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ABSTRACT. - We study the notion of square integrability of a group
representation over a coset space, as a generalization of the usual notion
of square integrability for representations belonging to the discrete series.
We work out, explicitly, a parallel theory for the Poincare group in

1-space and 1-time dimensions, which displays a greater richness of struc-
ture than the usually studied square integrable representations. As an
application, we derive a relativistic Weyl transform.
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24 S. T. ALI AND J.-P. ANTOINE

RESUME. 2014 On etudie la notion de representation de groupe de carre
integrable sur un espace homogene, généralisant ainsi la notion usuelle de
carre-integrabilite pour les representations de la serie discrete. La theorie
est développée explicitement dans Ie cas du groupe de Poincaré en deux
dimensions (une dimension spatiale et une dimension temporelle); il en
résulte une structure plus riche que celle obtenue a partir des representa-
tions de carre integrable au sens usuel. A titre d’ application, on derive
une transformation de Weyl relativiste.

I. INTRODUCTION

The objective of this paper is twofold. First to display, for a specific
representation, the coherent states ([1], [2]) of the Poincare group (in 1-

space and 1-time dimensions) built over the points of a certain coset space
fo this group. The construction illustrates the fact that certain group
representations, which are not square integrable ( [3]-[7]) in the usual sense
( over the entire group), satisfy a weaker condition of square integrability
over a eoset space (possibly depending on a choice of section). Actually
this generalized square integrability has been studied already in the math-
ematical literature, but only for semisimple Lie groups ([8]-[9]) (see also
Ref. 2 for a review). Once, however, the definition of a square integrable
representation is extended, there immediately arises the question as to
whether the characteristic properties of such representations, such as the
existence of a resolution of the identity, a formal dimension operator and
orthogonality relations, still survive. The second objective of this paper is
to study these questions for the particular representation of the Poincare
group that is introduced. One discovers in this way a remarkable richness
in the structure underlying (generalized) square integrable representations.
The physical relevance of this paper stems from the fact that such

coherent states can be used to extend to the relativistic regime ([10], [11])
a wide variety of coherent state computations that have hitherto been
possible only nonrelativistically. Moreover, using the notion of coherent
states for general group representations - to the extent that these do in
fact exist2014, one can set up a quantization procedure ([10], [12]) for
classical algebras which resembles in many ways [ 12] the technique of
geometric quantization.

Finally, as a byproduct of our computations, we obtain a relativistic
analogue of the Weyl transform ([13]-[15]) used so frequently in non-
relativistic statistical mechanics. The relativistic Weyl transform turns out

Annales de l’lnstitut Henri Poincaré - Physique theorique



25POINCARE COHERENT STATES

to be the natural extension of a unitary isomorphism that has long been
known to exist [16] between the Hilbert-Schmidt operators on L2(R) and
the Hilbert space L 2 (R2), and which is constructed using a certain group
related transformation for the Weyl group Gw of the canonical commuta-
tion relations.

It ought to be pointed out that we restrict our discussion of the Poincare
group in this paper to 1-space and 1-time dimensions for reasons of
computational neatness alone. Similar coherent states have in fact been
obtained elsewhere ( [ 17]-[ 19]) for the usual Poincare group in 3-space and
1-time dimensions, as well as for the Galilei group, although all the other
features pertaining to square integrability had not been studied there.
Further generalizations of the method do not seem obvious, however. We
will come back to this point at the end.
The rest of this paper is organized as follows. In Section II, we first

briefly recall the important features of square integrable representations,
as they are usually defined in the literature. Then we set up the various
structures associated to these representations ( Wigner map, coherent state
decomposition), which we intend eventually to generalize along the direc-
tions indicated in Section III. We work out the proposals explicitly for
the case of the Poincare group in 1-space and 1-time dimensions in
Section IV. The representations of this group, which we study, are square
integrable over a certain homogeneous space of the group. In Section V
we discuss the relativistic Weyl transform, and finally we end in Section VI
with a few related comments. Some explicit calculations and proofs are
relegated to the Appendix.

