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Essential selfadjointness of the Weyl quantized
relativistic hamiltonian

Takashi ICHINOSE (*)

Department of Mathematics, Kanazawa University,
920 Kanazawa, Japan

Dedicated to Professor Takeyuki Hida on the occasion of his sixtieth birthday

Inst. Henri Poincaré,

Vol. 51, n° 3, 1989, Physique theorique

ABSTRACT. - It is shown that the relativistic quantum Hamiltonian H~
associated, via the Weyl correspondence, with the relativistic classical
Hamiltonian /(~2014A(x))~+~ with a general vector potential A (3c), is

essentially selfadjoint on and bounded from below by m. The core
of proof lies in establishing a distributional inequality for HA, an analogue
to Kato’s inequality for the nonrelativistic quantum Hamiltonian.

RESUME. 2014 On demontre que l’hamiltonien relativiste quantique HmA
associe, via la correspondance de Weyl, a l’hamiltonien relativiste classique
(p-A(x))2+m2 avec un potentiel vectoriel general A (x), est essentielle-

ment auto-adjoint sur et semi-borne inferieurement par m. Le
noeud de la preuve consiste a etablir une inegalite pour H~ au sens de
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266 T. ICHINOSE ;

distributions, un analogue a l’inégalité de Kato pour 1’hamiltonien non
relativiste quantique.

1. INTRODUCTION

In the present paper we study the problem of essential selfadjointness
of the Weyl quantized relativistic Hamiltonian

corresponding to the classical relativistic Hamiltonian

of a spinless particle of mass m interacting with vector and scalar potentials
A (x) and OM. A (x) and D (x) are respectively [Revalued and R-valucd
measurable functions defined in d-dimensional space f~d.

In the previous paper [12], HA was defined as a Weyl pseudo-differential
operator (see Berezin-Subin [1], Hormander [8])
(Hmau)(x)

the integral on the right being an oscillatory integral. There A (x) was
assumed to be bounded and continuous together with its derivatives up
to sufficiently higher order, since the usual theory of pseudo-differential
operators needs assumption of sufficient regularity of the symbol

x). Then H~ defines a linear operator in with domain ~(~).
It was shown ([12], cf. Shubin [22]) that H~ is essentially selfadjoint on

and [12] that its unique selfadjoint extension is bounded from
below by m : H~~. Here the proof of the latter result is based on a path
integral representation established there for the semigroup
exp[-t(Hm-m)], while in [9], [10] this path integral formula has been
further used to discuss the nonrelativistic limit problem. Recently, Nagase-
Umeda [20] have proved the essential selfadjointness of HA, assuming
A (x) to be continuous with bounded derivatives of the higher order than
the first, so as to include the case of constant magnetic fields.

l’Institut Henri Poincaré - Physique theorique



267ESSENTIAL SELFADJOINTNESS

The aim of the present paper is to extend these results to the case of a
less regular and unbounded vector potential A (x). Namely we only assume
that

In particular, a locally Holder-continuous function A (x) satisfies ( 1. 4).
Then redefining H~ with an integral ’operator which is equivalent to the
pseudo-differential operator ( 1. 3) if the latter makes sense, we show that

H~ is essentially selfadjoint on Here the mass m is nonnegative;
it may be zero. The assumption ( 1. 4) is suggested by the path integral
formula for exp[-t(Hm-m)] obtained in the previous work [12], which
is still valid in this case ( see the discussion in [ 12], § 5). The problem of
essential selfadjointness for ( 1. 1), Hm with both vector and scalar potenti-
als A (x) and C (x), is also discussed. Further it is shown to remain still
valid that H~ is bounded from below by m.
As the definition of HA with a vector potential A (x) satisfying ( 1. 4),

we propose the following:

Here 1~ y,  ~ is the indicator function of the set {I I y I  1}, and nm is

a a-finite measure on RdB{0} satisfying |y|&#x3E;0[y2/(1+y2)]nm(dy)~,
called the Levy measure. Note that when A (x) identically vanishes, then
(1.5) is, via the Fourier transform, equivalent to the Levy-Khinchin
formula for p + m (e. g. [14], [21]). The right-hand side of ( 1. 5) can
be shown to coincide with that of ( 1. 3) if A (x) is sufficiently smooth
and has bounded derivatives The core of proof of the essential
selfadjointness of H~ and Hm consists in establishing a distributional

inequality for HA: If with then

in the sense of distributions, where (sgn v) (x) = (x) ~, for v (x) 5~ 0,
and =0, for This may be regarded as an analogue to Kato’s
inequality for the nonrelativistic Schrodinger operator [16].

It should be noted that our H~ differs from the square root

of the nonnegative selfadjoint operator (2014~2014A(:B;))~+~. We are more
interested in H~ from the path integral point of view, because H~ is suited

Vol. 51, n° 3-1989.



