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ABSTRACT. - The hydro dynamical behavior of the one-dimensional
nearest neighbor asymmetric simple exclusion process is described by the
inviscid Burgers equation. This equation has shock wave solutions and
when the density before the shock is 0, the shock, at the particle level,
has stable shape and rigidly fluctuates around its average position with
Brownian law, [20] and [8]. We prove here that in the hydrodynamical
limit such fluctuations are determined exclusively by the initial particle
configuration and are not influenced by the randomness produced by the
evolution.

RESUME. 2014 Le comportement hydrodynamique du processus de simple
exclusion entre plus proches voisins asymmetriques en dimension un est
decrit par 1’equation de Burgers inviscide. Cette equation a des solutions
ondes de choc, et quand la densite est nulle en avant du choc, le choc au
niveau particulaire a une forme stable et fluctue rigidement autour de sa
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2 J. GARTNER AND E. PRESUTTI

position moyenne avec une loi Brownienne, [20] et [8]. Nous prouvons
que dans la limite hydrodynamique ces fluctuations sont déterminées

uniquement par la configuration initiale des particules et qu’elles ne sont
pas influencées par l’aléatoire de 1’evolution.

INTRODUCTION

The hydrodynamical behavior of the one-dimensional nearest neighbor
asymmetric simple exclusion process is described by the inviscid Burgers
equation

where &#x3E; 1 and =1- P &#x3E; 0 are parameters defining the exclusion process,
see below. Since ( 1.1 ) may develop singularities (discontinuities) even when
the initial conditions are smooth and uniqueness does not hold (see e. g.
[ 19]), a more precise statement is needed.
We first recall the definition of the process (cf [17]). The configuration

space is ~0, and we denote by ~ _ (r~x, xeZ) the configurations in
~0, (~ x =1 means that there is a particle at x). To derive ( 1.1 ) we
choose the initial measure ~ as a product measure which depends on a
scaling parameter E in such a way that JlE ({ l1x = I }) = po (E x) where po is

the initial condition in ( 1.1 ), the statements below hold also for more

general The process is defined so that each particle, independently,
waits for an exponential time of mean 1 and then it attempts to jump
with probability p to its right and with probability q to its left. The jump
takes place if and only if the chosen site is empty. Therefore the initial
condition that there is at most one particle per site is preserved by the
evolution.

Given denote by the measure on ~0, which is
obtained from the law of the process at time t (starting with law JlE) by a
space shift of the integer part of r. Then, [ 18], [ 17] and [4],

where vp is the Bernoulli measure with constant density p [i. e. the product
measure on ~0, such that p for all x], while pr is the

entropic solution (see below) to ( 1.1 ) with initial condition po. Furthermore
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3SHOCK FLUCTUATIONS IN A PARTICLE SYSTEM

the convergence in (1.2) holds for all (r, t) which are continuity points for
Pt (r) (there are some restrictions on the initial profile po, but cases where
singularities develop are included). Recall that the entropic solutions are
obtained by adding a viscosity term to ( 1.1 ):

Then for any fixed initial condition there is a unique solution to (1.3)
which depends on À. This solution has a limit when À -+ 0 and the limit
solves ( 1.1 ) (weakly): it is the entropic solution of (1.1). Analogous results
on the hydrodynamical behavior of (1.2) have been obtained for an

asymmetric zero range process, very closely related to the asymmetric
simple exclusion ([2], [3]).
Of course one of the most interesting features of these models is that

they develop discontinuities, shocks, giving us the chance to study in a
particle model the formation, structure and stability of shocks when the
hydrodynamic assumption of small gradients fails. The shock waves pt (r)
are solutions to (1.1) such that p~(r)=p(r2014~), where p (r) is any step
function such that the density p _ to the left of the step is smaller than
the density to the right, p + . The velocity v of the wave is then given by
(~2014~)(l2014p_2014p+). To produce this shock in the particle system we
choose the initial measure JlE as above with po (r) = P- if r  0 and = p + if

Such an initial condition is among those allowed in [4]. To examine
the microscopic structure of the shock at finite macroscopic times we first
consider an observer which moves with the speed of the shock. We have

as proven in [I] for the case p _ + p + =1 [i. e. ~=0]; in [20] for p _ = 0 and

p = I and then extended in [8] to all p&#x3E;1 2,03C1- being still equal to 0.
Equation (1.4) shows that we cannot follow the shock by moving with

its limiting speed. With equal probability it will be behind or ahead of us.
The shock fluctuates randomly around its expected position and there is
no deterministic way to follow it. We should therefore look around its

expected position in a way that depends on the particular realizations of
the process, on the particular runs in a computer simulation. The question
then is whether in the limit as ~ -~ 0 we see some other densities which

continuously interpolate between p _ and p +, or we see an abrupt transition
from p _ to p + which does not get smoother when s - 0. There is evidence
pointing to this latter possibility, which allows for a microscopic definition
of the shock’s position.

