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ABSTRACT. - We study the scattering theory associated with the one
dimensional time dependent quantum Hamiltonian

with This system has nontrivial scattering between channels if 03BB1
and ~2 are both positive. We calculate the Faddeev series for the wave
operators of this system explicitly. From this calculation we directly prove
asymptotic completeness and study the entire S-matrix. The Faddeev series
for the "charge transfer" matrix elements of the S-matrix exhibit rather
surprizing behavior for large values of 

RESUME. 2014 Nous etudions la diffusion par l’hamiltonien quantique
unidimensionnel dependant du temps.
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2 G.A.HAGEDORN

avec Ce systeme a une diffusion non triviale entre canaux si ~~ et
Â,2 sont positifs. Nous calculons explicitement la serie de Faddeev de ce
systeme. Comme consequence de ce calcul nous montrons la complétude
asymptotique et nous etudions la matrice S. La serie de Faddeev des
elements de la matrice de « transfer de charge » de la matrice S presente
un comportement interessant pour les grandes valeurs de |v1-v2|.

1. INTRODUCTION

We wish to discuss an explicitly solvable nontrivial quantum mechanical
multichannel scattering model. Its channel wave operators are given by
convergent infinite series, all of whose terms are very simple. These series
can be summed in terms of well-known special functions.
The model is motivated by a one dimensional three body problem in

which particles 1 and 2 are infinitely massive and do not interact with
one another. They move with constant velocities vl and v2, respectively.
Particle 3 has unit mass and interacts with particles 1 and 2 via Dirac
delta functions. Because the motion of particles 1 and 2 is trivial, we only
consider the quantum mechanical motion of particle 3. Its evolution is

governed by the time dependent Hamiltonian

This Hamiltonian function is well defined and self-adjoint as a sum of
quadratic forms. We will prove by explicit construction that it generates
a strongly continuous unitary propagator.

In order to ensure a rich multichannel structure for the scattering, we
assume and that both 03BB1 and 03BB2 are positive. With these

assumptions, the model has three scattering channels. Particle 3 can bind
to particle 1, bind to particle 2, or be unbound as t --~ ±00. All three
channels are nontrivially coupled to one another. Thus, the system exhibits
"ionization," "charge transfer," and "capture" phenomena, as well as
elastic scattering.
The time dependent analogs of the Faddeev series give rise to convergent

series for the channel wave operators. We use these series to directly prove
asymptotic completeness and to study the S-matrix in detail. The series
for the S-matrix elements that describe charge transfer (e. g., for 3 bound
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3AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

to 1 in the past and 3 bound to 2 in the future) exhibit some peculiar
behavior in the limit of large The first Faddeev term for this

amplitude is ~(j~i2014~)~)’ However, there is a cancellation with the
second Faddeev term, and the charge transfer matrix elements are actually
Q (I ~i "~2) 3). Although this cancellation is surprizing, there are physical
systems in which strange behavior is conjectured to occur [1].

After obtaining our results, we were surprized to learn of other papers
that discuss closely related models ([2]-[6]). Papers «(2]-[4]) were evidently
simultaneously published by members of the same group. They studied a
model in which the infinitely massive particles 1 and 2 move with piecewise
constant velocities that are constant except at time 0, when they bounce
off one another at a non-zero distance of closest approach. Their motiva-
tion was to test the accuracy of an approximation, and their analysis relied
on a method of images technique. This technique applies to essentially no
other models, and we found some comments in [2]-[4] to be misleading. A
footnote on page 404 of [3] was particularly puzzling. Papers [5], [6]
studied the same model we are studying. In [6] some particular solutions
of the Schrodinger equation were represented as integrals. In [5] the
channel wave operators corresponding to particle 3 being bound to one
of the other particles were computed explicitly in terms of Bessel functions
of complex order and complex argument. The authors appears to have
summed the series computed in [2]-[4] for these channels. This explicit
solution facilitated the analysis of the small of some elements
of the S-matrix, where the series converge very slowly.

