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Functional integration
for Euclidean Dirac fields

J. KUPSCH

Fachbereich Physik, Universitat Kaiserslautern,
D-6750 Kaiserslautern, Fed. Rep. Germany

Ann. Henri Poincare,

Vol. 50, n° 2, 1989, Physique theorique

ABSTRACT. 2014 An anticommutative integration is defined with a Gaussian
measure and it is applied to the Euclidean quantum field theory of Dirac
spinors. The Euclidean Dirac field is realized as random spinor with eight
components, four of which are independent. This spinor is an element of
a Grassmann algebra and the measure is defined on the Hilbert space
which generates the field algebra. The Schwinger functions are integrals
of polynomials on this space.

RESUME. 2014 Une integration anticommutative est definie a 1’aide d’une
mesure gaussienne et est appliquee a la theorie quantique des champs
euclideens des spineurs de Dirac. Le champ euclideen de Dirac est repre-
sente comme un spineur aleatoire a huit composantes dont quatre sont
independantes. Ce spineur est un element d’une algebre exterieure, et la
mesure gaussienne est definie sur l’espace de Hilbert qui genere cette algebre.
Les fonctions de Schwinger peuvent être calculees comme integrales de
polynomes sur cette mesure.

1. INTRODUCTION

A Euclidean quantum field theory of fermions is essentially given by
the exterior algebra of its Schwinger functions. In the case of free fields
the symplectic form of the two-point functions is the basic building block,
its exponential in the form algebra generates all n-point functions. To
study a Euclidean theory of Fermi fields it is therefore sufficient to inves-

Annales de l’Institut Henri Poincaré - Physique theorique - 0246-0211
Vol. 50/89/02/143/18/$ 3,80/(0 Gauthier-Villars



144 J. KUPSCH

tigate this form algebra, see e. g. [7], [2 ], and an anticommutative inte-
gration has been developed on an algebraic basis as an effective tool [3 ], j4 ].
But due to the success of probabilistic methods for boson theories there
have been many attempts to incorporate measure theoretic ideas also in
a Euclidean theory for fermions, see e. g. [7], [5 ], [6] which use the gage
space approach of Segal [7 ].

In this article an alternative and simpler form of anticommutative inte-
gration with a positive Gaussian measure is presented. In [8] the measure
space was the Fock space of antisymmetric tensors. This measure is now
reduced to a Gaussian measure on the « one particle » space. The anti-
commutativity originates from the structure of the algebra of integrable
functions (and not from a formal anticommutativity of integration variables).
The methods used here have some similarity with the representation of
fermionic stochastic processes in [9] ] and [10 ].

In the fermionic case the Schwinger functions are not directly given
by the moments of the measure, and in this paper no calculatorial results
are derived which cannot be obtained by the algebraic methods as used
in [7]-[~]. The consequences of the integral representations need further
investigation. The main emphasis of this paper is the proof that a proba-
bilistic interpretation of the Euclidean quantum field theory of fermions
exists which is simpler than the gage space approach (and which is more
closely related to the Berezin integral). This interpretation allows for a
natural definition of Euclidean fields as the elements of the measure space
(with the correct degrees of freedom) and it gives a better understanding
of some problems of Euclidean field theory. E. g. the doubling of fields
in [77] corresponds to correlated Gaussian variables. For vanishing mass
the measure for Dirac fermions factorizes and Euclidean Weyl spinors
can be defined unambigously.

In the first part of this paper the essential properties of the fermionic
integration are presented. The Sects. 2 and 3 introduce the basic notations
and normalizations of skew symmetric forms and exterior algebras (Grass-
mann algebras) on an infinitely dimensional Hilbert space, thereby an
error of Ref. [8 is corrected. This theory is extended to a triplet of exterior
algebras with weaker continuity conditions in Sect. 4. The measure theo-
retic formulation of the fermionic integral is then given in Sect. 5.

To apply this integration to the Euclidean quantum field theory of
Dirac spinors one needs a positive quadratic form which is not immedia-
tely given by the Schwinger functions. To supplement the symplectic form
of the two-point function with a positive form causes problems which
are well known from the construction of Euclidean quantum field operators
on a Fock space [11 ], [12 ], and which make the whole theory technically
more involved. The algebraic part of this problem is already presented
in Sect. 2.
The Euclidean quantum field theory of free Dirac fermions is then given
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145FUNCTIONAL INTEGRATION FOR EUCLIDEAN DIRAC FIELDS

in Sect. 6. The Euclidean Dirac field is an eight-component Gaussian
random spinor in an exterior algebra. Only four of the spinor components
are independent variables. An equivalent formulation is given by a pair
of correlated four-component spinors. In Sect. 7 the existence of Euclidean
Weyl spinors is derived, and in Sect. 8 it is shown that the probabilistic
approach is meaningful also in the case of interactions with bosonic fields.