II. SOME PRELIMINARIES
ON SQUARE INTEGRABLE REPRESENTATIONS

Let G be a locally compact group, dg the left invariant Haar measure
on G and a continuous, unitary irreducible representation of G
on a Hilbert space ~f.

DEFINITION 2.1. 2014 A vector 03B6~H is said to be admissible if

Let d be the set of all admissible vectors in Je. If j~ ~ 0, then it is
dense in ~f [5]. In particular, if G is a unimodular group ( i. e. if the left
and right invariant measures are the same), then Conversely, if

then G is unimodular. If j~~0, then the representation
is said to be square integrable, since for the map

Vol. 51, n° 1-1989.



26 S. T. ALI AND J.-P. ANTOINE

W~ : ~ ~ L2 (G, dg), defined for any by:

is isometric. Moreover, if U, is the left regular representation of G on
L2 (G, dg), i. e.,

for dg) and almost all g’EG, then

Thus W, intertwines U with the left regular representation Uj of G.
This also means that every square integrable representation is unitarily
equivalent to a subpresentation of the left regular representation of G. In
fact, every representation of G which belongs to the discrete series is

square integrable (this is often taken as definition of the discrete series [4]).
Square integrable representations have a number of rather appealing

properties. Let us choose an admissible vector 03B6~A (in the terminology
of Ref. 7, ç is the analyzing wavelet and the map W, is the wavelet

transform). We denote by ~~ the subspace W~ ~ of L2 (G, dg) and by P,
the corresponding projection operator,

Then,

IK denoting the identity operator on ~f. It can then be proved that

where ~9 = U (g) ~. Thus, the orbit ~ of ç under G forms an overcomplete
family of vectors in ~ - also known as coherent states ([1], [2]). The
vectors are actually continuous functions on G, which implies that
every square integrable representation can be realized on a Hilbert space
of continuous functions on the group [20]. As a consequence, there exists
a reproducing kernel K : G x G -~ C which has the following properties:

de l’Institut Henri Poincaré - Physique theorique



27POINCARE COHERENT STATES

In particular, since the elements in are continuous functions, it follows
from ( 2. 9) that, for every 

for all g E G. This is the reproducing property of the kernel K. The Hilbert
space ~ is then called a reproducing kernel Hilbert space.

Finally, for square integrable representations one can prove the follow-
ing orthogonality relations ([5]-[7]):

There exists a unique positive invertible operator C on ~f with domain
equal to j~ (the set of all admissible vectors) such that,

Ç2 E.s:I and P2 E:Ýf. In the special case where G is a unimodular
group, C = I.Te.

Let us cast the orthogonality relation (2.12) into a somewhat different
form, which will be useful for us in the next section. Denote by 812 ( ~)
the Hilbert space of all Hilbert-Schmidt operators on ~f, with scalar
product,

Then, denoting by p  the rank one (thus Hilbert-Schmidt) operator,

the relations (2.12) can be rewritten as:

for the range of C and all Let D ~ B2(H) be
the linear space of all Hilbert-Schmidt operators of the type (2.14) with ç
in the range of C (i. e., in the domain of C-1). Since Range (C) is dense

in Yt, q¿ is dense in ~2 (~). Define a map fØ -+ L 2 (G, dg) by the
relation:

Then, in view of (2.15), is a linear isometry, which can be extended by
continuity to the whole of The extended map (denoted by the
same symbol) ~Y’ : ~2 (~) -~ L2 (G, dg), which on the dense set g¿ is defined
by (2.16), will be called the Wigner transform map, and for any 
~’ p E L2 (G, dg) is its Wigner transform. In general ~’ is only a partial

Vol. 51, n° 1-1989.



