab étant indéfini). Les

equations d’Einstein sont, par exemple, de ce type. Nous donnerons des
valeurs initiales aux deux hypersurfaces caactéristiques sécantes. Il est

d’abord possible de faire la demonstration d’un théorème d’existence pour
les cas lineaires associes. Le theoreme est si fort qu’il permet une iteration
(au cas quasi lineaire) avec les propriétés suivantes :

Il n’y a pas de perte d’ordre différentiel (dans le sens des espaces de

Sobolev) quand on passe d’un pas d’iteration a un autre. A 1’interieur
d’un pas d’iteration cette solution satisfait a une inegalite d’energie. Dans
un tel cas la constante de l’inégalité énergétique ne change (2) pas si l’on
réduit, arbitrairement le domaine pour lequel la solution est envisagée (on
doit suffisamment reduire ce domaine, afin que l’on puisse demontrer un
theoreme d’existence locale dans les cas quasi lineaires). De plus, en ce qui
concerne de faibles variations des coefficientes -la constante de l’inégalité
energetique reste stable (de telles variations sont engendrées par 1’iteration).
Pour obtenir une solution du cas quasi lineaire, il est necessaire de

demontrer la convergence de 1’iteration; nous demontrerons cette conver-
gence dans une publication prochaine.
Pour obtenir une solution s-fois differentiable (au sens des espaces de

Sobolev), on doit supposer que les valeurs initiales sont differentiables

(2 (avec un s suffisamment grand) et que certaines conditions
sont remplies en ce qui concerne les coefficients. Ce qui signifie qu’il
existe une lacune entre les ordres de differentiation de la solution (s-fois
differentiable) et celle des valeurs initiales [(2 s-1)-fois différentiable].
Nous ferons la demonstration suivante : dans les cas génériques cette lacule

(2) Dans un premier temps ont montrera que la constante de l’inégalité energetique reste
une borne (voir theoreme 4. 2). Ensuite on remplacera c par c ou c sera la borne superieure
de c.

Annales rle I’Institut Henri Poincaré - Physique théorique



161HYPERBOLIC SYSTEMS OF SECOND ORDER DIFFERENTIAL EQUATIONS

ne peut etre réduite de plus d’un demi-ordre de differentiation (dans le

sens des espaces de Sobolev avec ordre fractionnaire de differentiation).
- Cette publication est une extension des travaux precedents publiés [3]
par Muller zum Hagen et Seifert.
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162 H. MULLER ZUM HAGEN

I. INTRODUCTION

I.1. The problem

The following hyperbolic - i. e. gab is indefinite - system of differential
equations

is considered for the unknown M:=(M~) :=M~ ... , uN); moreover, the
data M~

0

are given on the two intersecting null (i. e. characteristic) hypersurfaces G1,
G~; the set G1 n G2 is a spacelike (n - 1 )-dimensional surface; furthermore

G2 is part of the boundary of LT [see also Figure 1 and
formula (1. .3)]. We assume that LT is compact.
One distinguishes the following two cases:
linear case: the coefficients a), f A are functions of (.x~‘);

quasilinear case: gab is a function (uA), f B is a function of auA ,
and Einstein ’s vaccum field equation of gravity are of this type
(in harmonic coordinates).

Einstein’s vaccum field equation and tis characteristic data have been
rewritten bei Seifert and Muller zum Hagen in [3] in such a way that the
equations (1), (2) can be used; this rewriting was done by using harmonic
coordinates (see Dautcourt [24]) on LT. This rewriting can also be done
by other methods, which have been mentioned in a survey given in [3],
or by using in LT "source function" (see Friedrich [25]) and using the
characteristic data (on mentioned by Friedrich in [26].

It has been shown in [3] (in the introduction) that the characteristic
initial value problem for Enstein’s field equations can be applied to many
interesting problems (3) of Einstein’s theory of gravitation. Some further

(~) A cosmological problem has also been mentioned in [3], where one should add that
essentially all observations, which we can make of the universe, lie on the past null cone;
this has been shown by Ellis et al. in [17].

Annales de l’In.uirut Henri Poincaré - Physique théorique



163HYPERBOLIC SYSTEMS OF SECOND ORDER DIFFERENTIAL EQUATIONS

applications have been made to the following problems:
(a) In order to find a large class of metrics, which solve Einstein’s

vaccum vaccum equations and have a prescribed asymptotic (4) behaviour,
Friedrich reduces (see [18], [19]) the global existence theorem problem to
a local one, namely to the local characteristic initial value problem. He
treasts the so-called "asymptotic characteristic initial value problem ".

(b) A characterization of ‘ purely radiative space-times" has been given
by using the methods of (a), which has been shown in [19].

(c) Numerical solutions of Einstein’s field equations have been calculated
in [20] by solving the characteristic initial value problem, because this is
simpler than solving (numerically) the Cauchy problem. This is so, because
of the following reason: in the characteristic problem as well as the Cauchy
problem one has at first to solve certain equations on the data-surface;
these equations are ordinary differential equations in the case of the
characteristic problem, whereas they are elliptic partial differential equa-
tions (the constraints equations) in the case of the Cauchy problem; these
elliptic equations are much more difficult to solve than those ordinary
differential equations.
The above remarks show, where the characteristic initial value problem

has been applied (and will be applied) and why one should try to extend
the theorems of [3]. (The work on the above problems of General Relativity
is by no means finished.)

1.2. Aims and results

As far as the style is concerned this paper will follow the previous
paper [3], which in turn followed Hawking and Ellis [9] (the chapter on
the Cauchy initial value problem of Einstein’s equation). So, the intention
is that this paper is selfcontained and could be understood without reading
a lot of other papers. The proofs will be written down so explicitly and
constructively that generalizations are accessible.

This paper is an extension (see next paragraph) of [3] by Muller zum
Hagen and Seifert and it fills a gap of the proof of [3]; this gap (5) has
been filled by Christodoulou and Muller zum Hagen in [4], which was a
short paper in which an existence theorem (6) for the linear as well as the

(4) In [19] solutions are treated possessing a smooth structure at past null infinity (which
forms the "future null cone at past timelike infinity with complete generators"). In [ 18]
solutions are treated which possess a smooth structure at a part of past null infinity.

(s) This gap has been filled by deriving the so-called "stable-boundedness property" (see
below in this subsection).

(~) The theorem of [4] is - apart from a slight modification - the same as in this paper.
The norm II . (LT) of [4] is equal to )) . 

Vol. 53, n° 2-1990.



164 H. MULLER ZUM HAGEN

quasilinear case has been stated; however, there has been given in [4] a
brief sketch of the proof, only. So the present paper will give a (simplified
version) of the proof for the linear case. Moreover, the theorem to be
proven will be so strong that the following two properties hold:

(I) Iteration property : in section 8 we shall set up an iteration for the
quasilinear case. There will be no loss of differentiability orders (in the
sense of Sobolev spaces) when one proceeds from one iteration step to
the next one. Moreover, the solution of each iteration step fulfils an

energy inequality, whereby the energy inequality constant remains bounded
thoughout the whole of the iteration (see Remark B of section 8).

(II) Stable-boundedness property (’): The solutions of our linear equation
fulfils an energy inequality, whereby the energy inequality constant c
remains bounded, when one makes the domain D, on which the solution
is considered, as small as one likes (see Theorem 6. 2 and 8 .1 ); in the
quasilinear case one has to make the domain D sufficiently small (due to
the possible occurrance of singularities). Moreover, the bounds for c are
strictly positive and stable against small variations of the coefficients of
our linear equation (see Theorem 6.2 and 8.1). Such variations occur
during the iteration mentioned in (I).