268 T. ICHINOSE

to path integral but not ( 1. 7) (see [12], cf. [18], IV A b). However, we shall
not discuss which is physically more appropriate for a relativistic quantum
Hamiltonian of a spinless particle in an magnetic field. We also mention
that such a Hamiltonian was also treated, though with no vector potential,
by several authors, Weder [25], Herbst [6], Daubechies-Lieb [3], Daubechies
[2], Fefferman-de-la Llave [5].

In Section 2 the way of defining H~ with A (x) which satisfies ( 1. 4) is

presented. Section 3 is concerned with the regularity of solutions u of
which is needed in Section 4 to prove an analogue to Kato’s

inequality in the distribution sense. Section 5 is devoted to the main result
on the essential selfadjointness and semiboundedness of Hm as well as
HA, to the effect that H~ and Hm are essentially selfadj oint on 
and their unique selfadjoint extensions are bounded from below by m, if

A (x) satisfies ( 1. 4) and C(x) is locally square-integrable 
a. e.

The result of the present paper has been announced in [11].

2. DEFINITION OF THE WEYL QUANTIZED RELATIVISTIC
HAMILTONIAN

We are going to define the Weyl quantized Hamiltonian H~ correspond-
ing to the classical relativistic Hamiltonian in ( 1. 2). m is a

nonnegative constant.
Our starting point is the Levy-Khinchin formula for the conditionally

negative definite function /~+~2014~! (e. g. [14], p. 65, or [21] Appendix
2 to XIII. 12, p. 212-222) :

Here I{ 1 } is the indicator function of the set {I y I  1 }, i. e.

I{ 1 } (z) =1, if I z I  1, and = o, if I z I ~ 1. nm (dy) is the Levy measure
which is a a-finite measure on 0 ~ such that

It is given by

Annales de l’Institut Henri Poincaré - Physique théorique



269ESSENTIAL SELFADJOINTNESS

where Kv (z) is the modified Bessel function of the third kind of order v
and r (z) the gamma function. Kv(z) satisfies, for v&#x3E;0,

with a constant C &#x3E; 0 (see [4], chap. VII, 7. 2. 5, (37), 7. 2. 6, (41), p. 9-10,
and 7 . 4 .1, ( 1), (4), p. 23-24]).
To see (2.2) recall (see [12], Eq. (4.2), p.244) that the operator

has the kernel where

and use the fact (e. g. [14], Example 1) that

In this section, unless otherwise specified, A (x) is an Rd-valued measurable
function in Rd satisfying ( 1. 4) or equivalently

for every compact subset K of It is seen, using the asymptotic behavior
(2 . 3) of Kv(z) as z --+ 0, that (2 . 5) is satisfied if locally Holder-
continuous, i. e. |A(x-y/2)-A(x)|~b’(K)|y/2|03B1, x~K, 0|y|1, with
constants 0(xl and b’ (K) depending on K; in fact,
&#x26;(K)~2’~(K)~. Here and throughout we set

The explicit expression (2 . 2) of nm(dy) with (2 . 3) shows that ~ and na
are uniformly bounded for 
We shall denote not only the linear map of the

Sobolev space into but also the linear map

F-1 p2+m2 F of into where F and F-1 stand for
the Fourier and inverse Fourier transforms.

Vol. 51, n° 3-1989.
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Now let and o put Then the inverse Fourier transform

of u (p) multiplied o by ( 2 . 1 ) is

(H? , u) (x) _ (x)

DEFINITION 2. 1. - The Weyl quantized relativistic Hamiltonian H~ cor-

responding ~ to the symbol in ( 1. 2) is defined to be the integral
operator:

Obviously, if A (x)=0, (2.8) reduces itself to (2.7). On the other hand,
HÃ may be defined, as in [12], to be the pseudo-differential operator (1.3),
L ~.

(HM(x)

if the right-hand side exists as an oscillatory integral (e. g. [8]).
Both the definitions yield the same HA, which in the following lemma

we content ourselves to check in a case including that of constant magnetic
fields.

LEMMA 2. 2. - Let m be nonnegative. Assume A (x) is a Coo function
satisfying

with constants Co and C0152. Then : (i) The right-hand side of (2.9) exists as
- 

an oscillatory integral. (ii) The pseudo-differential operator H~ defined
through (2 . 9) coincides on J (Rd) with the integral operator HmA defined
through (2. 8).
Remark. - It is for simplicity that in Lemma 2.2 we have assumed

A (x) is COO. It can be seen that both the statements (i) and (ii) are valid
for sufficiently smooth A (x) satisfying 
with N sufficiently large.