28 S. T. ALI AND J.-P. ANTOINE

isometry, but in many important cases, the range of ~’ is in fact the whole

Consider now the unitary representation U (g) of G on ~‘~ (~0 defined
by multiplication by the operators U (g) (of the representation 
on ~) :

Then, it is easy to see that

where is the left regular representation given in (2.3). On the
other hand, the representation C (g) is highly reducible. In fact, for each
ç e Range ( C), the set of vectors in ~2 ( ~’) of the type (2.14), with 
is isomorphic to ~f, and by (2.15), if Ç1’ and ~ 1~ then
the corresponding sets of vectors in (Jf) live in orthogonal subspaces.
Let us choose a complete orthonormal basis {Çi} ~ 1 in Jf, with each

For each Çi’ denote by K(8)Çi the subspace of 
defined by (2.14), Then each is stable under and in
fact the restriction of to this subspace gives an irreducible
representation of G (namely ~t-~U(~) on ~f, itself). On the other hand,
’if’" restricted to ~f (8) Çi is precisely a map W~i of the type given in (2.2).
In other words, since decomposes as the direct sum:

we get:

where is the projection operator, in L 2 (G, dg), onto the range
of the space is a Hilbert space of the type in (2.5) and 
is the restriction of U~ (g) to ~. Thus, the image of the Wigner transform
decomposes completely into a direct sum of Hilbert spaces each of
which carries an irreducible representation U~, a (g) of G and is a space of
continuous functions on G admitting a reproducing kernel. The decompo-
sition of (2.20) may thus be called a coherent state decomposition of the
part of the left regular representation which acts in the image of the
Wigner transform.

Annales de l’lnstitut Poincaré - Physique theorique



29POINCARE COHERENT STATES

To make contact with familiar situations, we mention the two standard
examples [1], [2], [7] and references therein):

(i) G==the Weyl-Heisenberg group, which is unimodular. Then

g=(q,p), a point in phase space, and one gets the canonical coherent
states.

(ii) G = the group, which is unimodular. This leads to the
affine coherent states.

III. GENERALIZATION: SQUARE INTEGRABILITY OVER A
COSET SPACE

The notion of square integrability introduced in the last section - and
this is the one usually found in the literature ([3]-[7]) - hinges on the
integral (2.1) existing over the entire group G. However, it often happens
that one has an analogous situation over a transitive homogeneous space
X of the group. In other words, there exists a closed subgroup H of G,
for which

and for which there exists a Borel section

such that the following integral converges, for 

The measure dv on X is assumed to be invariant under the action of the

group: (g, x)eGxX. On the other hand, for the same
representation U, there may not exist any vectors ç which are admissible
in the sense of (2.1). Nevertheless it turns out that the existence of vectors
ç which satisfy (3.3) (and possibly some additional conditions) is often

enough to give rise to properties of the representation which parallel those
described in the previous section ([17]-[19]). Besides, as mentioned there,
square integrable representations are representations of the discrete series
of G, so that studying a generalized notion of square integrability might
enable one to catch some of the other representations of the group as
well. We will work out these ideas explicitly in a specific case in Section IV
below. Before that, we make some additional comments on the general
situation.

Square integrability of a representation over a coset space has in fact
been discussed previously. In the simplest case, G is locally compact and
H is the center Z (G) of G. Indeed, strict square integrability, in the sense

Vol. 51, n° 1-1989.



30 S. T. ALI AND J.-P. ANTOINE

of Section II, implies that Z (G) be compact [21]. But this is an artificial
limitation, hence the natural notion is that of square integrability modulo
the center, that is, precisely the situation described above, with H=Z(G).
This is the case commonly treated in the mathematical literature ([2], [21])
for a locally compact group. Another situation which has been extensively
studied is that where G is a semisimple Lie group and X ~ G/H is a

symmetric space ([2], [8], [9]). In that case, H is usually the maximal

compact subgroup of G or the stability subgroup of a maximal weight
vector. A familiar example is G = SU ( 2), for which one gets the spin
coherent states ([1], [2]). Other examples are the Lorentz group S0(3,l)
or the group SU ( 1,1) [2].
For non-semisimple groups, the emphasis has been put on the existence