Using (8) the above properties (I), (II) one can prove that the iteration
[mentioned in (I)] converges against a solution of the quasilinear characteris-
tic initial value problem (see Remark B of section 8). The details of the
convergence proof will be given in a forthcoming paper.
Our existence theorem (for the linear case) extends the results of [3]

into three directions:

(A) the existence theorem will be stronger than the existence theorem
of [3] (see Remark A of section 8);

(B) the above stable-boundedness property [see (II)] is satisfied;
(C) our treatment can be generalized (see Remark 4. 3 of section 4) to

other kinds of characteristic initial value problems such as the following
"cone problem ": fulfils (1 ) and assumes given data oA on G:

where G is the null (i. e. characteristic) cone at some point xo. [G is

generated by the (future-directed) null geodesics emanating from the

point xo].
In the following the differentiability order is considered in the sense of

some kind of Sobolev classes (see section 5 and 7). As will be pointed

C) This property will also be discussed in 1.5 of the introduction.
(8) One also uses the ball property (see Remark 3.1 of section 3).

Annales do l’Institut Henri Poincaré - Physique théorique
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out in section 6 and 8 the solution of the characteristic initial value

problem (1), (2) is s-times differentiable, where s &#x3E; ~ 2 + 2 [with n of (1)].

However, it is most likely that this bound for s can be lowered [as has
been done in a sequence of papers of Choquet et al. (e. g. [2])]. Low

differentiability orders are important for the treatment of shocks or singular
solutions (by similar methods as in [14]).

It one wants of obtain a s-times differentiable solution (see section 6
and 8), then one has to assume that the data are (2 s - 1 )-times dfferentiable
and that certain assumptions hold on g, b, a, f of ( 1 ) (in the linear as well
as the quasilinear case). This means that there is a gap of dfferentiability
class between the solution (s-times differentiable) and the data [(2 s -1 )-
times differentiable]. It will be proven that this gap cannot be reduced by
one differentiability order [in fact this gap cannot be reduced by more
than half a differentiability order (see Remark C of section 6].

Furthermore the case s = oo is included; in this case data and solutions
are infinitely often differentiable (in the usual sense).

1.3. Related papers

A survey on related papers has been given in [3]. Furthermore

Cagnac [23] considers a quasilinear hyperbolic system of the type

(a, b, c runs from 1, ..., n + 1; A, B runs from 1, ..., N) and poses data
on a characteristic cone. He solves this characteristic initial value problem;
however, he makes - apart from some differentialbility assumptions on the
data - the following supplementary assumption: the data and the functions
obtained from these data by solution of the propagation equations [c.f.
(4.40), (4.44)] are such that they fulfil (3 A) (up to some order) at the
tip of the cone. Rendall [15] in turn shows for the Coo-case (by using a
quite different method) that this supplementary assumption is not necessary
for the following type of the single quasilinear hyperbolic equation

moreover, he conjectures that this supplementary assumption is also not
necessary for the equations (3 A).

Furthermore the paper [15] of Rendall has to be mentioned. In [15] he
transforms the characteristic initial value problem into a Cauchy initial
value problem. However, he proves the transformation to be equivalent

Vol. 53, n° 2-1990.
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for the C~-case only. Furthermore - as it is discussed in [1 5] - there is no
proof that the transformation would be equivalent in the case of finite
differentiability orders, since in [15] occurs (after transformation) a loss
of differentiability orders. Moreover, the proof in [15] (for the finite

differentiability order case) cannot in principle be strenthend is such a way
that a loss of differentiability orders would be avoided; this will be shown
in Remark D of section 6. This loss of differentiability order will become
relevant when one wants to treat those singular solution (e. g. shocks),
which have been mentioned in the last subsection.
Dossa (g) derives in [22] an energy inequality for the cone problem;

however, he remarks (Remark 3. 3 . 5 of [22]) that his energy inequality
does not fulfil the "stable-boundedness property" (mentioned in the last
subsection).

1.4. The tools

Apart from using the tools of [3], we use (generalized) Sobolev norms
with weight factors [see (6) below], which have been first introduced by
Christodoulou and Muller zum Hagen in [4]. These norms are constructed
in such a way that they induce the stable-boundedness property (of the
last but one subsection); moreover, the corresponding function spaces of
these norms are Banach algebras (or Hilbert algebras, respectively), which
have the "right" denseness (1°) properties.
The introduction of those weight factors has been made possible by

deriving the energy inequality in a way, which is a generalization of the
way used in [3] (see also Remark 4.1 of section 4).

In order to give a typical example of a weight factor one first defines the
following (generalized) Sobolev norm, which has been used by Choquet,
Christodoulou, Francaviglia in [2] for the Cauchy initial value problem:

whzre LT is decomposed into a congruence of hypersurfaces
and’t being a time-function (i. e. At being a Cauchy

hypersurface); furthermore I . I~~ denotes the s’th order Sobolew norm on

(g) Dossa alsso remarks (Remark 3. 3. 5 of [22]) that the energy inequality in [3] does not
fulfil the "stable-boundedness property" (mentioned in the last subsection). However, this
gap has been filled in [4] and in the present paper by using those norm with weight factors,
which we introduce in the next subsection.

(lo) The C*-functions are dense in the Hilbert space hS of section 5. The Banach

space in turn is related to l~s via Theorem 7. 3 and formula (7. 14), (7.4),
whereby the norm of 0152s (LT) liLT&#x3E; which is a generalization of (6).

Annales de l’Institut Henri Poincaré - Physique théorique
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Ar (inclucing derivatives non-tangential to At), namely

with u : = (uA); Dk : = ~ and |.|t being the norm with respect to
~" 

t

the canonical measure induced on At by some positive definite auxiliary
metric on Lp.
We now insert into (4) the weight factor r-1/2, and define (11) one of
norms:

with M !~ ~ of (5). All our norm will be endowed with analogous weight
factors. 

"

The weigth factor in (6) is singular at t = 0 and it will be discussed in

the next subsection.

I. 5. The weight factor

As in many other existence proofs (cf [2]) one needs inequalities of the
following kind: for any u, v, with finite norm . it holds

co independent of u, v

Now, the weight factor in (6) has been choosen such that there
exists a co fulfilling (7), where .

co is finite and independent of T E [0, To]. (1 . 8)

In the characteristic initial value problem the property (8) cannot be
achieved wthout some weight factor (or similar devices), namely

if one would omit the weight factor t-1~~ in I . 

of (6), the quantity Co of (7) would fulfil fT 0B

e 1) We shall also use weight factors, which we insert into the usual Sobolev norms
[the norm of (6) is a generalized Sobolev norm]. - See (3.9), which is equivalent to

Definition 2. I.

Vol. 53, n° 2-1990.



168 H. MULLER ZUM HAGEN

in contrast to (8). This would cause great difficulties, as one has to vary T
in the quasilinear case, namely one has to make T sufficiently small such
that there exists a solution in LT (T cannot - in general - be prescribed;
this is due to the possible occurrance of a singularity of the solution).

This difficulty also perpetuates to the energy inequality and it will also
be settled by endowing all our norms with appropriate weight factors
[e. g. (6)]. With this we obtain the stable-boundedness property of
subsection 1.2.

(9) in turn is a consequence of

(see Fig. 1 ), where V (At) is the volume of At:

where dAt is the volume element of the hypersurface At induced by some
positive definite auxiliary metric (on LT). The property (10) and hence
(9) follows from the geometrical shape of the domain of dependence of
the characteristic initial value problem (see Fig. 1). - As opposed to the
characteristic initial value problem the difficulty (9) does not occur in the
case of the Cauchy initial value problem [if one uses the norm (4)].

1.6. Organization of the paper

In order to make the paper accessible to generalizations, at each stage
only those structures are introduced which are really used at that stage.
There are three stages:

(I) Section 2, 3 and 4 deals with inequalities involving norms ; the function
spaces, which correspond to these norms, are not yet introduced. The
energy inequalities of section 4 are derived (so far) for Coo functions only.

(II) In section 5 and 6 the function space HS (and its generalization is

introduced, to which the following norm belongs

[with ~ of (5)].
It is derived an existence theorem and energy inequality expressed in

terms of ~-function.
(III) In section 7 and 8 the function space ES (and its generalization 0152s)

is introduced, which belongs of (6), whose topology is stronger
than the topology of ( 16). Moreover, unlike ~. ~ the norm ~ . S

fulfils the ball property defined in Remark 3 .1. It is derived an existence

Annales de l’lnstitut Henri Poincaré - Physique théorique



169HYPERBOLIC SYSTEMS OF SECOND ORDER DIFFERENTIAL EQUATIONS

theorem and energy inequality in terms of 0152s. Also an iteration for the
quasilinear case has been expressed in terms of Es-functions (see Remark B
of section 8).