Proof of Lemma 2 . 2. - (i) The assertion is obvious if m &#x3E; o. We give
here a proof which is valid for m &#x3E;__ o. Let x be a rotation-invariant Co
function with in x (p) =1 and x (p) = 0 on

Put XR(P)=X(P/R) for R &#x3E; 0 and Write ( 2 . 9)

Annales de l’Institut Henri Poincare - Physique theorique



271ESSENTIAL SELFADJOINTNESS

as a sum of two terms:

where

with

It is easy to see by change of variables that the integral H 1 u is absolutely
convergent. H2 u is an oscillatory integral, whose existence follows from
the basic theory of oscillatory integrals (e. g. [17], Chap. 1), because by
assumption on A (x), h2 (x, p, y) is a Coo function satisfying: for all multi-
indices a, P and P’ there exists a constant independent 0 such
that

(ii) In view of (2 . 7) we can see, for in (2. 8), that

which may be said that apply H~ to u is nothing but apply H~ to the
appropriately "gauge transformed" u. Here note by assumption on A (x)
that implies that, for x fixed, the function

belongs to ~(~). Now, to show the statement (ii) of the lemma, we have
only to show the right-hand side of (2. 9) is equal, as oscillatory integrals,

Vot.51,n°3-1989.
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to the right-hand side of (2.11), that is,

Changing in (2 . 10 b, c) the integration variables p’ =p-A (writing

p again instead of p’), we get

and

Here l is an integer &#x3E; (d + 1)/2, and the last equality is due to integration
by parts based on

Since A (x) is continuous and the derivatives of A (x) are all bounded, it

is seen for x fixed that X s (~ + A ( converges to 1

uniformly on compact sets of both p and y, X E (~ + A ( 20142014 )))
with 1 converges to zero uniformly in both p and y. Then we have

Annales de l’Institut Henri Poincaré - Physique theorique
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by the Lebesgue dominated convergence theorem

where the last equality is due to integration by parts, so that, as an

oscillatory integral,

Thus with (2 .12 a, b) we have shown the assertion (ii), completing the
proof of Lemma 2. 2.
Next we shall see that H~ defined by (2 . 8) maps into 

so that it can define a linear operator in with domain For
write ( 2 . 8) as

where

LEMMA 2. 3. - Assume A (x) satisfies (2. 5) or (1. 4). (i) If u is in
Coo n L 2 then H~ u is in More Precisely,

for each 1 _p _ oo, where II. lip stands for the Lp norm, and for every compact
subset K of (~d there exists a constant CK such that

Vol. 51, n° 3-1989.
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(ii) Let 1 _p _ 00. If u is in Co then H~ u is in Lp For every

compact subset K of Rd there exists a constant CK such that

for all u E Co with supp u ~ K. Here n~ in (2 . 14 a) is the constant

(2 . 6 a), the CK in (2 . 14 b) and (2 . 15) are constants depending on K and
the behavior of A x in a neighbourhood of K, and for r &#x3E; 0,

with K a compact set in f~d.

Proof. - (i) It is easy to verify (2 . 14 a) by use of the Holder inequality.
To show (2 .14 b) let K be a compact set in Let (p(x) be a C~ function
with in cp (x) =1 on K1 and Then (2 .13 c)
is rewritten for x E K as

Then by Fatou’s lemma

Now we estimate each term on the right of ( 2 .19) . First, for we

have with x E K,

using

Annales de l’Institut Henri Poincaré - Physique - theorique 
.
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We use the Schwarz inequality and then change the integration variables
x + y = x’ (writing x again instead of x’) to get

with a constant C ( K 1 ) independent of E &#x3E; 0, where ac ( K2) and are

the constants in (2. 5) with K2 and K1 in place of K, respectively, and ni
the constant (2 . 6 b) with a== 1.

Next, we show

with a constant Co independent of s&#x3E;0. To do so, first note that the
Levy measure has a rotation-invariant density: nm (dy’) (/) dy’, as seen
from its explicit expression (2 . 2). Let for 0  E  1 and 1 _ k  d,

With rewrite i2 (E) as

To establish (2. 21) we show that

with a constant Co independent of 0  £  1 and ~~0, and that the L2
limit of Nk, E f as 0 exists. To this end we use the theory of singular
integrals; we have only to confirm that each is the Calderon-
Zygmund kernel [24], Chap. II, § 3, Theorem 2, p. 35, that is,

Vol. 51, n° 3-1989.
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with a constant B independent (2 . 24 a) is easy to see from (2 . 2)
with the asymptotics (2 . 3) of the Bessel function Kv (z) and (2. 24 c) is
clear from the rotational invariance of the density To see (2 . 24 b),
first estimate, when I y I ? 2 ( y~ I, the integrand in the integral to get

with constants Bo and B 1 independent of m &#x3E;_ 0, because

Then we can bound the left-hand side of (2 . 24 b) by

using the spherical coordinates, where B2 is the constant for which 
is the area of the (d - 1 )-dimensional unit sphere.