of systems of (generalized) coherent states based on a coset space X ~ G/H
(see Ref. 2, § 10.5 for a review). For G a nilpotent Lie group, rather

complete results have been obtained by Moscovici [22], by an extensive
use of Kirillov’s method of orbits [23]. Some of those results remain valid
when G is a solvable or a reductive Lie group [24]. In any case, for an
arbitrary Lie group G, if the representation U of G admits a ctnt
system (in the sense of Scutaru [25]) of coherent states based on X ~ G/H,
then U is a subrepresentation of the representation of G induced by the
restriction of U to H. This clearly generalizes the notion of square integra-
ble representation.

It is interesting to notice that, for coherent states in the usual sense of
Perelomov [2,26], the covariance condition implies that the restriction of
U to H is a unitary character. It follows that the integral in ( 3. 3) is

independent of the choice of the section P, two different sections being
related by an element of H: p’ (x) = P (x) h (x), with h (x) E H an element
of the fibre over x. In the case discussed below, with G the Poincare
group in 1 + 1 dimensions, U I H is not a character, yet the discussion
goes through and coherent states may be defined with all the expected
properties. To be sure, the whole setup depends now on the choice of the
section P: X -~ G (which, in the case to be studied, has physical meaning).
Of course, we don’t expect the construction to work for a general pair G,
U, and it is an interesting problem to find precise conditions under which
is does. For instance, it is probably too restrictive to require U to be
irreducible, the whole machinery should apply to cyclic representations as
well. Beyond that, the question is open.

IV. RELATIVISTIC COHERENT STATES

We denote by ~(1,1) the Poincare group in 1 + 1 dimensions. Its
elements are written as (a, A), where a = (ao, a) is a space-time translation

l’lnstitut Henri Poincaré - Physique theorique



31POINCARE COHERENT STATES

and o A is a Lorentz boost. The matrix A may be 
" parametrized o by a vector

P)~

where denotes the forward mass hyperbola:

The elements Ap of the Lorentz group act on ~ in the natural manner,

This action is transitive and the corresponding invariant measure on ~
is easily seen to be dk/ko. Further details are given in the Appendix.

Consider next the following unitary irreducible representation of
~ + ( 1,1 ). The Hilbert space is .Ýfw=L2(j/;:;, dk/ko), whose elements are
really functions of the single variable k E M, square integrable with respect
to dk/ko. The unitary operators constituting the representation will be
denoted by A), (a, ( 1,1) and their action is:

where k.a=koao-k.a. We shall call Uw the Wigner representation of
~(1,1) for mass m.

It is easy to see that the Wigner representation is not square integrable
in the sense of Definition 2.1. Indeed, for any 

However, we shall now show that in a certain sense Uw is square integrable
with respect to a particular homogeneous space. Consider for this purpose
the subgroup T of time translations of ~ + ( 1,1) and denote by rl and rr
the corresponding left and right coset spaces,

It is easy to see (see the Appendix) that points in both and rr can be
parametrized by (q, p) E [R2, and that the map P: rl, r -~ ~ + ( 1,1) defined
by

is a Borel section for both rl and rr. Since ~ ( 1,1) and T are unimodular,
both coset spaces rl, rr have unique left, resp. right, invariant measures [4].
A straightforward computation then shows that the measure

Vol.51,n°l-1989.