1.7. Outline of the proof of the existence theorem

Our derivation of the energy inequality will be an important generali-
zation of [3] (see Remark 4.1 of section 4); due to this we are able to

introduce those norms with weight factors and finally obtain the stable-
boundedness property (see subsection 1.2).
One starts with an existence theorem for the case that the coefficients

and data - and hence the solution - are C~-functions. Using this one then
approximates the coefficients and data E (see (II) of the previous
subsection) by C~-functions and thus obtains a sequence of Coo-

solutions, which converges weakly towards some u E where u is a solution
of our initial value problem with main coefficients and data E H2s - 1
(see section 6). 

_

Moreover, there exists (see section 7 and 8) a sequence which
is contained in the convex hull of ~un~ E ~, and which converges strongly
towards the above solution u E I)s (LT). One evaluates this and the energy
inequality [with the 0152s on almost every hypersurface A~, where
t E (0, T]. Then one takes ess sup and shows (in section 8) that u ILT, S  00

t E [0, T] 
’

and moreover 

1. BASIC DEFINITIONS AND ASSUMPTIONS

We define

We use the usual summation convention, for example

We assume the following:
is compact and homeomorphic to some closed (n + 1 )-dimen-

sional sphere; the boundary of L is piecewise smooth.

(indices a, b, c, ... run from 1 to (n + 1 )) is a hyperbol ic differential operator.

Vol. 53, n° 2-1990.



170 H. MULLER ZUM HAGEN

G1 U G2 is going to be our data surface, where (w runs from 1
to 2) is part of the boundary of L; Gm is a characteristic (with respect to
t’b) surface; r : = G1 n G2 is a smooth spacelike (n - I)-dimensional surface
(see Fig. 1).

FIG. I . - The coordinates .;", ... , 

I 
are subpressed in the figure. The domain L is

shaded as 111. The domain LT is shaded as ///. One defines the hypersurface
At: = x E L I T (x) = t ~ with T: = x + X2 being a time function.

We assume that there exists a coordinate system

and such that

We shall always use this coordinate system, unless otherwise stated.
We assume that

gab is regularly hyperbolic on L with hyperbolic constant h &#x3E; 0; ( 1.3)

by this we mean:
(I) L is a convex hyperbolic set based on G1 U G2, i. e. any past directed

null curve (in L) can be extended to a null-curve, which hits G1 U G2 and
lies completely in L; moreover, U G2) (ðL being the boundary
of L) is a piecewise smooth non-timelike hypersurface;

(II) there exist constants h, hl, h2, h3 &#x3E;~ with

Annales de l’Institut Henri Poincaré - Physique théorique
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where hi, h2, h3 fulfil

for any covector ka with ka tb gab = 0,

where

where eab is some positive definite auxiliary metric on L; for simplicity we
choose

in the coordinate system (xa) of (1), (2).
We define for

the following point sets (see Fig. I):

With respect to the coordinate system of (1), (2) we define

Ds means a basis of derivatives tangent to a surface S ~ f~"+ 1, in particular

f d S denotes the Lebesque-integral over the surface Sc:L, where d S is
the volume element induced on S by the auxiliary metric eab [of ( 10)] on
L. We define
Ck (S) : = ~v I vA3 ... are k-times continuously differentiable on S~,

where we consider tensor fields v : = (vA3 ... ARAlA2) over S.

Vnl. 53. n° 2-t990



172 H. MULLER ZUM HAGEN

2. THE DEFINITION OF THE NORMS

In (1.9), ( 1.10) we defined for (ka)

Let S be either some surface or S = L; we now consider some tensor
field v on S with v : = (vA3 .. , AR A1A2), where Ak =1, ..., NR, k =1, ..., R;
we define

For certain point sets St we define

and with this

Remark. - is (apart from factor 1-1) the usual Sobolev norm.
- Let St : = At, Gt03C9 or Lt. If we would have defined I v or |03C5 |Sts without
the weight factor 1St 1-1, the co of (3.1), (3.6) and (3.8) (see below) would
fulfil lim c0 = ~.

r-0

Such a t-dependance would cause great difficulties in the quasilinear
case, which have been discussed around (1.9) of the introduction (12). This
t-dependance has been counter balanced by the right choice of St ~ -1 [in

(12) V (At) of the introduction is (up to a constant) equal to |t 12, where -1 is one
weight factor of (3) (for S= = A~).

Annales de l’Institut Henri Poincaré - Physique théorique
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(2)], which is such that

is neither oo nor 0.

We define the following modified Sobolev norm (cf [2])

where we decomposed ST into a congruence of surfaces = ST (~ At with

In Definition 2.1 (see below) we shall define further norms; the norms
of the right-hand side (left-hand side, respectively) correspond to the norm
in (8) [(4) respectively].

DEFINITION 2.1: l

Furthermore we define

Vol. 53, n° 2-1990.



174 H. MULLER ZUM HAGEN

Let there be given p vector fields V(l)’ ..., on S then we define:

likewise for any of the above norms.
Remark on Definition 2.1 concerning the use of these norms:
We anticipate the following facts: the proof of the existence theorems

rely on the fact that the space (see section 5 and 7), which corresponds to
the respectively), fulfils the following main properties
(a, b, c):

(a) it is a Banach space (Hilbert space respectively), which is shown in
section 7 (5 respectively);

(b) it is an algebra under pointwise multiplication [see below (3.3) and
(3.2)]; (this is of special importance for the quasilinear case);

(c) the solutions of (I. 1, 2) fulfils energy inequalities in terms of II. 
(II. "~T respectively), which is shown in Theorem 8.1 (6.2 respectively).
Furthermore the energy-inequality constant fulfils the stable-bounded-ness
property [see (II) of subsection 1.2 of the introduction]. This in turn is - to
some extend - a consequence of formula (1.8) of the introduction (see also
section 3).

Furthermore the topology of 11.1 is strictly stronger than the topology

The topology of [3] is equivalent to

the topology of (for fixed T); 
(2.11)

though c of

fulfils

whereas lim c =1= 00, if one replaces of (2.12) (or 
T-+O 

’

respectively). The consequences of (2.13) are discussed around (1.9) of the
introduction.

3. SOME BASIC PROPERTIES OF THE NORMS

One uses the imbedding (and Hoelder) formulas of Adams in [1] and
some of the techniques of Christodoulou of [12], [13] and one considers

’ 
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the t-dependance I 1st, s respectively) together with (2.2). Then one
obtains the following formulas (of this section):
We shall assume throughout

There exists a constant c0&#x3E;0 (, which is independent of t, u, v,) such that

provided the norms on the right-hand side (of the inequality) exist.
There exists a constant co &#x3E; 0 (, which is independent of t, v) such that

provided the norms, which occur on the right hand side of the inequality,
exists.
The quantities

[because of (2.2), (2.3)].
There exists a constant co &#x3E; 0 (, which is independent of t, v,) such that
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provided the norm of the right-hand side (of the inequality) exists.

Remark 3.1.: Let (at the moment) be any given space of genera-
lized functions defined on LT, where Es(LT) is endowed with the norm

s. Let denote the ball ~v E II v ~ r). We shall say that
the norm fulfils the ball property, if and only if for any given
TTe(0, To], r 1 &#x3E; 0 it holds

for all Te(0, T’] and r E (0, This property becomes important when one
has to make T sufficiently small in order to obtain a solution (on LT)
for the quasilinear characteristic initial value problem (see Remark B of
section 8). The ball property holds analogously for the norm II. S. The
ball property does not hold H (their weight factors are dif-
ferently placed than the ones ~. S).