Vol. 53, n° 1-1990.



4 J. GARTNER AND E. PRESUTTI

When p_==0 it has been proven, [1 1], that there is a unique invariant
measure as seen from the leftmost particle. Asymptotically to the right
the invariant distribution converges to vp+, so that the wave front persists
also at the particle level and it is not a byproduct of the limiting procedure
used to derive the hydrodynamical equation ( 1.1 ): its shape is stable in
the strongest possible sense. Furthermore in [20] and [8] it is proven that
the displacements of the shock or the motion of the leftmost particle are,
in a suitable scaling, Brownian fluctuations around the average drift. The
corresponding diffusion coefficient D has been shown to coincide with the
velocity of the wave front, in the case p _ =0.

Observe that the stability of the shape of the shock is also consistent
with the behavior predicted by ( 1.1 ). In the space of all profiles, the

manifold obtained by shifting the traveling wave is in fact stable under
local perturbations, [10]: a profile which is a local perturbation of a step
and which evolves according to (1.1) differs from the pure step in the
limit when t -~ oo, only by a finite space shift.
Computer simulations indicate that the previous results hold also when

p _ &#x3E; 0, [6]. The numerical evidence indicates that there is a random traveller
who sees a stationary distribution of particles with densities p _, [p +], to his
left, [right]. More recent theoretical results confirm this, [ 12]. There is one
more observation in agreement with this picture. By taking p - q = s (the
process is then called the weakly asymmetric simple exclusion process) and
rescaling times as E - 2, while spaces are still scaled like 8’B one gets an
equation like (1.3), with p - q [in (1.3)] and À replaced by 1, ([13], [9]); a
cellular automaton version of this process has been studied in [5] and [ 15].
Equation (1.3) has again traveling wave solutions which smoothly connect
p _ to p + . By studying the density fluctuations around such profiles it has
been found, cf [9], that at long times there are essentially only rigid
displacements of the profile. The corresponding diffusion coefficient D, in
proper units, is just the same as that computed either theoretically when
p- =0, or numerically, in the general case.
The question which has motivated this paper is the following: what is

the origin of the shock fluctuations? in particular, are they determined by
the same randomness present in the dynamics? are they going to disappear
in a deterministic system which simulates the Burgers equation?

In Section 2 we present our results while proofs are given in Section 3.

2.RESULTS

One can apply the fluctuating hydrodynamic theory to compute the
diffusion coefficient D of the Brownian fluctuations of the shock, as
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5SHOCK FLUCTUATIONS IN A PARTICLE SYSTEM

noticed by Herbert Spohn, cf. [16]. The computation consists of three
steps.

1. According to (1.1) a local perturbation of a step profile decays when
t -+ oo giving rise to a rigid displacement of the step. The value of this
space shift is given by the integral of the difference between the perturbed
and unperturbed initial data divided by the quantity (p+ - p-), as it
follows from [10].

2. The initial density fluctuation field is defined as

where p (r), r ~ R, is a smooth test function and px = p .~ , respectively p+ ,
if x0, respectively x ~ 0. The distribution of Y&#x26; ( q» is determined by J.1 &#x26;,
the product measure such that J.1&#x26; = 1 }) = px- In the limit as s - 0 the
fluctuation field becomes Gaussian with covariance

This can be interpreted by saying that the next order correction in 8 to
the initial profile p~ is given Js and

3. The density fluctuations evolve according to the linearization of

(1.1).
11 we fix a macroscopic time t the only fluctuations, roughly speaking,

which can reach the front of the shock [which at time 0 is at 0] are, by
statement 3, those which at time 0 are in the macroscopic interval

[~(~r+~)], where

and

Hence by statement 1 the macroscopic displacement of the shock produced
by these fluctuations is

The diffusion coefficient D, properly normalized, is given by

Vol. 53, n° 1-1990.



