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ABSTRACT. - We propose a relativistic version of quantum stochastic
calculus based on the relativistic properties of test functions; these proper-
ties are determined on the basis of the interpretation of test functions as
interaction rate amplitudes, and lead to the relativistic transformations of
the quantum stochastic differential equations and of the reduced dynamics.
We obtain for the latter the relativistic time dilatation.

RESUME. 2014 Nous proposons une version relativiste du calcul stochasti-

que quantique basée sur les propriétés relativistes des fonctions test. Ces
proprietes sont determinees par 1’interpretation des fonctions test comme
des amplitudes de taux d’interaction, ce qui conduit aux transformations
relativistes des equations differentielles stochastiques quantiques et de la
dynamique reduite. Pour cette derniere nous obtenons la dilatation tempo-
relle relativiste.
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68 A. FRIGERIO AND M. RUZZIER

1. INTRODUCTION

Quantum stochastic calculus (QSC) ( [ 1], [2]) may be regarded as the
mathematical theory of a kind of quantum noise which bears close relation-
ship with the classical Wiener process. It has been applied (among other
things) to the description of irreversible time evolution of open systems
( [3], [4], [5]); in this connection, the noise field of QSC is supposed to be
a suitable idealization of the physical field whose quanta are emitted
and/or absorbed by the system of interest. The noise field may indeed be
regarded as an approximation of some physical field in suitable limiting
situations (weak coupling limit) ([6], [7]). In several applications, notably
quantum optics ( [4], [5], [8]), the physical field is the electromagnetic
field, which is obviously relativistic: this motivates an investigation of the
relativistic transformation properties of the noise field.

In a given reference frame, the noise field of QSC is described by
creation and annihilation operators A~(~), A~(t) :~==1, 2, ..., n; t E R +

acting in the symmetric Fock space over and satisfying the
commutation relations [Ai(t), s); their time evolution
is given by 

Our aim in the present paper is to study the transformation laws of
the noise field under transformations of the Poincare group. Obviously,
the noise field cannot satisfy all the axioms of the usual relativistic field
theory, since its frequency spectrum extends by necessity to the whole real
line; however, there remains the possibility that a consistent relativistic
theory of it can be constructed, which bears some resemblances with the
model described in [9].
The underlying physical idea is as follows. Consider a physical system

which can be assigned a trajectory in space and whose internal states are
described by quantum theory (say, an atom with infinitely massive

nucleus); the internal states of the system interact with a physical field,
which is initially in the vacuum state, with an interaction V of the form

where, if Hs denotes the free Hamiltonian of the system, [Hs, 
(rotating wave approximation). Then, in some limiting situation

([10], [ 1 I ], [12]), the reduced dynamics of the system is described by a

quantum dynamical semigroup Ft=exp[Gt] ([13], [14]), where the generator
G is given by
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69RELATIVISTIC TRANSFORMATION PROPERTIES

where c (o) is a positive function and where

H being self-adjoint.
The same dynamical semigroup can be obtained as

where U (t) is the solution of the quantum stochastic differential equation
[1]

where are mutually independent ( Fock) quantum Brownian
motions and E° is the vacuum conditional expectation. In analogy with
Bohr’s atomic model, the field created by Aj+ (t) will be assumed to have
"energy G)/% although its wave function is a square wave, containing all
frequencies in its spectrum. Thus we are naturally led to the idea of a
quasi-monochromatic field [15], meaning that the creation and annihilation
operators Aj+ (t), A j (t) will be ascribed a carrier frequency although
the (physically small) spread of their frequency spectra around the carrier
frequency is (matematically) infinite. In any reference frame, quasi-mon-
ochromatic fields of all possible carrier frequencies are supposed to exist;
then the system of interest will interact with those quasi-monochromatic
fields whose carrier frequency is the same as the (Doppler-shifted, when
appropriate) frequency of the system operator Bj to which the field Aj is
coupled.
The paper is organized as follows: in § 2 we describe QSC [1] in its

latest version [2]; on the basis of the interpretation of test functions as
interaction rate amplitudes, in § 3 we construct a class of 
sional models ("counting" models, cf. [9]) describing the relativistic proper-
ties of test functions. We furthermore present in § 4 a semiclassical model
for matter-radiation interaction, which is based on a zero-mass quasi-
monochromatic scalar field [ 15] interacting with a two-level system S; in
this model it is possible to construct quantities which have the same
meaning as test functions, and which transform according to the rules of
counting models. In § 5 we show that these transformations can be

expressed in terms of unitary representations of the proper orthochronous
Poincare group on L2 (R); this observation allows their application to
QSC by using the functor r and the transformations induced on the
unitary operator group U(L2 (R)) (§ 6). Thus, we obtain the transformation
properties for QSDEs and for the reduced dynamics, finding for the latter
the relativistic time dilatation.
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70 A. FRIGERIO AND M. RUZZIER

2. QSC: Multidimensional formalism

We describe multidimensional QSC following [1] and [2]. Let ho and hi
be two separable Hilbert spaces; we write

where r ( h) denotes the symmetric Fock space over h. be an

orthonormal basis in hl, and define Test functions of the

form l ~ ei can be interpreted as follows:
the quantity represents the number of interactions occuring in

the infinitesimal time interval (t, t + dt) between an open system S and the
noise component.