4. ENERGY INEQUALITIES, THE C °°-CASE

4a. Without reduction to data

From formula (4.11 ) onwards we shall use the following

DEFINITION 4.1. - With ck (k = 1, 2, ... ) we denote a continuous func-
tion

which is increasing in the following sense

for any &#x3E; 0 there exists a &#x3E; 0 with

Furthermore by o &#x3E; 0, and co we denote constants with

Remark. - The above ck will be used in the following context

[with h of (1.5)] ; these quantities will be constants, when the coefficients
g, b, ... of our differential equation (18) (see below) are fixed [, which
will not always be the case as can be seen for instance in (5.25)]; in
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particular the quantities of (4) will always be independent of the solution u
of our differential equation (18).
We introduce the following "energy-momentum vector"

where

and where u is - for the time being [up to formula (4.17)] - not necessarily
a solution of our differential equation.
We shall derive properties of pm, which we shall use for the proof of

Lemma 4.1. We assume all quantities to be COO (i. e. infinitely often

differentiable).
We use the Gauss-integration formula

where

na is the future-directed normal of Rt with na nb03B4ab = 1. (4.9)

For any covector mQ we define

We assume that

g’b is regularly hyperbolic on L with hyperbolicity constant h &#x3E; 0, (4.11 )

With (10) and ( 11 ) we gain

for some c~ (of Definition 4.1).
is a normal covector of Gw, which is a characteristic surface; hence

using (11) and (1.8).
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( 11 ) implies that Rt is non-timelike hence for its normal na

as na is future-directed. Furthermore the metric

the latter because of ( 14, 15).
(12, 16) and (7) imply

the latter because of (13). We shall use (17) in the proof of Lemma 4.1.
We now consider the following linear characteristic initial value problem

(with given data u) or using index notation
m

We now state the non-reduced energy inequalities:

LEMMA 4. 1. - We assume

and we assume that gab is regularly hyperbolic on LT with a hyperbolicity
constant h &#x3E; 0 [cf. ( 1. 3)]. For any solution u of ( 18, 19) the following energy
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inequalities hold

Remark 4.1. - The energy inequality constant e12 fulfils the stable-
boundedness property (see subsection 1 . 2 of the introduction). One aspect
of this is the following boundedness property : for any T 1 E (0, To] it holds

quantity c12 is an increasing function [see (1)]. This implies (25 A). - The
derivation of our energy inequality fulfilling the boundedness property is
an important generalization of the method of [3], namely: when deriving
an energy inequality there occur products of the unknown u with the
coefficients of our differential equation. One has to separate u from the
coefficient. Unlike [3] this sepatation will not be done before applying the
so-called Gronwal’s Lemma. Instead we apply some generalized Gronwal’s
Lemma (see Appendix I), which deals with the above products; then u
gets separated in such a way that the weight factors can be introduced,
which induces the boundedness property (25 A).

Proof - In order to prove (23) it remains to estimate 

of ( 17); let u be a solution of ( 18, 19); we differentiate P"’ : = pm [u] of (5)
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with

We estimate the above quantities by using (3.7), (1.8) and (3.1)

with sk of (25).
Using (26) we get (30) (see below), then we get (31 32) using the Holder-

inequality and (28, 29):

with y~ of (25) and

We rewrite (17) by using (32 A) and inserting (32 B) we gain

with

For any (L), which is not necessarily a solution, it holds for some
constant co
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because of Lemma A. 2 of the apendix. We add this to (33) and use (33 A)

This proves (23).

from this it follows by a generalization of Gronwal’s Lemma (see
Lemma A. 1 of the appendix)

From this for t = t’ we deduce

We multiply this by t‘ - ~~2 and thus prove (24).
Some further energy inequalities hold

THEOREM 4.2. - Let the assumptions of Lemma 4. I hold and let

then it holds for any solution u of ( 18, 19) and for m &#x3E; ~ -~- 2 and t E [0, T]
2
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Furthermore the quantities c2o fulfil the stable-boundedness prop-
erty, i. e. for any T1 E [0, To] it holds:

with C20,1: = c2o (h, 0, 0) and C20,2: = c2o (h, T1 | g, a, b I T 1)’ and the
intervall being stable (13) against small variations of the
coefficients (g, a, b),

where "stability" is defined in Definition 4. 2 (below). The analogous proper-
ties hold for c15 and c10.
Remark 4 . 2. - We call (34) [and likewise (34 A)] a "non-reduced "

energy inequality, since the term II Dwk u 11~~ro still have to be reduced to
the data u. - The relevance of the stable-boundedness property is discussed

in the introduction (subsection 1.2) and in Remark B of Theorem 8 .1.
All the quantities ck (k=1, 2, ... ) occurring in our inequalities fulfil this
property. The proof of the above energy inequalities fulfilling this property
relies on Lemma 4.1.
We shall now consider, how the quantities ~0,2 depend on (g, a, b)

and on h; the hyperbolicity constant h in turn depends on g and we write

In this sense we state

DEFINITION 4.2. - Let C 2 ( . , . , . ) [or C 1 ( . ) respectively] be a real-
valued function 

respectively) and let g, a, b be the coefficients of four differential equation.
Then we denote

with with k ~ j, 2, where 11.llk
denotes some norm. We say that [C1, C2] is stable (13) against small
variations of (g, a, b), if and only if for any given (g, a, b) and E &#x3E; 0 there

0 0 0

e3) Stability with respect to that space, which has the norm ~ . This is the space

H~ (LT1) introducted in section 5.
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In the case that C2 depends on ~ ~ g, a, bill only one has to cancel every
term with I . ( I 2. In the case of Theorem 4 . 2 we have

C2 a, b ~ ( 1 ) = C20, 2 h, 1 1 g, a, bill’ Z’ 1 ) with h = hg and

~ ~ g, a, bill: = T 1 g, a, b [because of ( 3 3 E)].
Proof of Theorem 4. 2. - There exists a constant co (independent of

t, w) such that for any WE (L)

With (25), (35 A) and ( 1 ) we gain

inequality (33 F).
We now scetch the proof of (34); differentiating our differential equa-

tion, we gain

with

We apply (23) of Lemma 4 .1 to the initial value problem (35 B), (35 D)
and obtain

VVe insert u : = Du, u = = and {35 C) into {36) and we use the
w

inequality {23), then we gain
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[with y2 A t of (25)]. Thus we proceeded from estimate of M [see (23)]
to the estimate of [see (36 A)]; analogously we can proceed finally
(by induction) to the estimate of M L. To this we apply the generalized
Gronwal’s Lemma A. 1 of the appendix [this is the same procedure as in
the derivation of (24)]; thus we obtain

with ys of (25) for any s &#x3E;_ 1. From this one deduces (34) of Theorem 4 . 2
in the same way as we deduced (33 F) from (24).

There exists a constant co (independent of t, T, w) such that for any
(and any integer r &#x3E;_ 0)

From the monotony properties (4 .1 ), (3 . 4, 5, 8) and (37) it follows that
the right-hand side of (36 B) is smaller (or equal) than

for any t _ T; this together with (34) proves (34 A).
(34 B) can be proved analogously to the proof of (25 A) by using (33 E).

We shall now prove (34 C). Stability is meant with respect to that function
space, which has the norm T 1 .1.B ;T 1, which is equivalent 1 (for
fixed Ti). This function space is the Sobolev space HS (L.~1) of section 5.
Now, let there be given (g, a, b) E Hs (LTi) x X Let g

0 0 0 0

satisfy the inequalities (1. .5)-(1 8) for h = Also g with

satisfies those inequalities for h = g9o, provided ~1 &#x3E; 0 issufficiently small.
Thus

with sufficiently small E 1. Furthermore there exists a constant co with
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Due to (37 B), (33 E) along with (37 C) there exists 6 &#x3E; 0 such that

for all (g, a, b) with

Furthermore z2, z3) depends continuously on (zl, z2, Z3) E ~3 with
z2, z3 &#x3E;__ 0 (see Definition 4.1). Thus the last quantity of (37 D) depends

continuously on (g, a, b) E HS (LT 1 ) X HS (LT 1 ) X HS (LT 1 ) . This and (37 D)
imply that for given E &#x3E; 0:

for (g, a, b) fulfilling (37 E) with sufficiently small 8.