6 J. GARTNER AND E. PRESUTTI

which by statement 2 gives

Notice that D = v if p _ = 0. Hence the fluctuating hydrodynamic theory
gives the correct result for the diffusion coefficient in this case. Further-
more when p _ &#x3E; 0 (2. 3) agrees with the value obtained for the diffusion
in the weakly asymmetric simple exclusion process. Since the above argu-
ments are based only on the analysis of the final hydrodynamic
equation ( 1.1 ) and the fluctuations are only the initial ones, this suggests
that asymptotically the shock displacements might be measurable hence
determined by the initial particles’ configuration. To check the validity of
this conjecture we have considered the simplest case, p _ = 0 and p =1 and,
indeed, in this case the conjecture is true, cf. Theorem 2.1 below for a
mathematically precise statement.

In the following we restrict ourselves to the completely asymmetric case
(p =1). We denote by p the product measure such that 

if x&#x3E;o [and p1 to have a non trivial case] and
finally ~({~0=1})=!. We then denote by Xt the position at time t of
the leftmost particle. Its average position is vt, v =1- p, while the particles
distribution shifted by xt is again given by Jl, all this is contained in [20]
and [8]. We have the following result:

THEOREM 2 . 1. - Denote by Ell the expectation with respect to the totally
asymmetric process starting from 11. Then

The fluctuations of the shock are given by the fluctuations of the
leftmost particle, and

where E~ denotes the expectation with respect to the initial measure p,
cf [8] and [20]. It then follows from (2.4) and (2 . 5) that the shock

diffusion coefficient D equals

D is therefore also the diffusion coefficient associated to the process

E (~), which, from this point of view, cannot be distinguished from the
process xt. This shows that the overwhelming part of the shock wave
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7SHOCK FLUCTUATIONS IN A PARTICLE SYSTEM

fluctuations originates in the randomness of the initial configuration and
is not caused by the random character of the dynamics.
While (2.6) proves that the diffusion coefficient only depends on the

initial configuration, yet it does not confirm completely the predictions of
the fluctuating hydrodynamic theory. In particular we do not know if
E~ (xt) only depends on the density fluctuations present in ~. We would
be surprised if this were not the case, we conjecture that the same pheno-
mena occur when p  1 and for the diffusion of a tagged particle in

equilibrium in the asymmetric simple exclusion process, cf [7] and [14].
More generally the fluctuating hydrodynamic theory predicts a similar
behavior whenever ( 1 ) the fluctuations refer to a collective variable, like
for instance the density in a system where particles are conserved, and (2)
the hydrodynamic equations are of the Euler type, that is they are invariant
when space and time are scaled in the same way. Notice that our model
fits into this class, since the fluctuations of the leftmost particle are the
same as the fluctuations of the shock profile, i. e. a macroscopic quantity.
For another, more elementary, example consider a system of non interact-
ing Brownian motions with drift, i. e. the particles move like independent
diffusions with generator

~&#x3E;0. The hydro dynamical equation for the model is

so that condition (2) stated above is fulfilled. Let then the initial particle
distribution jLi be Poissonian on the positive half-axis with intensity 1,
while no particle is present on the other half. Denote by xr the number of
particles which are on the negative half-axis at time t. This becomes a

macroscopic variable for large t, so that also the condition ( 1 ) above is
fulfilled. Finally a relatively simple computation shows that (2.4) and
(2 . 5) are satisfied with D = v.
The proof of Theorem 2.1, given in the next section, is based, quoting

David Wick, on a tour de force of couplings.

3. PROOFS

We start by making explicit the isomorphism between the asymmetric
simple exclusion process as seen from the leftmost particle and the zero
range process. We set some notation and recall statements already proven
which we shall use in the following.

Vol. 53, n° 1-1990.
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Notation and known results

1. Let 11t, ~0, be the totally asymmetric simple exclusion process and
assume that the law of 110 is given by the product measure ~ defined in
the previous section (before Theorem 2 .1 ). We denote by xt the position
of the leftmost particle in the configuration l1t. This particle will be called
zero particle, the next will be called first particle, and so on. We denote

the configuration ~ ~ shifted to the left by ~. It is known that
the law of is still Jl, cf for instance [11] where a measure with this

invariance property is constructed for 

2. Using the process 11t, we construct a new process çt, 
Its configurations §= § (x), ~eN[N=={0,l,2 ... }] are obtained in the

following (x) is the number of empty sites between the x-th and
the (x + 1)-th particle in the configuration 11t. The process defined in this

way is a Markov process with state space N~. Its generator L acts on the
bounded cylindrical functions f according to

Thereby ~"° Y, x, y E N, denotes the configuration which is obtained from
ç by removing a particle from site x and adding it to y ; çO, -1 is obtained
from ç by removing a particle from 0. Hence the ç particles keep jumping
to the left and finally they disappear after jumping from 0.