Finally, for i 3, we have by ( 2 . 7), for x E K,

It follows that

with a constant cK dependent on K. Then (2 .14 b) follows from (2 . 20),
(2. 21) and (2. 26) with (2. 19).

(ii) Let K be a compact set in and let u be a C~ function with
supp K. Then we see by (2 . 14 a) that I u is L2 with

Annales de l’Institut Henri Poincaré - Physique theorique
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Here I K I and I are the volumes of K and K1. We can estimate,
similarly to the proof of (i),

Thus, recalling (2. 13 a), we have shown (2.15). This ends the proof of
Lemma 2 . 3.

3. REGULARITY

Throughout this section, A (x) is assumed to satisfy (2. 5) or (1. 4). We
have seen in Lemma 2. 3 among other things that HA defined by (2. 8) is -

a linear operator in with domain It is easy to see with
the rotational invariance of the Levy measure nm that HA is symmetric,
i. e.

For we can define, in view of Lemma 2 . 3, a distribution H~M
in ~’ ( (~d) through

In this section we shall show regularity of the function with
To this end we give a kind of integral representation of

such v, the proof of which needs some task. The main result of this section
is Theorem 3. 6, which is needed in the next section.

Let be the fundamental solution for the operator
H~+1=/-A+~+1. A direct calculation with (2 . 4) yields

Vol. 51, n° 3-1989.
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Hence G (z) is a positive C°° function where I,z I &#x3E; 0, and satisfies

near z=0, with a constant C independent of ~~0, and

which can be seen with the aid of (2 . 3) (cf. [24],

Chap. V).
Now put f or 

where xR is the same cutoff function as in the proot ot 

the same as ( 2 . 4) means the inverse Fourier transform.

From (3.5) it is evident that, for 8~0, is a nonnegative COO
function where x &#x3E; 0 which identically vanishes outside I x I  R, while,
for E&#x3E;0, it is a C~ function in In view of (2 . 7), put for 8&#x3E;0.

which is a real-valued, bounded C°° function.
let for 

and f or £&#x3E;0

Remark. - Here, to define we have made a large-momentum
cutoff of G(x). We might as well use another cutoff of G(x) near the
origin x = 0 ( e. g. [ 13], Appendix) :

Annales de l’Institut Henri Physique . théorique 
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However, the merit of such a choice of GR, £ (x) as in (3 . 5) lies in allowing
one to appeal more to Fourier analysis so as to simplify the proofs which
follow.

In the following two lemmas we shall observe some properties of 
( 3 . 7), and SR, ~ ( 3 . 8), as operators in the L2 space. So stands for the
L2 norm there.

LEMMA 3 . 1. - Let The constants C below are, though all different
in general, independent of m &#x3E;_ 0 and E.

In particular, GmR,~ defines a bounded linear operator on L2 

uniformly on bounded subsets [0, 00).
Proof - To simplify notation we suppress the superscript "m" to write

GR,e. Go (x) and ko (t, x) GR, ~ and ~?(~3c), respectively.
(i) (3 . 9) follows from (3 . 4), since (x) ~ Go (x).
(ii) Let XR be the Fourier transform of XR’ By the Plancherel theorem

we have 

because I ((P - ~)2 + m2)1/2 _ ‘E’2 ’~ Yi’l2)1/2 I  I ~ y
(iii) Similarly to the proof of ii we have

which tends to zero as uniformly for bounded m~0, by the Lebesgue
dominated convergence theorem. This proves Lemma 3. 1.

Vol. 51, n° 3-1989.



280 T. ICHINOSE

LEMMA 3.2. - (i) If E &#x3E; 0, then

with a , constant C independent 0 and E. In particular, SR, £ defines a ,
bounded linear operator on L2 1°1 ’ 

-

uniformly on bounded subsets [0, 00), so that

is a bounded linear operator on L2 The bounded linear operator on

satisfies that

with a , constant C independent 1

Proof. - We suppress "m" of SR, ~ , and QR. Since by (3 . 6)

( 3 .12) and ( 3 . 13 a) follow from ( 3 . 10) and ( 3 .11) in Lemma 3 . 1. Obvious
is that SR and so Q~ is a bounded operator on L2 (f~d). We have (3 . 15),
since QR is a pseudo-differential operator with symbol

and o so (p2 + m2) 1~2 qR (p) is uniformly bounded. This proves Lemma  3 . 2.
The following j lemma  studies some ’ further properties of as an

operator in the L~ space. Recall Kr, (2.16), and o (2. 17).