In contrast to these papers, our motivation is to apply the general ideas
of Faddeev series to this particular model, and to study the high energy
behavior of the scattering. We hope it will shed some more light on the
behavior of Faddeev series in other contexts. In addition, we compute the
Faddeev series for all the channel wave operators. This allows us to study
the entire S-matrix and prove asymptotic completeness. The earlier authors
consider only certain channels.
The earlier papers did not point out the curious behavior of the charge

transfer scattering amplitudes at high impact velocities. In the physics
literature, there is some controversy [1] concerning the high energy
behavior of charge transfer amplitudes in three dimensional scattering. As
far as we know, there are no mathematically rigorous results that deal
with these high energy asymptotics, but a computation of the high energy
behavior of Faddeev series for those models would almost certainly resolve
the controversy [7]. Our model shows that the leading term in the Faddeev
series need not agree with the leading high energy asymptotics. Thus, high
energy analysis using Faddeev series can be much more subtle than one
might naively expect.

Vol. 51, n° 1-1989.



4 G. A. HAGEDORN

Since our model was explicitly solvable, we had hoped that it might
provide some insight into the problem of multichannel asymptotic comple-
teness. For this reason, we directly proved asymptotic completeness, using
the explicit solutions. This turned out to be technically difficult, and it

did not seem to provide any new insights. Other proofs of asymptotic
completeness for impact parameter models in various dimensions can be
found in [7], [ 12], [ 13].
The paper is organized as follows: In the next section we set up notation,

precisely define the wave operators, and formally describe the Faddeev
series for this model. In section 3, we formally calculate the action of the
wave operators on certain states explicitly. In Section 4, we prove that
the formal calculations are rigorously correct, and we prove asymptotic
completeness. We study the charge transfer scattering amplitude in Sec-
tion 5.
The way we obtained our results was rather amusing. We were trying

to learn the numerical analysis of time dependent Schrodinger equations
when we first put this model on the computer as an exercise. We observed
that the part of the graphs of the numerical solution that intuitively
corresponded to charge transfer had unexpected time dependence. It

became large for times near 0, and then decayed considerably as the delta
functions moved away from one another. This behavior prompted us to
study the behavior of the Faddeev series numerically. After seeing how
the individual terms looked, we simply guessed the form of each term in
the series.
The numerical computations taught us one other surprizing fact that

does not show up in our final analysis. We analytically solve from time
2014~ to time 0 for the past wave operators and solve backwards from
time oo to time 0 for the future wave operators. We do not explicitly
calculate the time evolution explicitly through time 0. In the numerical
computations, time 0 is not particularly special, and there is no problem
numerically propagating each Faddeev series term all the way from some
large negative time to a large positive time. The curious behavior of the
high velocity charge transfer amplitude exhibits itself in this context

through the interference of the first and third order Faddeev terms for
the propagator.
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5AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

2. KINEMATICAL CONSIDERATIONS

To simplify certain calculations, it is advantageous to work in frames
of reference in which either particle 1 or particle 2 is at rest. We let

t;=t~2014~, and assume without loss that v &#x3E; 0. In the frame of reference
in which particle 1 is at rest, the Schrodinger equation for our model is

We always denote the wave function in this representation by W (x, t).
We occasionally change to the frame of reference in which particle 2 is

at rest. To avoid confusion, we denote the wave function in that frame
by cp (y, t), where y = x - vt. The functions cp and related by

and

The equation satisfied by cp is

In Section 4 of this paper, we prove that equation (2.1) generates a
strongly continuous propagator U(t,s) on ~=L2(1R) for all times t and
s. The proof follows from the explicit formal calculations of Section 3.
The scattering theory for our model involves three other unitary

propagators. We set , where Ho = - - 1 2. We
2 ax

define U1 (t, s) and U2 (t, s) to be the unitary propagators associated with
the equations

and

respectively. In the W representation, Uo and U 1 have time independent
self adjoint generators. In the (p representation, U2 has a time independent
self adjoint generator. These facts assure the existence of the propagators.
The propagator U 1 has exactly one bound state of energy - ~,1 /2 in the

W representation. It is ~r (x, t) _ ~,i~2 e~t a.~~2 e-a,i I x ~. Similarly, U2 has only
one bound state of energy - ~,2 in the cp representation. In the W representa-
tion, it has the form Bj/(x,~)=~~-"~’~~~’~’~~’.