Remark 4. 3. - In order to obtain for the cone problem (I. .1 ), (I . 3)
an energy inequality, which fulfils the stable-boundedness property (as in
Theorem 4.6), one should proceed as follows: using the notation of
section 2 we define analogously to (2 . 8) the following generalized Sobolev
norms

for ST = LT or GT (Gy is the data surface), where (cf (2 . 3)]

with these norms one can derive non-reduced energy inequalities, which are
analogous to (33 F), (34) (34 A) and which fulfil the stable-boundedness
property (see Theorem 4.2).
The non-reduced energy inequality [cf (34 A)] contains on the right-

hand side terms like u]G (with k =1, 2, ... ), where G is the cone on
which the datum is given (D contains deritatives non-tangential to G).
These terms have to be reduced to data (cf section 4 b). This reduction
should be done by the methods of [22], because during the reduction occur
singularities, which are due to the singular tip of the cone.
We should add that one should use our method of deriving non-reduced

energy inequalities and not the method of [22], since the non-reduced
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energy inequalities of [22] do not (14) fulfil the stable-boundedness pro-
perty.

4.b. Reduction to data

We shall now estimate the terms (D=1. 2; 1= 0, 1, 2, ... )
of our non-reduced energy inequality (34 A) by terms involving the data
only. These estimates are obtained from energy inequalities of certain
differential equations [see (40), (44)], which are fulfilled by the 
These differential equations do not hold on L but just on the

hypersurface G~.

As G1 is a characteristic surface and the covector Sa 1 is a normal of G1,
we gain

We evaluate (38) on G1 and use (39), thus

with

where we used u = u on Goo and

We apply D1’-l to (38) and obtain [analogously to (40-42)] for 1&#x3E; 2

e4) Dossa mentions this in section 3-3-5 of [22]. He also mentions that the energy

inequality of [3] does not fulfil the stable-boundedness property. However, this gap has been
filled in [4] as well as in the present paper in Theorem 4 . 2 and 4.6.
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with

with some constants ck, o, ck, o, l~, o.
At first one determines M (on Gi) by the intial value problem (40, 41),

where the coefficients and datum are given, since u, u are given [u, u are
1 2 1 2

our data of (19)]. Then one determines u by (44, 45) for 1= 2 (inserting
1 l

the known u). Then finally (by induction) one determines u.

M (and similarly u) fulfils and intitial value problem of the following
type

with v being the unknown.
(47) is a hyperbolic differential equation with

being a time function, fulfilling the following hyperbolicity condition

which follows from (49), ( 1. 5-1. 8).
(47, 48) is a Cauchy initial value problem (for a first-order differential

equation on thus the usual energy inequalities of [2] hold, which we
exhibit below in Lemma 4. 3 As [2] deals with second-order differential
equations [instead of first-order as in (47)] we shall give in the appendix a
scetch of the proof of Lemma 4. 3 (the proof is analogous to [2]).

LEMMA 4. 3. - Let g« D« fulfil the hyperbolicity conditions (50, 49) and
let be ~:=2~ with g’ab of section 1. Let (g«), fi, y, v E Coo (GT1). Then
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for any solution v of (47, 48) the following energy inequality holds for m &#x3E;_ 0

with

On the right-hand side of our final energy inequality (68) occur the data
u, u only (apart from/, c ... ). In order to achieve this, we have to estimate
1 2

I of (35) by terms involving the data u, u only (apart from
1 2

f.c...).
One of these estimates, which we shall proove by using the above

Lemma 4. 3, is the following reduction formula (reduction to the data

u, u) :
1 2

LEMMA 4 . 4. - Let the assumptions of Lemma 4.1 be fulfilled. Then for
any solution u of ( 18, 19) it holds for 

with

Proof. - We shall use the following formula: There exists a constant co
(independent of T, w, e) such that for any w, eECoo (GT1)
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Now, setting v = u = D u, we apply (51 ) to (40, 41) and again

[E of (56, 57)]. We insert 11 of (42) into (61) and again

[y of (55, 56)], where we used (59). With (62) and (60) one proves (54).
The following final version of the reduction formula (reduction to the

data u, u) holds:
1 2

LEMMA 4. 5. - Let the assumptions of Lemma 4.1 hold. Then for any
solution of ( 18, 19) it holds

for some constant co (independent of T, u), where

Proof. - We shall prove (63) for 0) =1: Analogously to the derivation
2

of the estimate of [see (54)] we now set v = u : = D 12 u and
apply (51 ) to (44, 45) for 1= 2; then we gain an estimate for ID12 UIGT1, m
analogously to (54), except for the fact that terms like u IGT1, ... occur,
which we estimate by (54).

Analogously we gain an estimate of D13 u and finally (by
induction) of |D1k u GT 1, ... ; with this we obtain [with y of (65)]
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By using (60) we gain

We insert this into (67) and thus prove (63).
(64) is proven by the definition S, 1 and s - k 2 (s - k) -1

Finally, we are able to state the reduced energy inequality:

THEOREM 4 . 6. - Let gab of our initial value problem (18, 19) be regularly
hyperbolic on LT with hyperbolicity constant h &#x3E; 0 [cf. (1. 3)]. Let g, b, a,

(LT), (~ =1, 2), u = u on r . Then for any solution
co 1 2

(LT) of ( 18, 19) the following reduced energy inequalities hold for

where

Moreover, the energy inequality "constants" C32, c~~ fulfil the stable-

boundedness property, i. e. for any T’ E [0, To] it holds

with

where the intervalle

[~33 1~33 2] is stable against small variations
of the coefficients (a, b, g), (4. 71 C)
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where stability is defined in Definition 4. 2. The same properties hold for
C32.
Remark 4. 4. - In the quasilinear case one can majorize the right-hand

side of (71 B) by

where d depends (15) on the value of the given data (and its derivatives)
taken on r only. Thus d is independent of (a, b, g) and T’. The stability (15)
of (71 C) then refers [according to (71 D)] to the terms

a, b, g T’) only.

Proof. - We insert (64) into (34 A) and then insert (63); thus we obtain

with

To this we add (63):

for some constant co &#x3E; 0 and c29 : = c~~ (h, YSLT, T) [with Y, y of (71)].
With (3 . 4) and (73) we again

To this we add £ (using u = u on G~~) and gain
w G)

For c32 : = c31 + C29 it follows from (74) [(73) respectively]
II 11 1 - -= ’T’

(1 s) In the quasilinear case (see subsection 1.1) is a=b=O, g = F (uA) where

u : _ (u~’) : _ (ul, ..., uN) is the unknown and F some given function on some subset of [RN.
The variation (with respect to stability) of g is caused by a variation of u, whereby the
following quantities remain fixed: [u]G03C9 = u (u being the given data), [IF (u)]r = [F (u)]r,

m m In
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This proves (68, 69).
With (73) and (3. 4) it follows

2

To this we add ~ ~ M (using u= u on and thus prove (70).
w=1 0

The proof of (71 A), (71 B) is analogous to the proof of (34 B), (34 C).

5. THE SPACES Hs; UNIQUENESS OF THE SOLUTION

So far the Lemmas and Theorems used C°~ functions. Now we shall
use Sobolev-class functions. At first we shall give a few definitions:

Let S = LT or let S c LT be a smooth compact surface. We define

L2 (S) : = v ( v is measurable on S and v2 dS  oo , where we shall write
v = w (for v, if and only if v dffers from w only on a set of measure
zero.

We define the Sobolev-space

with its (Dsk v in the distributional sense). Hs (S) is a Hilbert-

space and according to [1] is

Furthermore we denote by l)s (LT) the completion of coo with respect
to the norm I I we endowe hs (LT) with the norm I I II;T; some proper-
ties of l)s (LT) are listed below in Lemma 5 . 2.
For some Banach space B we define B* as the dual of B, i. e.

furthermore,

means convergence in B (also is allowed), whereas

means weak convergence, i. e. lim F (vn)=F (v) for all F E B*.
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For the proof of the uniqueness and existence theorem we shall need
the following four Lemmas:

LEMMA 5 .1. - Let Bk (k= 1, 2, 3) denote a real Banach-space with its

norm i let

for some constant c independent of h, v. Then

provided

for some constant c’ independent of n. Furthermore,

provided

is bilinear, thus

Furthermore,

which follows from ( 1 A), (3). We insert

and (7) into (6) and thus prove (2).
It remains to show (8): Because of (1 A) is fi (h, .) : B2 ~ B3 continuous

and linear (for fixed h); for any FE B3 * is continuous and

linear; hence F ([i (h,.)) : B2 -~ IR is continuous and linear, i. e.