LEMMA 3.3. - Let Let and , (i) If
then

and

with a constant C dependent on ~r but independent of m &#x3E;_ 0 and E. In

particular, ~r GR, I&#x3E; 
and - 0 + m ~r GR, E define bounded linear operators

of Lploc (Rd) into Lp 

Annales de l’Institut Henri Poincare - Physique theorique
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(ii) For f E 

uniformly on bounded subsets of m in [0, oo).
Proof. - We write Go(x) and ko(t,x) for G~ G(x) and

Let Put and let cp be a C~ function with
in cp(x)=1 on KR and suppcp  

(i) Proof of (3. 17 a). - Since identically
vanishes outside I x - y I  R, we have GR, g((p/) on K, so that

Therefore, the proof of ( 3 .17 a) is reduced to that of

since But this follows by Young’s inequality with

Proof of (3.17 b). - By the same argument as above, the proof is
reduced to that of

with a constant C independent of ~~0 I and o In view of ( 3 . 5), let
with u E Lp 

or

It is easy to see by Y oung’s inequality that KR, £ is a bounded linear

operator on 
’

Therefore showing ( 3 . 20) is equivalent to showing

with a constant C independent of ~~0 and The operator in the
bracket [... on the left of (3 . 23) is represented as the pseudo-differential
operator

Vol. 51, n° 3-1989.
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with symbol

Here

with the same cutoff functions and ~rR (p) =1- xR (p) as in the proof
of Lemma 2. 2. Note here that

To show (3 . 23) we need to show for 1 ~  oo that

with a constant C independent of ~0 and 8~0. We can show ( 3 . 26 b),
using a general result [19], Theorem 3, since the symbol b2 (x, p) satisfies
that for every multi-index a there exists a constant Ca independent of

~~0 and such that for ~a~d+1,

To get ( 3 . 26 a) write b 1 (X, D) as

where

Annales de l’Institut Henri Poincaré - Physique - theorique 
-
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with

Then it is easy to verify that K(x, z) is a bounded function. Therefore to
show ( 3 . 26 a) we have only to show that for 0S1 there exists a
constant Co depending on S such that

To do so let a be a multi-index with |03B1|=d. Then we have by integration
by parts

Hence, noting 1 that ’ for obtain

The integral on the right is convergent, because

with a constant C independent of ~~0 and This yields (3 . 29).
(ii) Proof of (3. 18). - By the same argument as used with cp in the

proof of (i) it suffices to show that for 

To get (3. 30) we see by applying Young’s inequality

Therefore we have only to show that

Vol. 51, n° 3-1989.
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uniformly on bounded m &#x3E;_ 0. We have from ( 3 . 5)

because The first term in the last

member above tends to zero as E  0, uniformly on bounded ~ ~ o. There-
fore we have to prove that so does the second term, which is equal, by
changing the integration variables (writing y instead of y’), to

Let 8&#x3E;0 be arbitrary. Then there exists ro&#x3E;O such that for 

uniformly in 0  £  1 and For the

proof see [9], Lemma 3. 3, where the uniformity in m is not mentioned,
but the proof there is still valid. It follows that gl (E)  8. On the other

hand, we can see g2 (E) satisfies that for I y 

which tends to zero as sj.0, since Go (x) is integrable. Thus we have
shown ( 3 . 31), ending the proof of Lemma 3 . 3.
Now we are in a position to derive an integral representation for v in

L2 with in Let e&#x3E;0. By Lemma 3.1, is, for x fixed,
a real-vlaued C~ function in y, so that by (3. 2),

or

We use the expression (2. 8) for H~ to rewrite the kernel of the integral
on the right-hand side of ( 3 . 32 b) :

Annales de l’Institut Henri Poincare - Physique - theorique -
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where is defined by ( 3 . 6), and F~ e(3c,~) are respec-
tively the complex conjugates of

and

The following two lemmas are concerned with the integral operators with
kernels E~(x,~) and 

There 11.11 stands for the L2 norm.
LEMMA 3 . 4. - Let 03C8~C~0 (Rd). (i) If ~~ o, then ER, E u exists with

u E L2 ( f~d), and

while ~~&#x3E;0, then

with constants C1 and , C2 dependent but independent of m &#x3E;_ 0 and E.
(ii) 

-

uniformly on bounded subsets of m in [0, (0).