Vol. 51, n° 1-1989.



6 G. A. HAGEDORN

We define ~ wave 
’ operators and o

Q~ { ~ }: C -+ ~f for our system by

and

Since plays a special role, we let {0}.
In Section 3 we explicitly calculate SII ~s ~ and Q~ {~}. The existence

of is established in Section 4. From abstract considerations [8],
the wave operators are partial isometries with trivial kernels. The ranges
of ~~ {s }, and are mutually orthogonal, as are the ranges
of QJ { ~ }~f { ~ }’ and }’ In Section 4 we prove asymptotic comple-
teness, i. e.,

Ran 03A9+0 {s} Ð Ran 03A9+2 {s}
= Ran 03A9-0 {s} Ð Ran 03A9-1 {s} ~ Ran 03A9-2 {s} = H.

We define the asymptotic Hilbert space 0 C 0 C, and define

We define the S-matrix by S = (~ - ) * S2 + . The unitary of
and S follows from asymptotic completeness.

The Faddeev series for and arise from series

expansions for the propagators U (s, t) in equations (2. 2), (2. 3), and
(2.4), respectively. We formally derive these series here by algebraic
manipulation; for a more intuitive derivation, see [7].
We begin the derivation by recalling three formal expressions for U (s, t):

and

Annales de /’lnstitut Henri Poincare - Physique " theorique ’



7AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

where V 1 (r) denotes the potential - 03BB1 8(x) and V 2 (r) denotes the poten-
tial -~8(x2014rr).
By using (2.6) and (2.7), we obtain two more formal expressions for

U (s, t~:

and

The Faddeev series for and are obtained by substituting
the iterates of ( 2 . 8) and (2 . 9) into ( 2 . 3) and ( 2 . 4), respectively. The
Faddeev series for are obtained by substituting (2 . 5) into (2 . 2),
and then substituting the iterates of (2. 8) and (2. 9) into the resulting first
and second integral terms, respectively.

3. EXPLICIT FORMAL SOLUTIONS

In this section we explicitly calculate the formal scattering solutions to
equation (2.1) using the Faddeev series. We describe the calculation of
SZi ( 1) in detail, and simply write down the results of the other similar
calculations.
The vectors S2i ( 1) and SZ2 ( 1) belong to ~f. The other formal scattering

solutions do not. Intuitively, they should be thought of as
Since does not make

sense, but we prove in Section 4 that if  is the Fourier transform of
then

where both integrals are understood in an L2 sense.
To calculate Qi ( 1) we calculate the solution ( 1) to the Schrodin-

ger equation (2.1) for From the Faddeev series for the propagator,
it can be expanded as

Vol. 51, n° 1-1989.



8 G. A. HAGEDORN

We restrict this series to time I to obtain the Faddeev series for

The leading ’ term in this series is

The next term, comes from the next term in the Faddeev series. It is

the improper integral

which is more convenient to evaluate in the cp representation. In the p
representation, the analog of is

The cp representation analog is

where Û2 is the cp representation analog of U2. For tO, the r dependence
of the last integrand involves only exponential functions. The integral can
be evaluated in terms of the Green’s function for the generator of U2.
That Green’s function is explicitly known, and the result for 03C61 (y, t) is

Thus,

The next term in the Faddeev series is easier to compute in the 03C8
representation. It is

Once again, the r dependence of the integrand is purely exponential, and
the integral can be calculated in terms of an explicitly known Green’s

de l’lnstitut Poincaré - Physique theorique



9AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

function. We obtain

The next term is

The procedure for calculating this integral is the same as that used to find
(x, t). The result is

An induction shows that for ~ 1, we have for tO,

Thus, if we restrict to time 0,

The calculation of Qï ( 1) is very similar, except that one calculates for
rather than The result is

Vol.51,n°l-1989.