F(P(~.)eB2*. This and (3) implies lim F(P(~~-~))=0 (for any

F E B3 *); this implies (8).
We now prove (4). Due to (5) there exists a constant c" (independent

of n) with ~03C5n~B2 _- c"; thus one can use the proof above in order to obtain
03B2 (hn - h, 03C5n) ~ 0 ~ B3 [see (7)] and analogously 03B2 (h, vn - v) ~ 0 E B 3; this

implies (4) by using (6).
We summarize the following obvious fact on gs (LT):
LEMMA 5 . 2. - gs (LT) is a Hilbert space with respect to the inner product
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with

Furthermore,

i. e. E)s (LT) is continuously imbedded in Hs (LT). By definition is

Furthermore let {03C5n} be a bounded sequence:

then there exists a subsequence ~ and v E ~S with

Remark. - 9s (LT) is a reflexive Banach space; thus

{ v E I)s (LT) I r is weakly sequentially compact and thus (13)
implies (14).

Proof - The map

(see [1]). Given any FE Hm-l (S)* then F (p ( . )) is a continuous linear

map Hm (S) - R, which implies with vn (S) the following:

this proves - 

The following Lemma is concerned with some kind of continuity of our
operator L of (4. 18) :

then
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On the other hand, if m &#x3E; ~ + 2 and
2

then

which can be proven as follows: because of (3.1 ) we gain

moreover, ~ik : hs (LT) x 9s (LT) ~ ~S - 2 (LT) is bi-linear; with this and (22) 
’

we can apply Lemma 5.1 and gain (21 ).
(21 ) implies ( 17). Analogously one proves (20).
We can now prove the following Theorem, which is concerned with

an energy inequality (for Sobolev-class coefficients) and uniqueness of
solutions:

THEOREM 5.5. - We assume that of our differential equation (4.18)
is regularly hyperbolic with a hyperbolicity constant h &#x3E; 0 [cf. (1.3)]. Further-
more, we assume

Then the following holds:
(1) Any solution of (4.18, 19) fulfils the following energy

inequality ( for any t E (0, T])

(4.18) has at most one solution uEH2(LT), which assumes the given
data u on GT co (00= 1 , 2).
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Proo, f : - We shall prove (24) by C~-approximation: Because of (23)
there exists gn, bn, (LT) with

This implies by using (15)

and for any t E (0, T]

since un E Coo (LT). Now we can consider un as a solution of

We apply Lemma (4.2) to (30, 29) and gain

for sufficiently big n [we also used (1.5-8), (25), compactness of LT).
(25) implies by Lemma 5.4

For any t E (0, T] holds: (28) and (25, 32) imply

from (27) and (33) follows

(34) and Definition (4.1 ) imply

We insert (34, 35, 36) into (31) and obtain (24).
It remains to prove uniqueness: Let us assume that (4.18, 19) has a

further solution Me H2 (LT). Then
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To the initial value problem (37, 38) we apply part I of Theorem 5.5
and gain for all T]

6. EXISTENCE OF A SOLUTION IN 1)s AND ITS ENERGY
INEQUALITY

6.a Theorem and remarks

At first we shall show the unique existence of a C~-solution in the case
that the coefficients and data are C°~ . Then we treat coefficients and data,
which are Sobolev-class functions, by approximating these coefficients and
data by a sequence of Coo-coefficients and data. With this sequence of
Coo-coefficients and data we form a sequence of initial value problems,
which have (see belowe) C~-solutions. This sequence of C~-solution con-
verges against a Sobolev-class solution of our original initial value problem
(with Sobolev-class coefficients and data).
Now we begin with the c~-case:

LEMMA 6.1. - We assume that gab of (4.18) is regularly hyperbolic on
LT with a hyperbolic constant h &#x3E; O. Let

Then there exists a solution of (4.18), which assumes the given
data u on GT co. The solution u is unique.

w

Remarks. - The uniqueness follows from Theorem 5.5. The existence
of a solution has been shown in [6], [7] and [3].
We now state the existence (and uniqueness) Theorem:

THEOREM 6.2. - We assume that gab of our di,f’ferential equation (4.18)
is regularly hyperbolic on LT with a hyperbolic constant h &#x3E; 0. Let for the
coefficients hold

and for the data
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with s &#x3E; ~ + 2 and n &#x3E; 1. Then there exists a unique solution u E E)s (LT) of

(4.18), where u assumes the given data u on Moreover, u fulfils the
w

energy inequality (4.68), where the energy inequality "constant" c32 [of
(4.68)] fulfils the stable-boundedness property as pointed out in
Theorem 4.6; the quantity C32( . , . , . , . ) is continuous and increasing (see
Definition 4.1). Furthermore co of (3.1)-(3.8) does not depend on t E [0, To].
Remark A. - One can apply the above Theorem to an iteration for

treating the quasilinear characteristic initial value problem. This iteration
is described in Remark B of section 8, provided one replaces

"Theorem 8.1" by "Theorem 6.2".
The iteration fulfils the properties mentioned in Remark B of section 8

with two exceptions: ~.~LTs does not fulfil the ball property (see
Remark 3 .1 ) and we are (so far?) not able to prove the convergence of
this iteration. However, we are able to prove the convergence of the
iteration of Remark B of section 8 (using the norm II. J.
Remark B. - Also the case s = 00 is included in Theorem 6.2: the data,

coefficients and the solution are C~°-functions (due to H~° = C~°).
Remark C. - The gap of differentiability class between solution (E hS)

and data amount to (~-1) differentiability orders. It is in

principle not possible to reduce this gap by more than half (16) a differentia-
bility order. This can be seen by the following simple example: Let there

be given any (small) and any s &#x3E; n 2 + 2 and let us

consider the following characteristic initial value problem for

X2, y)

The data are choosen such that

e6) Non-integer differentiability orders are treated in [8].
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[(3D) is compatible with (3C)]. Then u is a unique solution E Hs (L) but

moreover it holds

The proof of (3 E), (3 F) will be given below formula (3 J).
Remark D. - In the introduction 1.3 we discussed the relevance of

Randall’s (see [15]) method of treating the characteristic initial value

problem. In order to compare this method with our method it suffices (1’)
to treat the following simple characteristic initial value problem for the
unknown cp ..., xrn) :

where N1, N2 denote two intersecting characteristic hypersurfaces; Aij are
constants. Let there be given any datum Po with

with s &#x3E; ~ 2 1 + 2 Now, the method of [15] yields (for the case of

finite differentiability orders) a result, which is weaker than our result (see
Theorems 6.2 and 8.1 ); moreover, we shall prove the following:

(*) In the best case it may be possible to strengthen the method of [15]
such that the following two statements hold:

(a) assumption (3 I) implies (18) and

(b) assumption (3 I) implies (l8) if one uses (18) only those
Cauchy problem existence theorems, which have been derived so far (see
e. g. [2]).
Now, on the other hand by using our method one obtains:

assumption (3 I) implies (6.3 J)

Comparing this with (*) (b) [or (*) (a) respectively] one sees that the
method described in [ 15] leads (in principle) to a loss of at least 1 (or 1 /2
respectively) differentiability order.

(1’) The loss of differentiability orders (which we shall show below) would not become
smaller, if we would treat a characteristic intial value problem which would be more
complicated than (3 G), (3 H).
e8) In order to obtain (*) (a) one would have to employ a Cauchy problem existence

theorem, which also treats successfully the case of non-integer differentiability orders (see
also [8]). Such theorems do not exist so far. Thus one is left with (*) (b) so far.
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The proof of (*) will be given in appendix IV.