LEMMA 3 . 5. - Let W E Co (i) If £ &#x3E;__ 0, then FR, E u exists with
u E L2 ( f~d), and

while if E &#x3E; 0, then

with constants C1 and , C2 dependent on W but independent of m &#x3E;_ 0 and E.
(ii) 

Vol. 51, n° 3-1989.
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uniformly on bounded subsets [0, oo).
Based on Lemmas 3. 1-5, we now give the main theorem of this section,

Theorem 3. 6. The proofs of Lemmas 3.4 and 3. 5 will be postponed to
the end of the proof of Theorem 3 . 6. We shall write for 

THEOREM 3 . 6. - Let and let Then v admits
an integral representation

Here QR, and are defined by (3.7), (3 . 14),
(3.36) and (3.37), respectively. CoM  has dcM/M

such that, , for every 03C8~C~0(Rd), both 03C8v1 and 
are in and both ~r v2 and - 0 + m ~r v2 are in 

Proof - We simplify notation to suppress the superscript "m" of HA,
(?, SR, ~ ER, E and Let vEL 2 and Then we get for

E &#x3E; 0 from (3 . 32) and (3. 33)
( 3 . 43)

By Lemma 3 . 2 (ii), ( 3 . 13) and ( 3 . 14), the left-hand side of ( 3 . 43), SR, E v,
converges to v - QR v in L2, as As to the right-hand side of ( 3 . 43),
GR, E [HA + 1] v converges to GR [HA + 1] v in by Lemma 3 . 3 (ii), (3 . 18),
ER, E v to in by Lemma 3 . 4 (ii), ( 3 . 39 a) and FR, gU to in

by Lemma 3 . 5 (ii), ( 3 . 41 a). This proves ( 3 . 42). Once ( 3 . 42) is

established, the remaining assertion is immediately seen by taking
and v2=QRv+ERv+FRv, since

is in [by Lemma 3 . 3 (i), (3 .17 b)], and
the three and are all in the Sobolev space [by
Lemma 3 . 2 (ii), ( 3 .15), Lemma 3 . 4 (ii), ( 3 . 39 a, b) and Lemma 3 . 5 (ii),
( 3 . 41 a, b)]. Thus Theorem 3 . 6 is proved.

Finally we prove Lemmas 3. 4 and 3. 5.

Proof of Lemma 3 . 4. - We write and for 
and nm(dy’). Let Put and let cp be a Co function
with 0~03C6(x)~1 in cp (x) =1 on KR and supp03C6~KR+1.

(i) Changing, in (3 . 34), the integration variables

y + y’ = z (writing y instead of z) and using the rotational invariance of
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the Levy measure we have

where

Then we see by Lemma 3.1 (ii), ( 3 .10), that ER, E u on the right of ( 3 . 44)
satisfies

with the constants n ~ =~ in ( 2 . 6 a) and C in ( 3 .10) .
Similarly we have for 

where 11.112, KR+ 1 stands for the local L2 norm in ( 2 . 17) . Therefore the
proof of (3 . 38 a) will be accomplished if we can show

with a constant C (KR+ 1). The proof of (3 . 46) will be done by a analogous
argument used to prove ( 2 . 20) .

Proof of (3.38 b). - Let E &#x3E; 0 and put 1 _ j _ d. We can see
similarly to the proof of (3. 38 a) above

and by Lemma 3.1 (ii) and by (3. 46),

(ii) Proof of (3 . 39 a, b). - By the same arguments as in the proof of
(i), we can see that for s &#x3E; 0,

and f or E, E’ &#x3E; 0,
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all the four of which tend to zero as and E, 8~0, uniformly on
bounded ~~0, by Lemma 3 . 1 (iii). This shows (3 . 39 a, b), ending the
proof of Lemma 3.4.

Proof of Lemma 3 . 5. - We write again FR.£ and n(dy)=n(y)dy
for and nm(dy)=nm(y)dy. Let Put K=supp 03C8 and
let cp be a Co function with 0~(p(x)~l cp (x) =1 on and

(i) First we show that for F~ E u exists with Put

with

Since Lk, R, £ has compact support, we have only to show that for some
constant 003B41,

near x=0, with a constant co independent of and Write

( 3 . 47 b) as

dividing the integration region 0  I y I  1 into the three parts:

and the rest Y 3.
In the following argument, the constants such as cl, c2, co, are indepen-

dent of ~~0 and Since

we have by ( 3 . 4 c) and ( 2 . 2) together with ( 2 . 3),
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because ’ implies For we have "

by (3 . 4 a, b) and o (2. 2), in case d&#x3E;1,

because I x - y I  implies Iy I &#x3E; I x ~/2, and similarly, in case d=1,

with 0  b  1. Since and o in Y3’ we have " by
(3.4a, b) and o (2. 2), in case " d&#x3E; 1,

with 0  Õ  1, and similarly, in case d =1,

with 081. Thus ( 3 . 50), ( 3 . 51 a, b) and ( 3 . 52 a, b) with ( 3 . 49) yield
(3 . 48).
Next we show ( 3 . 40 a, b). We give a unified proof using the theory of

singular integrals, though it is seen that ( 3 . 47) and ( 3 . 48) imply ( 3 . 40 a).
For we have

with in (2 . 22) with 8 in place of E, because n (y’) is rotation-invariant.
Here
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which is a C~ function. Then it follows from (3.53) with (2.23) that for
8~0,

with Co a constant independent of 081 and and

a(KR+2) in ( 2 . 5 a) with KR+2 in place of K. Here we have used, in the
second last inequality, Lemma 3.1 (ii). This shows (3 . 40 a).