10 G. A. HAGEDORN

The calculations of Qi (1) and S22 ( 1) are also very similar. The results
are

and

We now turn our attention to the calculation of "’+ (k, x, t). We calculate
a series expansion for this solution to the Schrodinger equation (2.1) for

[The analogous calculation can be done for B)/’(~x,~) for tO.]
This solution is in rather than It is formally

The leading term is

There are two first order Faddeev terms. They are

and

These improper integrals do not exist because of a rapidly oscillating
boundary term at time - 00. We interpret these integrals as Abelian limits

Annales de l’lnstitut Henri Poincare - Physique ’ theorique "



11AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

In Section 4 we prove that this Abelian limit gives the correct result in
the sense that equation (3.1) is fulfilled. Furthermore, for the remainder
of this section, we will abuse notation and interpret all improper integrals
as such Abelian limits.
The integral for B)~ can be calculated in representation since the r

dependence of its integrand is purely exponential. The result involves an
explicitly known Green’s function. Similarly, the integrand in the expres-
sion for ~1 is purely an exponential in the cp representation, so it, too,
can be calculated. The results are

and

The second order Faddeev terms are

and

The first of these is the integral of an exponential in the cp representation.
The second is the integral of an exponential in representation. The
results are

and

We calculate the higher order terms (k, x, t) by the obvious inductive
argument. To show the pattern of the terms in Bf1+ (k, x) _ ~r + (k, x, 0), we
exhibit a large number of them:

Vol.51,n°l-1989.



12 G. A. HAGEDORN

By the analogous procedure, we obtain

In the next section we prove that all solutions to the Schrodinger
equation (2.1) are superpositions of the solutions we have computed
above. That result is asymptotic completeness. We conclude this section
by noting that our series solutions can be summed in terms of special
functions. This allows one to study the small v limit, in which the series
converge slowly.

l’lnstitut Poincaré - Physique theorique



13AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

As noted in [5], Of (1) and Of (1) can be computed explicitly in terms
of Bessel functions. For example, we have

where - Â,2 1 
- Â,1"- Â,2 ..where "(1 = Y2 = -, and "(= 2 v 

. If Â,1 =Â,2’ this can be written

more simply in terms of sines and cosines since Y = 0 in that case.
Similarly, we can sum the series for (k, x) in terms of generalized

hypergeometric functions. For example,

4. MATHEMATICAL TECHNICALITIES

In this section we prove existence of the propagator U (s, t), existence
and asymptotic completeness of the wave operators, and the validity of
equation ( 3 .1).

If t and s have the same sign, then the existence of the unitary propagator
U (s, t) can be proved by the techniques of [9]. Thus, we need only prove
existence of U(t,0) and verify the properties that must be satisfied by a
unitary propagator.

Vol. 51, n° 1-1989.



14 G. A. HAGEDORN

We begin by defining transforms that are appropriate in the study of
propagation for we define

The formal adjoint of this transform acts on by the transform

Using the explicit convergent series representations of ~r + (~, x, t) and
properties of Fourier transforms, one can easily show that a~ and Bt
extend to bounded operators on ;e. Furthermore, the series for and

are norm convergent in ~f.
For is a solution to the Schrodinger equation (2.1). If g

has compact support away from integer multiples of v, then we can . apply
stationary phase techniques [8] to each term in the series for Btg to study
the t -~ 2014 oo asymptotics. By using the norm convergence of the series we
conclude that

By the unitary of U (s, t) for both sand t negative, we conclude that

for However, each term in the series for has a limit in ~f as

t -~ o, and the series is uniformly norm convergent for ~0. It follows
that ~t extends to a strongly continuous family of isometries for 
On the range of 810 we define I~ (t, 0) for by

Since the kernel of ~‘o is trivial, this is well defined. With this definition
and the stationary phase calculation described above, it follows by a
density argument that S2o exists, and that

for all ’" E Jr. So, Ran 03A9+0 = Ran B0, and equation (3.1) is valid.
The definition of U (t, 0) on the ranges of and ~22 is