32 S. T. ALI AND J.-P. ANTOINE

is left-invariant on ht, while the measure

is right-invariant on It is important to notice here that, whereas we
may take the two coset spaces ~(1,1)/T and T"9~ (1,1) to be equal,
!. e. I~’i = rr = I-’, the two invariant measures and are indeed different.
For the section f3 in (4.7), let us write,

where Uw((0, q), Ap) is defined as in (4.4). We now show that there exist
vectors ç for which the functions f03C6,03B6: r --+ C, defined by

are square integrable. Let Ho be the free Hamiltonian operator on 

which is defined on a dense set of vectors Clearly, Ho is a

positive operator with spectrum [m, oo). Hence H1/20 is defined, also on a
dense c and it has spectrum [rr~ 1~2, oo). The inverse

of H1/20 is a bounded operator with spectrum [0, m - 1/2].
According to the scheme of Section II, we need first an appropriate

notion of admissible vectors. The following lemma is straightforward (a
proof is given in the Appendix):

LEMMA 4.1. - For arbitrary 03C6~Hw, the integrals

a~d

exist ~,~".f ~ E ~ t~o~~). N
Next we introduce " the following j bounded o self-adjoint operator on ’

Then, as a consequence ’ of Lemma ’ 4.1, we obtain the important result:

THEOREM 4.2. - ’ ’ satisfy the conditions:

Then the map W03B203B6: HW --&#x3E; L2 (r, dq dp) given, for any E by the
relation:

Annales de l’lnstitut Henri Poincare - Physique ’ theorique ’



33POINCARE COHERENT STATES

is an isometry. The normalization factor in (4.17) is defined as:

The proof is again given in the Appendix. A number of consequences
can be derived from this theorem. We state some of these without proof,
since the proofs are analogous to similar results obtained in References 18
and 19. However, in view of the theorem above and its consequences, we
adopt the following definition for the admissibility of a vector 03B6~Hw for
the representation UW.

DEFINITION 4.3. - A vector 03B6~HW is said to be admissible mod (T, P)
if it satisfies the conditions (i) and (ii) of Theorem 4.2 above.

Since the representation admits such vectors, we shall say that it is

square integrable mod (T, (3).
Note again that the set d(T, ~) of all vectors in which are admissible

mod (T, P) is dense in 
Given an admissible vector 03B6~A(T, p), we consider its orbit under UW:

Then it can be seen that Op is overcomplete in HW and moreover,

For this reason we shall call the family of vectors

the set of relativistic coherent states on the phase space r. For each fixed
ç, the set will be called a coherent section. -

Let be the projection operator onto the subspace of

L2 (r, dq dp), which is the image of under W~. Then, there exists a
reproducing kernel K~ : r x r -~ C such that,

So far everything parallels the situation envisaged in Section II, and we
try next to obtain orthogonality relations in the manner of (2.12). Indeed,

Vol.51,n°l-1989.



34 S. T. ALI AND J.-P. ANTOINE

following £ the steps in the proof of Lemma . 4.1 in the Appendix we easily
establish the result:

THEOREM 4.4. - The following $ ~~ ~ ~d ~H~~~) anr~
all i 

where B is the bounded self-adjoint operator given in (4,14). The second
terra on the RHS of (4.23) vanishes
The form of the orthogonality relations in (4.23) ought to be compared

to that in (2.12). First /2?T~"~ plays a role analogous to that of
the operator C. Then there appears an extra term, involving the

operator B, and this has some very interesting implications. To understand
this term better, let us begin by working out the Wigner transform for
the representation UR,. Since is a bounded operator, we may rewrite
(4.23) as:

a relation which is now valid for all Ç1’ Ç2 and 1&#x3E;1’ 1&#x3E;2 E ~ w. The first
term in the RHS of (4.24) vanishes whenever Ç1 .1 Ç2’ while the second
term is zero any time B Ç2 .1 Ç1. In particular if Ç1 = Ç2 = Ç and if 
satisfies (4.16), then this term vanishes. As in the last section, we can now
define a Wigner transform "If’", initially on all Hilbert-Schmidt operators
p on ~ w of the form p==j(p~~),p,~e ~f~’ Thus, for all such p,

and we then use a continuity argument to extend ~’ to a linear map ~‘:
~2 (~P~) -~ Thus, for every (4.24) assumes the
form

where D is the bounded linear positive operator on 

Using the methods of Reference " 19, the following result can now be "

proved.
LEMMA 4. S. - range ~ of the ’ linear map dense in L2(r, dq dp)

and ’ coincides with the domain of the operator Ho:

