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High frequency waves in relativistic ideal

fluiddynamics
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Vol. 51, n° 3, 1989, Physique theorique

ABSTRACT. - An exhaustive analysis of the asymptotic waves in one-
dimensional relativistic fluiddynamics is presented. This has been done by
applying a theory, recently developed by A. Majda and R. Rosales,
concerning the propagation and interaction of high frequency weakly non-
linear waves The theory permits one to reduce the original system to three
coupled model equations. In this paper all the coupling coefficients have
been calculated and some of their interesting features have been pointed
out.

RESUME. 2014 Nous presentons une analyse exhaustive des ondes asympto-
tiques dans des fluides relativistes en dimension un. Cette analyse repose
sur une theorie recemment developpee par A. Majda et R. Rosales qui
concerne la propagation et 1’interaction d’ondes de haute frequence faible-
ment non lineaires. Cette theorie permet de reduire Ie systeme original a
trois equations modeles couplees. Dans cet article tous les coefficients de
couplage sont calcules et nous montrons certaines proprietes interessantes.
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1. INTRODUCTION

The idea of looking for solutions of a linear differential equation which
consist of a high frequency carrier modulated by a slow varying amplitude
has had many applications both in physics and in mathematics. This
method is generally known as geometrical optics approximation or W. K. B.
method since it has been used to obtain semiclassical solutions of the

Schrodinger equation.
Its generalization to systems of non-linear partial derivative equations

(the so-called "Method of asymptotic waves") is due to I. Choquet-Bruhat
who also gave many significant applications ([1], [2]). Then, every time
that the problem consents to identify two scales of variation, one for the

amplitude, the other for the oscillation, a perturbation technique reduces
a non-linear system, no matter how complicated it is, to a single equation
which, though more tractable, contains many of the characteristics of the

original system.
In particular, the asymptotic expansion, when applied to hyperbolic

quasi-linear equations, leads, at the zero order of approximation, to the
equation of propagation of the wave front (the eikonal equation) ; at the
main order, to an evolution equation of the type

while all the higher order approximations give linear evolution

equations ( 1). Thus the effects of non-linearity are described by the model
equation ( 1) and the structural peculiarities of the system are contained
in someway in the coefficient a, which has already been calculated for a
large variety of hyperbolic systems both in classical and in relativistic

contexts (cf refs. [ 1 ], [2], [3] and [ 10]) .
The limit of these approaches is that they enable one to treat only the

propagation of a single wave of the system. In other words, equation ( 1)
does not account for the possible non-linear interaction with other waves
which an initial perturbation excites in general in a medium. This interac-
tion may produce effects of the same order as the self-interaction does,
on condition that some resonance relations are verified. In any case to

solve a complete Cauchy problem one must give a criterion to develop
the initial datum in all the "modes" of propagation, which, evidently,
differs from that used for the linear equations.

I. Choquet-Bruhat has shown that this is possible for a 2 x 2 system of
quasi-linear hyperbolic equations, in practice for off-resonance waves [4].
Recently a systematic asymptotic theory for resonantly interacting weakly
non-linear waves has been developed by A. Majda and R. Rosales [5] ; it

includes, as a particular case, the Choquet-Bruhat’s method, and also

permits to take into consideration situations when more than two waves
coexist and resonances may occur.
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325HIGH FREQUENCY WAVES

In the present paper the method expounded in reference [5] is applied
to the equations of the one-dimensional relativistic fluiddynamics. This
system occurs in the following conservation law form

where U = U C) is a n-component column vector, x denotes the time and
spatial coordinates, x = (t, x), are analytic functions of their argument,
such that admit the Taylor development around an unperturbed state,

say, U==0 :

with Jacobian matrices, and U) symmetric bilinear forms
of the collumn vector U. -