3. The displacement xt of the leftmost particle in the exclusion process
equals the number Nt of ~-particles which have jumped from 0 in the time
interval [0, t]. N~ may be considered as the current through 0 in the ç
process.

4. The image À of the measure ~ induced on N~ by the above construc-
tion of the ~-process is a product of geometric distributions with parameter
p =1- p, namely

which, of course, is an invariant measure for the process with generator
L.

5. Since X is an invariant measure for the Markov process with generator
L the dual process obtained by letting the time run backwards in the
original process, is a Markov process whose generator L* acts on the
bounded cylindrical functions f as

where ÇO is obtained from ~ by adding an extra particle in 0. Therefore
this is the process where particles jump to the right and there is an infinite
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9SHOCK FLUCTUATIONS IN A PARTICLE SYSTEM

source of particles in -1 which sends in particles in 0 with intensity p.
This whole statement can be easily proven, in any case we refer to [8].

6. Both the original and the dual processes can be extended to processes
on the whole lattice, namely with state space NZ. This is trivial for the

original process since particles move to the left hence what happens after
they cross 0 does not influence the process in [0, oo). To make this precise
we define the generator L as in (3 .1 ) dropping the requirement that 
now x runs over the whole Z. This is the zero range process which will be
considered in the sequel. The products of (identical) geometric distributions
are again invariant. We will use the letter also to denote the product on
Nz of geometric distributions with parameter p. To recover the previous
process on NN we simply have to take the marginal of the zero range
process on N~. It is less obvious but still true that the zero range process
on the whole Z with jumps only to the right and invariant measure Â has
a marginal on NN whose law is the same as that of the dual process
defined in statement 5 above, for a proof we refer to [8]. We shall denote
again by L* the generator of this last zero range process and usually we
shall insert * superscripts when referring to it. In the sequel we shall not
distinguish whether we are realizing the original and the dual processes as
in 1 and 5 above or as the associated zero range processes on the whole
Z. We shall switch from one interpretation to the other according to local
convenience.

7. Given a zero range process, let us call its particles first class particles.
A second class particle is then defined as an extra particle which is allowed
to jump only when there is no first class particle at the same site. When
alone, it jumps with the same intensities on the left and right as if it were
a first class particle. Analogously one defines processes with several second
class particles and, in a similar fashion, one introduces the notion of third
class particles and so forth, cf [2] for more details. We denote the law of
the zero range process by Pl [and the law of its dual by Pi. If we add at
time zero a second class particle at x, then we will denote its position at
time t by z~ [z§’] and the underlying probability law by P~, x x]. Finally
if the initial distribution is supported by a configuration ~ we will use the
subscript ~ instead of ~.
At last we have all the notation for stating the following.
PROPOSITION 3 . I. - Equation (2.4) is a consequence of

Remarks. - The expectation in (3. 3) has the following meaning. We
start considering the dual process in equilibrium and, at time 0, we add a
second class particle at 0. We let the process run for a time s and at this
time we have a random configuration ~S and a random position z; for

Vol. 53, n° 1-1990.



10 J. GARTNER AND E. PRESUTTI

the second class particle. We switch to the original process starting from
this situation, then particles move to the left and we consider the event
that the second class particle after a time t has not yet crossed the origin.
The probability of such an event is what we need to evaluate. The
contribution to this probability comes from trajectories where the second
class particle travels a longer distance in a time s with the dual process
than, subsequently, in a time t, with the original one. Since and
because of the factor t -1 in (3 . 3) the condition (3.3) will be a consequence
of a law of large numbers for the motion of a second class particle
(Proposition 3.2 below). By using statement 6 in the beginning of this
section such an estimate on the motion of the second class particle is only
needed in equilibrium.

Proof - In [8] it has been proven that

By adding and subtracting Ell and expanding the square we see that
(2.4) is then a consequence of

Writing (3.5) in terms of the zero range process and recalling that

v =1- p = p, we then conclude that (2.4) is implied by

We are going to prove that

and this will conclude the proof of Proposition 3 .1.
Proof of (3.7). By (3.1)

is a martingale [for P~ and any ~], so that

Hence
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11SHOCK FLUCTUATIONS IN A PARTICLE SYSTEM

By using the dual process we get for any bounded measurable function
/?)