The Fock space ~f contains a dense linear manifold ~ which is

generated by the exponential vectors ~ ~r ( f ); f E hl ~ satisfying
The annihilation, creation and conservation

operators are defined on E as follows:

The functor r is an application defined on the space (h) of contractions
on h with values in the space b(H) of contractions on H and is given by

The following relations hold:

where U is unitary on h. The annihilation, creation and conservation

processes with initial time to are the following families of operators:

where lo is the identity in ho, and We furthermore consider an

"age" process:

The stochastic dif.f’erentials are the differential counterparts of the funda-
mental processes ( 2 . 3), ( 2 . 4) and may be written as
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they satisfy the quantum Ito’s table

the other products vanish.
Let now hl = C2, so that h = L2 (R, C2) ~ L 2 (R) 3 L2 (R); the orthonor-

mal basis {ei} then reduces to the e(-1)}. We will occasionally
write ( + ), ( - ) instead of ( + 1 ), ( -1 ) .

Unitary processes are solutions of QSDEs of the form

where Mk, K are possibly time-dependent, bounded linear operators
in ho such that and K is self-adjoint ; summation
over repeated indices is understood.
The solution of (2.6) may be interpreted as the evolution of a system

composed of a particle S whose Hilbert space is ho, interacting with a
two-component noise living in ~f=r(L~(R))0r(L~(R)). The reduced
dynamics of S is given by

where

and satisfies the equation

3. "Counting" models

In order to determine the relativistic transformations of the QSDEs, it
is necessary to find the transformation properties of the interaction, repre-
sented by the test functions f E h: we shall do this for a ( 1 + 1)-dimensional
model which is somewhat similar to a (l+l)-dimensional version of the
model in [9].
A space-time event is specified, with respect to an inertial system (I. S.)

K, by a column vector ( t, r)T. The metric is chosen so that 
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72 A. FRIGERIO AND M. RUZZIER

-1); the proper orthochronous (P.O.) Poincare group P~ is written as

P~ = R2 x L~ where L~ is the P. O. Lorentz group; every point is
written as p=(a, A ( a) ), where a1)T ER2 and

Let J3 ( t) be the velocity of a particle in the I. S. K, y ( t) _ ( 1- ~i ( t)2) -1 /2
and let let K’ be another I. S. such that K/=~-K; then,
as is well known, in the I. S. K’ we have

The model can be described as follows (see fig. 1):

- S is a positive-mass particle with internal states of different energies,
moving along a noise-independent trajectory x (s) _ (s, 
- noise is represented by a reservoir R composed of noninteracting

zero-mass particles (therefore moving at the speed of light c =1) which
interact only with the internal degrees of freedom of S. R is partitioned
into two sub-assemblies described by two functions F~B 
which have the following meaning:

is the number of particles moving with velocity v = ± 1
which are contained in the space interval (r, r+dr) at time 
Their time evolution is given by 
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- the interaction between S and a noise particle takes place when their
space-time positions coincide; it is fully described by the functions

which depend on the free-noise amplitudes F(:!:) and on the trajectory x (s).
The quantities f ~F~~ &#x3E;, x~ (s) ~ 2 ds may be interpreted as the number of
interactions taking place between S and the ( + ), ( - )-noise component in
the time interval (s, s + ds); then they correspond to the test functions in
the space h over which the Fock space of noise is constructed.

In the I. S. K’ _ ( a, the trajectory takes the form

if then we have

and r=cosh The
transformed free noise and interaction amplitudes F~(r’), /~~)B X.~ (s’) are
determined by imposing the condition below:

for every trajectory x (s) and for every time interval (s, s + ds) measured
by K along x, whose counterparts for K’ are x’ (s’), (Y, ~+ds~), the
following equations must hold:

This condition is equivalent to the physical requirement that the number
of interactions taking place in any given proper time interval must be
reference independent. Up to a phase factor, this condition leads to

4. Noise as a scalar field

A concrete counting model is provided by a scalar, zero-mass field with
a carrier frequency (quasi-monochromatic field, cf. [15]). A scalar zero-
mass field cp in ( 1 + 1) dimensions is a solution of

The energy-momentum tensor is given by
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or

The general solution of the wave equation (4.1) can be decomposed
into its progressive and regressive components p( +) and p( -) as

(p=(p~+(p~; these components satisfy the relations

It may be shown that an analogous decomposition holds for the energy-
momentum tensor: T~==T~+T~ where

These decompositions are Lorentz-invariant because of the zero field

mass; transform as

which, in view of ( 4 . 3), may be written as

We suppose that cp~ + ~ and cp~ - ~ each have a carrier energy-momentum
vector (or frequency-wavenumber vector, ?=1) respectively of the form
~+)=(~+),~+))~ and ~_)=(~), - k ~ ~)T, where ~±)&#x3E;0. The carrier f re-
quencies k?:I: ) transform as

We define

The quantities N:t)(t, r) dr may be interpreted as the number of field
particles moving with velocity v = ±1, which are contained in the space
interval (r, r + dr) at time t. This interpretation follows directly from the
definitions, for is the ratio between a total energy and a

one-particle energy ~+). Up to a phase factor, we may define the free
noise amplitudes as
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Their transformation properties can be derived from ( 4 . 6), ( 4 . 7) and
coincide with ( 3 . 4) .
The interaction with S can be described in a semiclassical way as follows.