Annales de l’Institut Henri Poincaré - Physique théorique
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The inverse is unbounded, while ~’ satisfies the norm estimate:

On let us introduce the new scalar product

where ~y~, _ ’~ ~ 1 * ~’~ ~ 1. explicitly,

where the operators P and Po are self-adjoint in L2(r, and are
defined as

Clearly Dw is an unbounded self-adjoint operator in L2 (r, dq dp), with
domain afw=!Ø(;r-1), and the scalar product (4.30) corresponds to its
graph norm. Thus the latter turns into a Hilbert space, that we denote

by and we get the rigged Hilbert space [25]:

where == ~’ ( ~w ~ ) is the dual of with respect to the inner

product of L 2 (r, The interest of the triplet (4.33) lies in the fact
that the orthogonality relation in (4.26) becomes now:

Thus the Wigner map is an isometry from ~’2 (~‘’w) into (D).
Again, one ought to note that if PH P2 E J’f w (5) ç, P)’ 

ç is admissible, then,

A complete decomposition of the representation 0 generated by on

manner of Equations (2.17)-(2.20) can be undertaken. The
results are similar to those obtained in Reference 19, except that now,
with the new scalar product (4.30), the phase space representation turns
out to be globally unitary.

This result exhibits the fundamental difference between the nonrelativis-
tic situation and the relativistic one, already noticed in Reference 19. In
the former case, the operator ",..-1 (which corresponds to the map 0 of
Ref. 19) is bounded, in fact unitary. In the present context, however, ~" ~‘ 1
is unbounded, so that ~’ (l~w) ~ I~,~ (1‘~. Now the difficulty encountered
in Reference 19 becomes clear. The representation Û induced in by
0, via "If’", is not unitary, because the norm of is not the correct

Vol. 51, n° M989.
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one. Now, since is invariant under U, as follows from (the equivalent
of) the relation (2.18), we may consider the restriction U Then, if
one replaces the L2 (F) norm by the graph norm of Dw, everything falls
in place and the phase space representation becomes globally unitary, as
it should, but in instead of L2 (r).
An interesting side question is the physical significance, if any, of the

larger space which consists of continuous linear functionals
over Perhaps it could play a role in the analysis of relativistic
measurements, as suggested in Reference 26. This makes sense, since the
unitary representation may be transported to by
duality, so that the active and passive interpretations are indeed possible.

V. A RELATIVISTIC WEYL TRANSFORM

The Wigner transform, defined by the extension of

may be used to construct a relativistic Weyl transform in analogy with a
similar transform which is used in non-relativistic statistical mechanics

( [ 13]-[ 15]) . We start by defining a relativistic symplectic Fourier transform.
On L2 (r, dq dp), consider the operator Ho in (4.28) and construct the

set of functions f : ~ ( 1, 1) x 1/;:; ~ C defined by

where, of course, q = (t, q), /?=(/p~+~, p) and Jt(l, 1) is the Minkow-

ski space (see Appendix). Since, for fixed qo, f (p, q) defines a function on
L2(r, dqdp), we shall denote the set of functions ( 5.2) again by
L 2 (r, dq dp), for we shall only be concerned with fixed values of qo. The
relativistic symplectic Fourier transform 7 of a function f is then defined
as:

For fixed qo, qo, the norms of f and f, considered as functions in

L2 (r, dq dp) satisfy

Since the representation operators Uw (a, Ap) in (4.4) leave the domain of
Ho in (4.12) invariant, it follows that the function f : ~ ( 1, 1) x f ~ -+ C

Annales de l’lnstitut Henri Poincare - Physique theorique
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defined by

is an element of Rw for all rank one operators p. Moreover, it is easy to
see that

where 

Let dqdp) -+ L2 (r, dqdp) denote the (unitary) symplectic Fou-
rier transform operator, i. e.,

We define the relativistic Weyl transform 8w as the operator

Let c L2 (r, dq dp) be the range of this operator. From Lemma 4.5
and Equations ( 5. 3) -( 5. 4) we easily establish:

LEMMA 5.1. - The range of the linear map 8w is dense in

L2 (r, dq dp) and coincides with the domain of the operator Po defined in
(4.32).. 