Since the ranges of the wave operators are necessarily mutually orthog-
onal, U (t, 0) is thus well defined on the range of the total wave operator,
S2+. Furthermore, the arguments used to show U (t, 0) is a partial isometry
from Ran 03A9+0 into H can be employed again to show that U(t,0) is an
isometry from to ~f. So, we have defined U (t, 0) on all of ~f if

Annales l’Institut Henri Poincaré - Physique theorique



15AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

the range of S2 + is e., if asymptotic completeness holds. To see that
U (t, 0) is actually unitary and not just an isometry, we employ Proposition
4.1, below, which shows that for tO,

We repeat this argument to construct U(~0) for tO. We then define
U (s, t) for all sand t by U(s,t)=U(~0)U(0,t). It is then easy to verify
that the resulting object is a strongly continuous unitary propagator.

Thus, all the claims of this section follow from the following proposition
on asymptotic completeness:

PROPOSITION 4.1. 2014 then

then

Proof. 2014 We only prove the first statement for The result for
is proved by the same argument applied to rather than .

The formulas are more cumbersome in that case. The proof of the second
statement of the proposition is similar.
Our approach is to show that if is orthogonal to Ran 03A9+0,

Ran 03A9+1, and Ran 03A9+2, then it must be zero. This is equivalent to showing
that the following three conditions,

and

guarantee/=0.
We let f+ (x) = f (x) (0) (x) and f_ (x) =/(x) X(- co, o] (x) denote the pro-

jections of f onto the functions of support on the right and left half-lines,
respectively. We denote their Fourier transforms by/+ respectively.
With this notation, condition (4.1) can be rewritten in terms of Fourier

transforms:

Vol.51,n°l-1989.



16 G. A. HAGEDORN

where g is the sum of the terms that involve only I k I, and h is the sum of
the terms that involve only I k - v I.
From g and  we construct an even function V (k) that takes values

For V(k) is a norm convergent series. Each term in this series is
the product of a rational function and the Fourier transform of a function
in L~([0,oo)). By a Payley-Wiener theorem and the particular rational
functions involved, it has a continuation to a meromorphic function in
the lower half plane with non-tangential L2 boundary values on the whole
real axis in k. The singularities of the continuation are either removable
singularities or simple poles. They can occur only at the points - i ~i 2014 ~

where n = 0,1, 2, ... Similarly, V (k) has a meromorphic
continuation from {k e !R: k~ 0 } to the upper half plane, with L2 boundary
values on the whole real axis. Its singularities are also either removable
singularities or simple poles at the points i ~,1 + nv and a ~,2 + nv, where
~=0,1,2,...
We now show that the boundary values of V on the real k axis from

above and below agree with one another. Since V is in its inverse

de l’Institut Henri Poincaré - Physique theorique



17AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

Fourier transform, V is in L2, also. We denote its first and second

components by V1 and V 2’ respectively.
For ( and hence in the lower half plane), we obtain a formula,

equivalent to (4. 4), for V (k) by the convergent iteration of the equation

By exploiting the evenness in k of g (k) and (k+v), we obtain the
following two identities:

and

By substituting these in equation (4. 5), we rewrite (4. 5) as

In the j-th component of the last equation, we replace Vj+ (k) by the

equivalent expression (k), and move the term to the left
hand side. We then multiply the j-th component on both sides of the

Vol. 51, n° 1-1989.