Proof of (3 E), (3 F). - We prove (3 E) by contradiction and thus
assume

This implies (by [8])

u fulfils the equation (4.40) or (4.44), which simplify [using (3 C) and (3 A)]
to

for 1= 2, ..., The Cauchy initial value problem (3 U) has at most

one solution namely u = (Dy 2 u) . 2014 [due to (3 C), (3 U)].
Inserting this into (3 U) one obtains analogously u = (Dy4u).(x2 2)2.1 2;i 2 / 2

3

then one gets u and so on, and finally

s- 1

Due to this and (3 D) one obtains which contradicts (3 T)

Analogously one proves (3 F) by using especialle (3 W) together with
(3 D).

6.b The proof of Theorem 6.2

The uniqueness follows from Theorem 5.5. Due to (2) there exists

gn, bn~ COO with
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We shall show at the end of the main proof that (3) implies the existence
of un E COO (GT (0) with

The initial value problem

(with on r) has a unique solution because of
1 2

Lemma 6.1.

It is our aim to show that these solutions un converge against a solution u
of (4.17, 18).

(6) implies by Theorem 4.6.

with

provided n &#x3E; N with sufficiently big N [we used also (1.5-8), (4), compact-
ness of LT]. (6.7 A) will not be used within this proof but in section 8. (7)
implies that for any E &#x3E; 0 there exists a N~(N~&#x3E;N) with

which we shall prove now (analogously to the proof of Theorem 5.5,
part I): .

By using the imbedding theorems of [ 1 ], Definition 1.1 and (4) we gain

where c, CT are some constants depending on T. (9) implies

and likewise for and similarly for n, ~fn ~LTs-1 and II un~GT~2s-1,
co

where we used (4), (5). Due to this and the continuity of c32 [of (7)], we
obtain lim T 

= Rs T [with Rs T of (4.68)]; thus for any E &#x3E; 0 there exists
n - 00 ,
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NE (NE &#x3E; N) with

This proves (8).
We apply Lemma (5.2) to fulfilling (8); thus there exists a subse-

quence and u (LT) with

for any E &#x3E; 0; thus i. e. u fulfils the energy inequality (4.68).
Furthermore, we shall show that u is a solution of (4.18, 19): We apply

Lemma 5.4 to (4), (10) and gain [using (6)]

This and fn ~ f ~ hs-2 (LT) [see (4)] implies

Furthermore, implies c this together
with (10) implies and hence by applying Lemma 5 . 3 we
gain

This implies This together with (5) implies
co

this and (11) proves that M is a solution of (4.18, 19).
co

It remains to show that for given M [fulfilling (3)] there exists
co

with 03C9 ~ {1; 2}, which satisfies (5). We define

This implies

(12) implies

Because of ( 13, 14) there exists (see [8]) a sequence {03C5n}  C~ (GT03C9) with
(0
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On the other hand - due to with
w e H2s-1 (r) and thus for

it holds

( 15, 16) implies

Furthermore, (because of ( 15, 16) ; thus
0 0 0

this and {17) proves (5).
1 2

7. THE SPACES ?~ E,

So far, we obtained a solution u of the characteristics initial value
problem with In chapter 8 we shall improve this by showing

where with its norm ~.~LT,s is a modified Sobolov space’ 

T

(see below). Whereas ~.~LTs [of hs(LT)] involves Jo ... dt, the norm

~ ~ involves ess sup instead (cf [2]).
t e [0, T]

We define the following normed vector spaces:

LEMMA 7 . 1. - (Em respectively) are Banach
spaces ; moreover, they form an algebra (under pointwise multiplication)

provided s &#x3E; 2 m &#x3E; 2 n respectively. .
Furthermore,

Remark. - For the quasilinear characteristic initial value problem one
can use the @~-space for the construction of a solution Some
further remark on this are made in the Remarks on Theorem 8 .1.
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In order to prove the above Lemma (and also Theorem 8 .1 ) we write

where we defined

- By "almost all T]" we mean (as usual) "all t E ([0, T] ’" M)",
where M is some set of measure zero (our Lebesque measure of section 1).
At first we shall prove the following Lemma, which exhibits some

relation between II . (of 0152s) and II . )))T (of hs):

then there exists a subsequence ~ c ~ such, that for almost all

t E [0, T]

Proof of Lemma 7. 2. - Let Fn : = u = un, then

with

(7) implies fn ~ 0 E L 2 ([0, T]). This implies (see [9]) that there exists a

subsequence {fn} ~ {fn} such that for almost all t E [0, T] it holds

fn(t) ~ 0 E R ; hence

thus (6) is proved.

Proof of Lemma 7. 1 . - (3) follows from (3.4). - We shall now prove
the completeness of 0152s (LT). Let { be a Cauchy sequence of 0152s 
i. e. for any given E &#x3E; 0, there exists N£ with
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this implies by (4)

(9) and l)s 0152s (LT) implies that { is also a Cauchy sequence in
l)s (LT) (which is complete) and thus there exists u E l)s (LT) with

This implies by Lemma 7. 2 that there exists a subsequence { c: { u" ~
such that I u - un~t, L, S 

~ 0 for almost all t E [0, T]; thus for the above
E there exists NE, (with NE &#x3E; NE) such that for almost all t E [0, T]

This and (10) implies that for almost all T] holds

almost T] (7 .11 )

(Ng independent of t). ( 11 ) implies with (4)

This [and implies moreover, (12) implies
u" ~ ue 0152s (LT). A further relation between (fs and hS is exhibited in the
following

THEOREM 7. 3. - Let

denote the convex hull of ~ u" ~ , i. e.

Then there exists a sequence with ~ c ( with

moreover, there exists a subsequence ~ c ~ such that

Proof of Theorem 7 . 3. - ( 13) implies
u E [weak closure of ( un ~] _ [strong closure of ( un ~] ; (7 . 15)

the equality sign holds, since ( un, is a convex subset of I)s (see [10]).
Due to ( 15) there exists a sequence
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This and Lemma (7 . 2) imply (14).

8. THE SOLUTION IS IN FACT IN 0152s; ENERGY INEQUALITY
IN E~

The solution u of Theorem 6 . 2 turns out to be in 0152s provided the data
u E E2s-1 
0

THEOREM 8 . 1. - We assume that gab of our differential equation (4 . 1 8)
is regularly hyperbolic on LT with hyperbolicity constant h &#x3E; O. Let for the
coefficients

and for the data

with s &#x3E; ~ 2 + 2 and n &#x3E;_ 1. Then there exists a unique solution u E 0152s of

(4 .18), where u assumes the given data u on Moreover, u fulfils the
co

energy inequality (4.70), where the energy inequality "constant" c33 fulfils
the stable-boundedness property as pointed out in Theorem 4. 6 ; the quan-
tity c3 3 ( . , . , . , . ) is continuous and increasing (see Definition 4 . .1 ). Further-
more co of (3 . 1)-(3 . 8) does not depend on t E [0, To]. The norm ~ ~ . 
ful,f’ils the ball property mentioned in Remark 3. I.

Remark A. - Since c I)s (LT), the above Theorem is stronger
than Theorem 6 . 2: the assumptions are the same except for the assumption

but this assumption is a necessary one, since implies

Remark B. - Theorem 8.1 can be applied to the construction of a
solution of the following quasilinear characteristic initial value problem

(for sufficiently small T&#x3E;0), where g, f are rational (or even C~) functions
of M [(M, Du) respectively] ; furthermore it is assumed that the data M are

such that is a "regular hyperbolic metric on GT03C9". For instance,
(0

7c Henri Physique théorique
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the Einstein’s gravitational vacuum equations, for which an application is
planed, are of the type (5). - Equation (5) can be solved by an iteration,
which runs basically like this: one can construct some

According to the algebra-property (3 . 3 A) of ( for s&#x3E;n+1 2) and
due to

[because of (3.2)] it follows that

Thus by Theorem 8 . 1 and by using 0152m (Lq) cz 9m (LT) there exists a unique
with

Thus u~ is determined by u2. In the same way u~ determines a unique
u3 E 0152s and finally by induction one gains un E 0152s (LT). Thus the itera-
tion is such that there is no loss of differentiability classes. Moreover, un
fulfils the energy-inequality (4.70), where its energy inequality constant
c3 3 remains bounded ( 19) (the lower bound being strictly positive) as n goes
to infinity ; this follows from the stable boundedness property (4 . 71 C, A).
Furthermore, ~33 also remains bounded (the lower bound being strictly
positive), when one makes T as small as one likes (see stable-boundedness
property (4 . 71 A, C). Due to this and the ball property (2°) (see
Remark 3 .1 ) one can make T so small that the iteration converges. The
details of the convergence proof will be given in a forthcoming paper.
Within the iteration one also uses

(I) 0152. forms an algebra for s &#x3E; 
n + 1 

under pointwise multiplication

[see (3 . 3 A)],
(II) 0152s (LT) is complete.

e9) u~ fulfilss the energy inequality (4.70); its energy inequality "constant" ~33 depends
on g (Un-i) and hence on n.