Proof of (3. 40 b). - The proof proceeds in the same way as above. We
have, this time for E &#x3E; 0,

Here ( cp u) in the first term of the third member above has already
been dealt with in the proof of (3 . 40 a). For the second term, since

and the L2-limits of and 
0 exist, we have

This shows (3.40 b).
(ii) Proofof(3.41 a). We have for ~&#x3E;0,

l’Institut Henri Poincaré - Physique theorique



291ESSENTIAL SELFADJOINTNESS

with which tends to zero as uniformly for bounded
~0, by Lemma 3 . 1 (iii). This shows (3 . 41 a).

Proof of (3.41 b). - The proof is similar to the above. In fact, we have
for E, E1 &#x3E; 0,

As E and E’ go to zero, the first term in the last member tends to zero,
uniformly for bounded because as seen

above. The second term tends to zero, too. In fact, we have

which tends to zero, as E, E1  0, uniformly for bounded ~ ~ 0, by Lemma
3.1 (iii), again. This prove (3.41 b), ending the proof of Lemma 3.5.

4. KATO’S INEQUALITY

For the nonrelativistic quantum Hamiltonian, i. e. the nonrelativistic

Schrodinger operator, with magnetic fields, Kato [16] established a distri-
butional inequality, which is now called Kato’s inequality. In this section
we are going to show an analogue for our relativistic quantum Hamil-
tonian HÃ with magnetic fields. The vector potential A (x) is assumed to

satisfy (~.3) or ( 1. 4) as in the previous sections.
In [12], § 4 . 4, we established, though assuming a sufficient regularity

and boundedness of A (x), a path integral representation for the semigroup
to derive a domination relation between two positive

selfadjoint semigroups and 

which is equivalent to an abstract operator version of Kato’s inequality ( see
[23], [7]). The distributional inequality is, however, a stronger statement in
the sense that we are before knowing HÃ to be essentially selfadjoint or
selfadjoint. The following theorem may be considered as Kato’s inequality
for the relativistic quantum Hamiltonian HÃ in ( 1. 5).
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THEOREM 4 . 1. - Assume A (x) satisfies (2 . 5) or ( 1. 4). Let m &#x3E;_ 0. If v
is in L2 with HÃ v in then the following distributional inequality
holds

Here sgn v is a ’ bounded function in IR defined by

Thanks to the expression ( 1. 5) or (2 . 8) for HA, the proof of Theorem
4.1 proceeds in a similar way to that of the original Kato’s inequality
[16]. We need the following lemma, whose proof needs Theorem 3. 6. We
write a function f~L1loc, where 03C103B4(x)=03B4-d03C1(x/03B4), and p (x)

is a nonnegative Co function with supp p c { ( x I _ 1} and p (x) dx = 1.

LEMMA 4 . 2. - Let and let Then v03B4 ~ v in L2 and

Proof - we simply write HA, Ho and n(dy) for HA, H~ and nm(dy).
Let v E L2 ( (~d) and let Sin’ce vs is C" and L2, we know by
Lemma 2 . 3 that HA v03B4 is and so It is well-known that VO ~ v in

L2 as 8~0. It suffices to show that in Then, with the

decomposition (2 . 13 a) of HA, H~~+Ii+12. the assumption implies
that v~L2 and 12 because I1 v~L2 by (2 . 14 a). Since 11 is, by
(2 . 14 a) again, a bounded linear operator on so that 

in L2, we have only to show that

or equivalently,

It is easy to verify (4 . 3 a), since in Land (12 _ (v°, I2 cp),
(I2 v, p) =(~, 12 cp), for cp E C~ by the rotational invariance of the Levy
measure n(dy). To see (4. 3 b) let K be an arbitrary compact subset of ~.
We show first that there exists a constant CK [dependent on K and the
behavior of A (x) in a neighbourhood of K] such that

for all with Recall that implies
H0u~Li(Rd), by Lemma 2.3 with A(x)=0. Here stands for the Li

norm, f=l,2. The following argument proceeds similarly to the proof of
Lemma 2.3 (i). Let p be a C~ function with O~p(x)~1 in p(x)=1
on K4 and supp 03C6 ~ Ks. Then from (2.18) we have by Fatou’s lemma,
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this time, in the local L1 norm,