Furthermore, since À is a product of geometric distributions, we have

ðx denoting the configuration which consists of only one particle placed
at x, therefore the argument off on the right hand side is the configuration
obtained by adding to ~* the second class particle whose position is
denoted by z* .
By choosing f (ç) = P ç (~S (0) &#x3E;0) and using the last two equations we

get

From (3. 8) and (3.9) we get

Applying the generator of the process (çt, z~) to the indicator function
we find that

is a P03BE, z-martingale for all 03BE and z. Therefore

Substituting (3 .11 ) in (3.10), we finally arrive at (3 . 7)..
To complete the proof of Theorem 2.1 we use the following law of

large numbers for a second class particle.
PROPOSITION 3.2(~). - For any 0  p  1 let ~, be the measure on NZ

which is the product of geometric distributions with parameter p. Let P~, o

(~) We have not been able to find in the literature the proof of Proposition 3.2, which
looks very much like a corollary to [2].
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12 J. GARTNER AND E. PRESUTTI

be the law of the zero range process with jumps to the right, with initial
distribution ~, and with a second class particle initially at the origin. Denoting
by z* the position at time t of the second class particle, we have for all
~&#x3E;0

Before proving the proposition we complete the proof of Theorem 2 . 1.
Let0ap. Then

where is the law of the zero range process with jumps on the left,
initially distributed according to A and having a second class particle
initially at x. To write the last inequality in (3.13) we have used that
PÂ, x (zr &#x3E;_ o) is a non decreasing function of x. We now apply Propo-
sition 3.2 (and its analogue for the process with jumps to the left) and
we get that the first term on the right of (3 .13) vanishes when ~-~ 00.
The only times s which contribute to the second integral are such that
( 1- oc)2 s &#x3E;_ ( 1- p)2 t, asymptotically for t - oo . By letting t -- oo the second
term on the right of (3 .13) converges to 1- (1- p)2/(1- a)~. By letting
a - p this proves (3. 3) and, by Proposition 3. I, Theorem 2 . 1.

Proof of Proposition 3 . 2. - We change notation to simplify the formu-
lae below by dropping the superscript * which referred to the process
with jumps to the right and writing p instead of p. We prove upper and
lower bounds on t ‘ 1 zt which imply (3 . 12).

Fix 0  ex  P  1 arbitrarily. Let Àa. [~ n] denote the measure on N~
which is the product of geometric distributions with parameter a [with
parameter a for x  0 and p for ~0]. Since Aa. ~ Aa., p ~ Àp stochastically,
we can consider the following coupling of three zero range processes
having initial distributions and Ap, respectively. The first process
consists of first class particles, the second is obtained by adding initially
on second class particles. From this the third process is obtained by
adding initially on x  0 third class particles. Let z~~~ [z~~~] denote the

position at time t of the leftmost second class [rightmost third class]
particle. The key for the proof of the proposition is the following fact

Annales de l’Institut Henri Poincaré - Physique théorique



13SHOCK FLUCTUATIONS IN A PARTICLE SYSTEM

which can be extracted from the proof of Theorem 2.4 in [2]:

where the convergence is in probability.
To get an upper bound for zt, we choose 0ap and P=p. Then

stochastically. (To see this, consider z~ as the position of an extra
fourth class particle initially located at the origin). Thus, applying the first
half of (3.14) and choosing thereby u arbitrarily close to p, we find that

in probability.
For the lower bound we put a= p and p  P  1 which implies that

stochastically. To see this, one first checks the validity of the
stochastic order in the case when no second class particles are present.
Because of the second half of (3.14) this yields

in probability. This concludes the proof..
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Notes added in proof - Some recent computer simulations on the
Boghosian Levermore cellular automaton which simulates the Burgers
equation, cf. [5] and [ 15], (this is a time-discrete version of the simple
exclusion process) give new evidence that the shock fluctuations are deter-
mined only by the initial density fluctuations. Such conclusions are

reported in
Z. Cheng, J. L. Lebowitz and E. R. Speer, Microscopic shock structure

in model particle systems: the Boghosian Levermore cellular automaton
revisited, preprint 1990.
A theoretical proof that the shock fluctuations are determined by the

initial conditions has been obtained recently for the weakly asymmetric
simple exclusion process:

P. Dittrich, Travelling waves and long time behaviour of the weakly
asymmetric exclusion process, preprint 1 990.
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