Let r (t) _ ~3 ~ be the time evolution of the mean value of the position
operator relative to S; if the accuracy in the position measures is low with
respect to its de Broglie wavelength, we may say that S moves along the
trajectory x (t) == (t, r (t)). The only interaction allowed to S is by emission
and absorption of "photons" (zero-mass scalar particles) of two kinds:
- particles with velocity v = + 1 and frequency ~+)
- particles with velocity v = -1 and frequency p~).
The distinction between the frequencies is due to the Doppler effect, by

which where p0 is the frequency
corresponding to the energy transition coupled with noise, measured by
an observer co-moving with S. These frequencies transform as

~±)=~(1±P~=~~Y(1±P)~=~~±)[~(3.1)].
We describe these noise particles by means of the quasi-monochromatic

( q. m. ) field cp, whose carrier frequencies ~+) must then satisfy ~±)=~±).
The energy ~+) involved in each interaction is supposed to be much
smaller than the energy of S, to avoid effects on the motion of S at least
for finite time intervals.

5. Noise amplitudes and unitary representations of p~

It may be shown that the transformation properties ( 3 . 4) relative to
the free noise amplitudes F~ are given by two unitary representations
of P+, say p(+) and p~B which may be written as

where ~ll (L2 (R)) is the group of unitary operators on L2 (R), P= - i d/dx
is the momentum operator, is the position operator and

D=(1/2){M, is the infinitesimal generator of the
dilatations in L2 (R):

Furthermore, the relations ( 3 . 2) between free noise and interaction ampli-
tudes may be written in a similar manner as
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where R is the reflection operator on L2 (R): (R f ) (x) = f ( - x).
Finally, the transformations of the interaction amplitudes (3. 3) can be

written as

where

These unitary operators are the basis for the relativistic form of QSC we
propose.

6. Relativistic QSC

Let

acts on the test function space h = L2 (R) ae L2 (R).
Using the functor r [cf (2.1), (2.2)] we associate to it the operator

~f -~ ~f and then, in a canonical way, the transformation

~(/?) is taken as the transformation law for the fundamental processes
and stochastic differentials: we have

THEOREM 6.1 : (i) ~x (p). Ai (t) = (cosh a + P sinh a) -1~2 . A~ (t’)
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(iii) we have

and (6. 3) (iii) follows by (2. 2), (2. 3), (6.1), (6. 2).
(iv)T (t) is a multiple of the identity, so it is not changed by a unitary

transformation and we have

The transformation properties of the stochastic differentials can be derived
in a similar manner by observing that/(~)~+~=/(~ and we
have

If h0 is the Hilbert space relative to internal degrees of freedom of S, then
the operators in are not changed by the Poincare transformations
(they transform according to the identical representation); thus, if for an
I. S. K the QSDE determining the time evolution of a particle interacting
with a two-component noise is given by (2 . 6), then for the I. S. 
the transformed QSDE takes the form

THEOREM 6. 2. - The reduced dynamics F’t, deduced from (6. 4) is related 1

to ~"~ by the equation

Proof. By (2.8), the reduced dynamics [1;, satisfies the equation
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It can be easily verified that satisfies the same
equation and initial condition, so that (6. 5) is proved.

Q.E.D.

Remarks. - 1. Theorem (6. 2) represents the relativistic time dilatation.
Indeed, consider for example S to be a two-level system at rest in the I. S.
K (P=0); let B be its annihilator, M(+)=M(_)=zB, z E C, K = B + B. Then
the time evolution of the projection on the upper level is given by

so that the mean life of the upper level is T=l/2~z~. In the I. S. K/, by
Theorem ( 6 . 2) we have

so that the transformed mean life ’t’ = cosh a’ 1 /2 = cosh a - ’t is dilatated
by the appropriate factor cosh a.

2. We did not modify the structure of QSC, but simply added the
transformation rules. The time dilatation we obtain indicates the internal
consistency of the framework; more interesting results could perhaps be
obtained by a multidimensional extension of the model.

3. In this paper we have dealt with uniform rectilinear motions only;
however an extension to arbitrary motions is possible, in which case we
have

where

(integrated effect of instantaneous time dilatations).
4. It seems possible to consider interactions between the noise and some

external degrees of freedom of S, such as momentum and position, in
which case the trajectory would became a dynamical variable.
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