The system (2) is supposed to be strictly hyperbolic, then the matrix
(~1 _ ~ ~o) possesses n distinct eigenvalues ~ and n corresponding inde-
pendent left and right eigenvectors which will be indicated respectively
with Lk and Rk, (k =1, ..., n).
The asymptotic solution we are looking for has the form

where is a perturbation denotes

slowly varying variables and 8 is a vector whose components are the n
phases and crk are respectively the first and the second order
perturbation amplitudes. In the framework of the theory of A. Majda and
R. Rosales the rtk turn out to satisfy the following system of coupled
equations

where no sum is taken over the index k, and

are symmetric (in i and j) interaction coefficients. They measure the
strength of the coupling, between the i-th and the j-th wave, which can
give origin to a third wave.
The plan of the paper is as follows: in section 2 the equations of the

one-dimensional relativistic fluiddynamics are written in a convenient form
for our purpose, in section 3 the eigenvalues and the eigenvectors of the

Vol. 51, n° 3-1989.
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problem are reported, in section 4 all the coefficients of non-linear interac-
tion are presented and finally, in section 5, some comments on the coupling
coefficients are made.

2. THE FIELD EQUATIONS IN MINKOWSKI SPACE

The fluid is assumed to be ideal, namely with zero viscosity and thermal
conductivity, then it is described by the set of equations [1] [6]

where Vcx denotes the covariant derivative, r is the proper matter density,
M the 4-velocity T the energy-momentum tensor defined by

with

here f is the so-called "index" of the fluid [8], h is the classical enthalpy,
p the pressure and e is the specific internal energy which is related to the
total energy density by

the metric tensor.
From now on we release the covariant formalism and we carry out the

calculations in a 3-vector notation. This facilitates the physical interpret-
ation of the results and permits us to make an immediate comparison step
by step with the non-relativistic fluid treated in reference [5]. The passage

, 

from the 4-vector notation to the 3-vector one is accomplished by repre-
senting a 4-vector with a column or a row depending on whether it is a
contravariant vector or a covariant one, i. e.

and, since we are going to consider the one-dimensional motion in Min-
kowski space-time, we also put
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where v is the relative velocity in a given Lorentz frame along the

x-dircction, x is the vector of cartesian components (x, y, z) and

~ ~( ~ ~x, ~ ~y, ~ ~z), 03B3=( 1-v2 c2)-1/2 is the Lorentz factor.

As dependent variables we will choose r, v and s (the specific entropy),
then we assume that p, e and h are smooth functions of rand s, satisfying
the thermodynamic relation (6)

implying

With the above hypotheses and after some manipulations equations (7),
( 8), ( 9) and ( 10) read

If one introduces the field vector

then the system ( 12) can be written in the following matricial form

with

Vol. 51, n° 3-1989.
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3. EIGENVALUES AND EIGENVECTORS OF THE PROBLEM

The roots of yield the velocities of propagation
of the three waves of the system. We have

where we indicate with a dot the relativistic sum, f. ~. i;2014~== 20142014201420142014
We also define (7)

then it is easily seen that the zeros of the determinant in ( 14) are

À1 and À3 are the sound speeds in a fluid moving with velocity v, modified
according to the relativistic Doppler effect ; À2 is the velocity of the so-
called "material" wave.

For the sake of simplicity we are going to consider the propagation
through the constant state

then ~° and ~ take the simple form

and

where the subscript o indicates that all the elements of the matrices

( 18) and ( 19) are evaluated for r=ro and When the unperturbed
background is the constant state ( 17) the eigenvalues of the problem are
simply
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with cs evaluated in r=ro and while the correspondent right and
left eigenvectors are respectively

and

where ~, the normalization constants obtained by putting 
(0)

are

. 4. THE COUPLING COEFFICIENTS

The conservation law form of the field equations ( 7) and ( 8) in the

3-vector notation is:

with

The divergence of Jf is given in ( 18), while the vector valued bilinear
forms W) and B1 ( V, W) defined in ( 3) turn out to be

Vol. 51, n° 3-1989.
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Where Vi, V 2’ V 3 and Wi, W 2’ W 3 are the components respectively of
the vectors V and W.