-

On f!4e, we introduce the scalar product:

where [cf. (4. 30)] An explicit computation yields:

Moreover, with this scalar product ~8 becomes a Hilbert space 
and from (4.34) we get,

Thus, as in the non-relativistic case, the relativistic Weyl transform is
the symplectic Fourier transform of the Wigner transform and acts as an
isometry between and ~ (Ow). The inverse Weyl transform

is also easily computed. We collect all these
results into the following theorem.

THEOREM 5.2. - The relativistic Weyl transform

Vol.51,n°l-1989.
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given by the relation:

(defined 0 initially on rank one " operators and 0 then extended 0 by continuity
to 1 ’ a Hilbert space 

" isometry. The inverse " map 0

0; ~: --+ f!4 2 given by

where ’ is the symplectic Fourier transform of ’~, and

is a self-adjoint operator on L2 (r, qp) with domain ~. N
Let us point out some interesting features of the relativistic Weyl

transform (5.13)-(5.14). First, in (5.14), ’ belongs to i. e. it is in the
domain of Ho in (4.28). Thus, 4w 1 associates, to any vector

Bf1 E L2 (r, which satisfies

a Hilbert-Schmidt operator on ~~,. Moreover, looking at it in this way,
e; 1: is also the inverse of the Wigner
transform (5.1). Secondly, if we make the (very heuristic) non-relativistic
approximation, Po ~ ~&#x3E; p, P, then ( 5.1), ( 5.13) and ( 5.14)
collapse to their non-relativistic counterparts ( [ 13]-[ 16]) .

VI. FINAL COMMENTS

We end this paper with some comments regarding related work, already
existing or in progress. First, our definition of a coherent section (4.17)-
(4.20) is a generalization of the notion of a family of coherent states,
introduced by Perelomov [2,26]. In the latter case, H in (3.1) would simply
correspond to the stability subgroup, up to a multiplicative phase factor,
of a fixed satisfying (3.3). However, the subgroup T of
~ (1, 1), which we use in (4.6), is definitely not such a stability subgroup
for any of the admissible vectors ç in (4.15), (4.16) that we consider.

Secondly, group orbits 0 of the type 6&#x3E;={çg=U(g)Ç for a

continuous representation U of G on ~f, and fixed ç e ~f, have remarkable
geometrical properties. For example, is a fixed analytic vector [29],
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the orbit (5 carries, in a natural way, a degenerate symplectic
(f. e. presymptectic) structure [30]. The corresponding moment map J, is
computed to be:

where g* is the dual of the Lie algebra g of G, and r is the representation
of g on .7e obtained from U via Stone’s theorem. The image of (5 under
J, is an orbit (5* of the coadjoint action [23] of G on g*, and as such is
naturally a symplectic homogeneous space of G. If H ~ G is defined by

then @ ~ G/H. Moreover, defining KeG by 
Ad~~(0=U~)~)r(.)U~)~=~(0, one has ~* ^-_~ G~I~ and
H c K. Under appropriate conditions, such as in Equations (4.15), (4.16)

[31], [32] for details), and specially when G has the form of a semi-
direct product, generalized coherent states can be constructed, labeled by
the points in (6*. Thus, square integrability mod(K, P) of the representa-
tion U would follow once these conditions are met by any analytic vector ç.