For fi(8) and i2 (E) we obtain from (2. 20) and (2 . 21) with the Schwarz
inequality

were c1 and C2 are constants independent of s&#x3E;0. For i3 we see from
(2. 25) that if Ho u is L1, then

while if Ho u is L2, then by (2. 26)

with the constant n~ = ~ in (2. 6 a) and I K the volume of K. Then (4. 4)
follows from (4. 6 a, b, c, d) with (4. 5).
Now we shall finish the proof of (4. 3 b). be a Co function with

0  ~r (x)  1 in ~ (x) =1 on K2 and supple K3’ It is here that we
need Theorem 3 . 6, by which v = v 1 + v2 where and

As and are L2, so is Let 08, 8~1.
Then and (~r v2)s are C~ with support in K4, 
is L1, and is L2. Noting on K1 and

on K, we use (4 . 4) with M=(~u~-(B)/~ i = 1, 2, to get

which tends to zero as 8, 8~0. This proves (4. 3 b), completing the proof
of Lemma 4. 2.

Proof of Theorem 4.1. - We write HA, Ho and for HA, H~ and
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I. First suppose v is C~ and L2. Then by Lemma 2. 2, is and
so For ~&#x3E;0 let

Then v~ is C~ and v~(x)~~. A direct calculation shows that

or

Subtracting I v yields

Now we use ( 2 . 8) to get

Since av£ (x)2 = a ( v (x) P + E2) _ ~ ~ v (x) K it is seen with (4. 8) that

pointwise and so in the distribution sense. It follows that

II. In the general case where vEL 2 and let Then
VO is Coo and L2, so that by Lemma 2. 3, HA v03B4 is and hence Then

by (4. 10) we have

for each 8&#x3E;0 and 8&#x3E;0. For s&#x3E;0 fixed let 8 J,0. Then vs --~ v in L2. Taking
a subsequence if necessary, we may suppose that VO -~ v in L2 as well as
a. e. It is easy to see that so that 

in L2 as well as a. e., as 03B4 ~ 0. Hence -+ a. e. and Ho -+ H0 v~
in ~’. On the other hand, we know by Lemma 4 . 2 that in

Since ~ 1, it follows by the Lebesgue dominated convergence
theorem that [HA -m] vs -+ [HA -m] v in as Õ  0, so that
(4.10) holds for v. Now let £! 0. Then v/v£ -+ sgn v a. e. with ~1, so
that the left-hand side of (4 . 10) converges to Re [(sgn v) [HA -m] v] a. e.,
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while the right-hand side of (4. 10) converges to I in ~’. Hence
we get

and hence (4. 1), having proved Theorem 4.1.

Remark. - When both A (x) and v (x) are CX:&#x3E;, Theorem 4.1 follows
from that in the case A(~)=0 together with the fact (2.11) with v in
place of u. The proof of Theorem 4 .1 with A(x)=0 is comparatively
easy, because then Theorem 3. 6 and so Lemma 4. 2 is evident.

5. ESSENTIAL SELFADJOINTNESS

We now show the essential selfadjointness of the Weyl quantized rela-
tivistic Hamiltonian in ( 1. 1), with HÃ in ( 1. 5) or (2 . 8).

THEOREM 5.1. - Let A be an measurable function in Rd
satisfying (2. 5) or ( 1. 4) and let a. e. Then:
(i) H~=H~+0, and, in particular, HA, is essentially selfadjoint on

Co 
(ii) The unique selfadjoint extension of HA, denoted again by the same

HA, is bounded from below by m: 

Proof. - We write HA and Ho for H~ and H~. (i) We already know
HA is symmetric on as in (3. 1). From the proof of Theorem 4. 1,

for In fact, integrating (4 . 9) with u in place
of v, we have with 

because w C uE - E is C~ and (Ho-m) M,= (Ho-m) w.
Now we show that HA +1&#x3E; is essentially selfadjoint on Since

H~+C+1 is a strictly positive symmetric operator in L2 ( f~d) with domain
it suffices to show that with

implies that u==0. ( 5 . 1 ) means

in the sense of distributions. It follows that

is because ~ + 1 is and v is L2. By Theorem 4.1,
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Hence (Ho + 1) I v I _ 0 in the distribution sense, or ((Ho +1) v I p) ~ 0 for
every cp E C~ with cp ~ 0. E C~ ( f~d) with Bj/ ~ O. Then (Ho + 1) - 1 ’"
is in the Sobolev space H 1 ( f~d) and nonnegative. Choose a sequence {(?}
in Co ( f~~) with 0 for all n which converges to (Ho +1)’ ~ oo.

Since (Ho + 1) I v is in the Sobolev space H -1 ( (~d), we have

whence (I v I, w) = 0. It follows that v = 0 or v = 0.
(ii) As seen in the above proof of (i), HA is, -on bounded from

below by m and essentially selfadjoint. So the assertion is obvious. This
proves Theorem 5.1.
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