Whereupon, making use of (21) and (22), it is a simple matter to get
the interaction coefficients defined in (6):

As far as the coefficients of the type D ~ are concerned, one gas

while the coefficients giving the amount of material wave produced by the
interactions are simply:

It may be useful to have alternative expressions for D i 3 and D33
in terms of the total energy density p. Because

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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we immediately obtain

and, when the temperature T is constant,

5. THE COEFFICIENTS D i 1 AND Di3

The self-interaction coefficient D111 has already been found [1]; it van-
ishes when

namely when the fluid is relativistically incompressible and the pressure
law is

This is the only solution to equation D~=0 compatible with the condi-
tions that an equation of state characterizing a real fluid must satisfy in
order not to violate the causality principle ( 1 to 6):

If the fluid is isentropic, the evolution equations ( 5) are decoupled when

The above equation admits two solutions satisfying the inequalities (24):
(i) the incompressible fluid equation of state

(ii) the parametric solution

from which one gets the sound velocity

We notice that solution (25) is nothing more than the limit of the parame-
tric function ( 26) when t -+- oo .

Vol. 51, n° 3-1989.
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As a function of the proper matter density r, the pressure p takes the
form ( 8)

which in the non-relativistic limit ( R -+ (0) tends to the poly trope 
and in the ultrarelativistic limit (for R -+ 0) tends to 
The fact deserves mention that with the pressure law (26) or (27) it is

possible to find two new field variables, in place of r and v, which allow
the 2 x 2 original system (of the isentropic fluiddynamics) to be separated
into two independent equations. As new dependent variables, the velocities
of propagation of the acoustic waves may be chosen: ~,1= v ’- cs and
~3 = v + cs [cs = cs (r) _ (~r/f )1/21 given in ( 16). Then, some manipulations
lead to the split system

Finally we notice that, when T = Const., a comparison between the
coefficients D i 1 and D3 3 shows that, at variance with the non-relativistic
case, D i 1 ~ D 3 3 ~ Furthermore, while D~=0 admits the solution ( 25), the
equation

does not admit any physical solution, i. e. compatible with the condition
(24). In the A. Majda and R. Rosales theory the coefficient D33 as well
as D 2 2 ( and of course D i 1 and D 2 Z) are of less importance than the
others because they do not enter into the determination of the evolution
equation governing the wave amplitude they contribute only to the
higher order correction of the approximated solution in (4).

6. CONCLUSIONS

Despite several applications of the asymptotic method to the relativistic
fluid being available in literature ([I], [2], [3], [10]), a complete study,
taking into account the possibility that many waves coexist and interact,
has never been accomplished. The important paper by A. Majada and
R. Rosales [5], in which a systematic theory of resonantly intaracting
waves is developed, provides us with a framework to carry out an exhaus-
tive asymptotic analysis of such a fluid in one spatial dimension. In

particular, we have calculated all the possible coupling coefficients, i. e.
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those which account for the self-interaction (already known) and those
characterizing the process of mutual interaction among the different waves
of the system, in our case the two countertravelling acoustic waves and
the so-called "material" one.
We have pointed out that the coefficient of mutual interaction between

two acoustic waves vanishes in correspondence with a non-trivial equation
of state which is compatible with the causality principle and thus, probably,
of physiscal interest.
Of course, the most interesting situation occurs when both the self-

interaction and the mutual interaction coefficients are different from zero.
In this case the integro-differential equations in ( 5) represent a generaliz-
ation to the genuinely non-linear case of the classical three-wave resonant-
interaction equations.

Future studies will be devoted to investigate the behaviour of the

coupling coefficients in correspondence with the different equations of
state which one encounters in relativistic context, and to take into consider-
ation the possibility of integrating numerically the model equation we
have derived.
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