Next, we have restricted our considerations in this paper to the Poincare
group in 1-space and 1-time dimensions. However, in view of the analysis
carried out in Reference 19, for the standard Wigner representations, for
mass #= 0 and spin j=0, 1, 2, 3, ..., of the usual Poincare group in 3-
space and 1-time dimensions, it is clear that an exactly analogous theory
of square integrability could be built in those cases as well. Of course, the
subgroup H would then have to be T0SO(3), of all time translations
and space rotations. The admissible vectors would have to satisfy the
additional condition of being invariant under SO (3). However, the

~ + ( 1, 1) case brings out all the interesting features related to square
integrability without the formalism getting too involved due to the presence
of the additional rotation variables.

Finally comes the question as to which groups the present method is
applicable. It is symptomatic that both the Poincare and the Galilei

groups, for which the same approach was pursued in Reference 18, have
the structure of a semi-direct product G = T A S, where the normal

subgroup T is a vector group (the translations). In fact general results
have been obtained for an arbitrary group of this type, assuming in
addition that S is a semisimple Lie group ([31], [32]). As one can expect
from the discussion above, the crucial ingredient is the symplectic structure
of the orbits in the representation space. Further work in this direction is
in progress.
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APPENDIX

A.I. The 1 + 1 dimensional Poincare group

Let P~+ ( 1, 1) denote the Poincare group in 1-space+1-time dimensions.
It acts on the Minkowski space ~(1, 1) whose points we denote by
x = (xo, x), xo=t, x~R (we take units such The metric is

-1). We denote the elements of ~ (1, 1) by g = (a, A), where
a=(ao, a) is a space-time translation and A is a Lorentz boost, which
necessarily has the form,

where denotes a velocity. Introducing the forward mass hyperbola
(see Eqs. (4.1), (4.2)):

for some generic mass m, we rewrite A as:

The product law in ~ ( 1, 1) is

where the matrix

corresponds to the momentum

The elements Ap of the Lorentz group act transitively on 1/: according
to (4.3) and the corresponding invariant measure on ~ is easily seen to
be dk/ko.
We consider now the subgroup T of time translations ( 1, 1) and

the two coset spaces,

Points in both r, and o rr can be parametrized by (q, and the map

P:IB,-~(1, 1) defined by

is a Borel section for both rl and rr. To establish this it is only necessary
to note that an arbitrary element (q, ( 1, 1) may be written either
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as:

according to ~ ( 1, 1)/T, or as:

according to TB~+ ( 1, 1). The left and right actions of ~(1, 1) on rl
and rr, respectively, are then the following.
On r~, we have,

where

Similarly, on

where now

A straightforward computation then shows that the measure

is invariant on r~ under the action (A.11)-(A.12), while the meausre

is invariant on rr under (A.13)-(A.14). We emphasize again that, whereas
the coset spaces r" rr are equal, the two invariant measures and d~
are different.

A.2. Proof of Lemma 4.1

We only prove the finiteness of Q, ‘d ~ E ~ (Ho~2) and 
The proof of the finiteness of Q is entirely analogous. Indeed,

Now, by (4.4) and (4.10),
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Since by virtue of (A.2), the functions ç and (p are really functions of the
single variable k, we may use (A. 6) to write,

whence

Replacing now the integral over q of exp i (k - k’) . q by 27c8(k-k’) and
performing the dk’ integration, we obtain

Using Fubini’s theorem to perform the Jp integration in (A. 19) first, which
we do by first changing variables,

so that,

we obtain

Since p’.k=p’0k0-p’.k, the RHS of (A. 22) can be written as

where

and

Clearly, 11 (p, Q is finite [compare with (4.12)]. On the
other hand, since f  1 and |p/p0 ( 1, it follows that, if
~ E ~ (Ha~2~, then 12 (q&#x3E;, Q also converges..
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A.3. Proof of Theorem 4.2

From the proof of Lemma 4.1 above, we see that for 
if

then 12 (cp, 0=0, Hence

from (A.23), whence the result..
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