At first one makes T so small such that all un lay in a ball
Br. T (uo) : = { U E 0152s u - uo liLT’ .~ r } for small r and some uo E 0152s (LT).
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Remark C (on Theorem 8 .1 ). - The gap of differentiability class between
solution (E 0152s) and data (E E2s-1) amounts to (s -1) differentiability orders.
This gap has been clarified in Remark C on Theorem 6. 2.

Remark D (on Theorem 8 .1). - Also the case s = o~o is included in
Theorem 8.1 : the data, coefficients and solutions are C*-functions (due

Proof of Theorem 8.1. - The uniqueness follows from Theorem 5. 5.
- Due to H~~_ ~ zJ the assumptions of Theorem 6.2 are fulfilled,
hence we have a solution We shall show that 
We use the sequence { and { c ~ of the proof of

Theorem 6 . 2 ; according to (6.10, 7. A, 9. A) we gain

for some N ; moreover, for any E &#x3E; 0 there exist N with

(8), (9) implies

We apply Theorem 7 . 3 of (7) and hence there exists a

sequence { =  with

for almost all t E [0, T] [cf. 7 . 5)] ; thus

for almost all t E [0, T].
Since, on the other hand, uk lays in the convex hull  we gain for
any given k

(for some c~ with ~~=1~&#x3E;0), where we also used (10). Thus by
Definition 2.1

for almost all t E [0, T].
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We take lim of ( 14) and use ( 12) [beforehand we rewrite ( 12) by
k -~ 00

using (7 . 5)] ; thus

for almost all t E [0, T]. This implies II u ~ liLT, S,1 __ + E for any E &#x3E; 0 ; hence

This and Definition 2 .1 implies with u = u on GT co
w

This and Co u [due to (3 . 4)] proves the energy inequality
0 0

(4. 70). Since u E 9s we obtain with ( 1 6) that u E 0152s 

A. APPENDIX

APPENDIX I

The following generalization of Gronwal’s Lemma holds:

LEMMA A . 1. - Let oc, 13 be continuous non-negative functions on [0, T].
We define for 

for any w ~ C0 ([0, T]). Let t E [0, T] and let y E C° ([0, T]) fumil the following
integral-inequality

Then there exists a unique z E C° ([0, T]) with

moreover,

Vol. 53, n° 2-1990.
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Remark. - Because of (j and z(~)~0 is (A. 3) equivalent to
the following linear ordinary differential equation

provided c &#x3E; 0. From (A. 2, 3) it follows for A: = y - z and 0394 : = y2 - z2

with this one shows d _ o (~ d  0).

APPENDIX II

LEMMA A. 2. - There exists a constant co (independent of t, u) such that
for any 

for any t E [0, T].
Proof - We introduce new coordinates

which is equivalente to

we express u (xa) in these new coordinates

We square the identity

and use
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and integrate over ~ ; then we gain

Integrating this over (XA) it becomes (expressed in the old coordinates)

for some Const. co. This and

(some constant c) proves (A. 6).

APPENDIX III

Sketch of the proof of Lemma 4 . 3

The proof is similar to the proof of Lemma 4.1 and Theorem 4. 2. We
define Mt: = (boundary of G/) B (rt 1 U r) = Rt ~ Gt 1 (with Rt of (4 . 8)] ;
the covector fi, ... runs from 2 to n + 1) denotes the unit normal of

we use the coordinates of (1.1,2). Again, we introduce
an energy-momentum vector

which fulfils [analogously to (4.26, 12, 16)]:

where (9) follows from (8) and (4 . 47); the inequality (10) follows from
(4.49, 50).

( 11 ) can be proven as follows: na of (4 . 9) was a future-directed normal
of R~ (non-timelike surface), and n« is a future-directed normal of
M,= Rt n Gl; this implies

On the other hand, as na is future-directed (on L), it follows
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This and (12, 13) implies g°‘ na &#x3E;_ 0 on MtcGl, which prove (A. 11). (8, 10,
11 ) imply (14) (see below)

with

where (15) follows from Gauss-integration formula; (16) follows by insert-
ing (8, 9) into (15) and estimating similarly as in the proof of (4.23).

Rewriting (14, 16), one gains the formula (18) (see below) for 

Using ( 18) for m = 0, one can derive ( 18) for m =1 in a similar manner as
in the derivation of (4. 36 A) by using (4. 23). This way one can proceed
to (18) for m = 2 and finally (by induction) to (18) for arbitrary m.
As in the proof of (4. 24) [or (4 . 36 B)] we apply the generalized Gronwal-

Lemma (Lemma A .1 ) to ( 18) and thus gain

and then using (4.1), (3.8) we obtain

with

v]r can be algebraically expressed by the Cauchy datum v [of (4.48)]
o

and its derivatives by using our differential equation (4 . 47); this
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and (4.50) yields

with

We insert (22) into (20) and thus prove (4 . 51 ) of Lemma 4 . 3 .

APPENDIX IV

Proof of (*) of Remark D of section 6

In order to give the proof we have to go through each step of the proof
of [15] and to see up to what extent those steps could be strenthened: in [15]
one transforms the characteristic initial value problem (6 . 3 G), (6.3 H) for
p into a Cauchy initial value problem for x, where

where (being not necessarily a solution) is defined on some open neigh-
bourhood U ~ IRm of N1 U N2 with

being some derivative non-tangential to NJ, where [D~ is deter-
mined by the so-called "propagation equations" [i. e. the equations (4 . 40),
(4 . 41 ), (4 . 44), (4 . 45)], which are induced by (6.3 G), (6 . 3 H).
The new unknown x fulfils - according to [15] - the following Cauchy

problem

x has null data on a certain Cauchy hypersurface (see [ 15]); (A. 30)
where

with [domain of dependance of [0~ U + is (29)
equivalent to (6 . 3 G) in the 
We shall show [below formula (36)] that for each E&#x3E;O there

exists

(po, which fulfils (6.31), such that cp 1 ~ HS+ 1~2 +£ (U). (A. 32)

Vol. 53, n° 2-1990.



214 H. MULLER ZUM HAGEN

Now, the datum Po could be any function fulfilling (6. 3 I), thus (32)
implies that in general

whereby (34) follows from (33), (31).
For the solution x of the Cauchy problem (29) (30) it holds:

There is at present no Cauchy problem existence theorem which is stronger
than statement (35). This and (35), (34) and 1 imply (*) (b) of
Remark D (on Theorem 6 . 2), which was to be proven. Furthermore it
holds:

provided there whould be a Cauchy problem existence theorem, which also
treats successfully the case of non-integer differentiability orders. (So far
there in no such theorem.) The statement (36) could not be made

stronger (22). This and (36), (34) and imply (*) (a) of Remark D
(on Theorem 6.2).

Proof of (32). - In contradiction to (32) we assume that there exists
E &#x3E; 0 such that for every cpo, which fulfils (6.31), it holds

(U). Using this together with [8] and (28) one obtains that
for every which fulfils (6.3 I), it holds:

Now, according to (6 . 3 F) it holds: for any E &#x3E; 0 there exists a datum (23)
tpo, which fulfils (6 . 3 I), such that [Ô~~ 1 H1 + ~ (N1). This
contradicts (37) !
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