18 G. A. HAGEDORN

resulting equation by the inverse of

We thus obtain

In the ( 3 - j)-th component of the right had side, we replace 

by the equivalent expression (k - v). The result is

By employing identities like those used above to rewrite equation (4. 5),
we can rewrite this equation as

This is precisely the ~0 analog of equation (4 . 5), and it, too may be
solved by iteration. So, if one starts with positive real k, meromorphically
continues V (k) to the lower half plane, and then computes the boundary
values on the negative real k axis, one obtains the same values as the

original of V (k) on the negative k axis. One may similarly start on the
negative real k axis, meromorphically continue to the upper half plane,
and then reproduce the original values of V (k) on the positive k axis by

Annales de l’Institut Henri Poincaré - Physique theorique



19AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

taking boundary values. It then follows ( [ 10], Lemma 6 . 6, p. 223) that V
is meromorphic in the whole complex plane.
We next employ conditions (4. 2) and (4. 3) to show that the singularities

of V are all removable. Condition (4. 2) is equivalent to

This is precisely the statement that (~,1- ik) g(k) has a zero at k = - i ~,1.
Thus, the singularity in g at k = - i ~,1 is removable. Since g is even, the
singularity at k = + i ~,1 is also removable.

Similarly, condition (4. 3) requires

By reasoning as above this implies that the singularities in k 
at k = ± i Â,2 are removable.

So, the singularities of V (k) at ± i ~,1 and ± i ~,2 are removable. However,
by inductively using these facts and equation (4 . 5) with A;= 2014f~2014~r, we
see that the singularity at ~=2014f~2014~ is removable. In the upper half
plane, the analogous argument with equation (4. 6) shows that the singular-
ities at k = i ~,~ + nv are also removable. Thus, V is entire.
Our next goal is to show that V is bounded. We begin by noticing that

equation (4. 4) and the Payley-Wiener theorem imply that V (k) is L2 on
horizontal lines with Im k ~ :tÂ,1 and Im k ~ ±03BB2. Thus, V (x) is L2
for some and consequently, V (x) is L 1 for any s &#x3E; 0. It
follows that v (k) tends to 0 as IRe k I tends to infinity with 1
and I Â,2 iL I kept bounded away from zero. Since the Payley-Wiener
theorem and equation (4 . 4) show that V (k) tends to 0 as I 1m k tends to
infinity, we see that V (k) tends to 0 as I k tends to infinity, except possibly
if k is allowed to get arbitrarily close to a sequence of the removable
singularities.

Vol. 51, n° 1-1989.



20 G. A. HAGEDORN

To see that (k) tends to zero regardless of how k goes to infinity, we

first note that equation (4.5) implies that if Re~=(~+-~ and

2014~~Im k, then

We choose E - 2 Min {Â,1’ Â,2} and 
_ 

choose 03B1=2 Max {03BB1,03BB2}. By the

maximum modulus principle and some simple estimates, it follows

that on the rectangle whose corners are -u2014!8,-~2014~a, ’
-(~+-p-~ and n + 1 v - ioc, the maximum of grows at

most exponentially with n. By the Phragman-Lindeiof principal ([11],
p. 276) and simple estimates, we see is actually bounded in
the By using equation (4 . 6) in the upper half plane,
we can similarly establish the existence of a uniform bound on 
for 

Thus, we can apply Liouville’s theorem to see that V is constant. Since
it tends to zero as k goes to infinity in certain directions, it must be the

zero function..

5. CHARGE TRANSFER AT HIGH VELOCITIES

With the results of the previous sections, one can compute the large v

asymptotics of S-matrix elements easily. In this section we calculate the
asymptotics of one of the "charge transfer" matrix elements to point out
the strange cancellation in the first few terms of the Faddeev series. Other

matrix elements can easily be calculated, but they do not exhibit the
cancellations.

Specifically, we calculate the large v asymptotics of the S-matrix element

by using the series expressions ( 3 . 2) and ( 3 . 5). The zeroth order approxim-
ation to A (v) that results from taking only the zeroth order term from

Annales de l’Institut Henri Poincaré - Physique theorique



21AN EXPLICITLY SOLVABLE SCATTERING SYSTEM

each of the series yields

For large v, this is

The first order term in the approximation to (5.1) is the sum of two inner
products

The second order term is

Vol.51,n°l-1989.
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The terms of higher order than this are all at most O (v - 4) by trivial
estimates. Thus, the charge transfer amplitude is

contrary to what one would think from the first term of the expansion.
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