Finally a few remarks about the notations used in this paper. For any
complex quantity the bar ~ -~ ~ indicates complex conjugation, including
spinors, etc. The positive definite inner product of a (complex) Hilbert
space ~f is written as ( f ~ g). An operator A on Jf is denoted as positive
operator of ( f ~ 0 for all f the eigenvalue zero is allowed.
Likewise a sesquilinear form y( f, g) is denoted as positive if y( f, /) &#x3E; 0
for all f E J~, the degenerate case y( f, f ) = 0 for / 7~ 0 admitted.

2. SKEW SYMMETRIC FORMS

The two point Schwinger functions of a fermionic field theory define
a bilinear skew symmetric form on a test function space which can be
chosen as Hilbert space. In theories of Weyl or Dirac spinors the test
functions have to be complex valued. The starting point is therefore a

complex Hilbert space endowed with a skew symmetric form.
Let ~f be a complex separable Hilbert space with the inner product

( f ~ g). The following structure of ~f is assumed.

i) There exists an antiunitary involution f E f * E J~ with

(~!~)=(7~)and/~=/.
ii) The space ~f can be split into two orthogonal isomorphic subspaces

S* such that f E ~ n~ f * E S* and vice versa.

Then

is a bilinear symmetric form on ~f.
Any continuous bilinear skew symmetric form on jf admits a

decomposition of ~f into isotropic subspaces which after a unitary trans-
formation may be identified with E and S* (or with subspaces of E and 8*
if (D is degenerate). Therefore any continuous bilinear skew symmetric form
on ~f is equivalent to a form c~M which is constructed as follows. If M is
a bounded linear operator on E then there exist unique extensions M:t
on ~’ such that M + is symmetric and M- is skew symmetric with respect
to the form (2 .1 )

Vol. 50, n° 2-1989.



146 J. KUPSCH

A continuous bilinear skew symmetric form is then defined bv

for This form is uniquely determined by if

f, g E 8, since 8- and 8* are isotropic subspaces.

For the identity mapping M = I the form g) is the canonical

symplectic form of ~f = ~ @ ~*. If M is invertible then cvM is non-dege-
nerate and ~f = ~ 0 8* is a maximal isotropic decomposition of ~f with
respect to c~M.
Given a continuous non-degenerate skew symmetric form g) on Jf

then there exist uniquely a positive form g) and an antiunitary operator j
with j2 - - id, in the following denoted as conjugation, such that

This statement is a modification of a theorem of Chernoff and Marsden

(derived in [7~ ], §1.2 for real Hilbert spaces). The conjugation j is anti-
unitary with respect to the norm of ~f and with respect to ~3.

If the skew symmetric form g) is defined by (2 . 3) with an invertible
bounded operator S the related positive form /3 can be easily calculated
using the polar decomposition of S on £

where U is unitary and Al and A2 are positive operators. The positive
form is then

if f = x + u and g = y ~- v with x, y E $ and u, v E $*

and the conjugation is given by

Only if S = A is a positive operator the relation between cvA 
or jA is simple and jA is independent of A and canonically related to the
involution of ~f. With these definitions the identity (2.4) remains valid
also if Ker S is non trivial and a~s is degenerate.

In the case of Euclidean Dirac fields the skew symmetric form 03C9S is

derived from a non-hermitean operator S and the conjugation (2 . 7) depends
on the details of the operator S. One can circumvent this problem by an
extension of ~ to ~f = @ ~~2~ formed by two copies of ~P.

, Let  = E(1) 0 E(2) be the direct sum of two copies of E and

~~~ ~* _ ~~ 1 ~* EÐ ~~2~* be the dual space, then ~f = ~ E8 ~* has again the
structure assumed at the beginning of this section with a canonical invo-
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147FUNCTIONAL INTEGRATION FOR EUCLIDEAN DIRAC FIELDS

lution f E Jt  f * E ~f which maps  into ~ * and vice versa. The
operator (2.5) S on E is now extended to the positive operator

on  with the non trivial kernel

which is isomorphic to ~.
The skew symmetric form g) defined on ~P following the definition

(2 . 3) is degenerate, but on the factor space EÐ ~ * it is equivalent
to the form g). The advantage of using cvM comes from the positivity
of M. The relations (2.6) and (2.7) yield

with the positive form

and the simple conjugation

3. EXTERIOR ALGEBRA AND GAUSSIAN FORMS

The Fock space of skew symmetric tensors of the Hilbert space Jf is
written as

where is the Hilbert space of skew symmetric tensors of degree n.
On the exterior product of vectors is normalized to

By linearity the exterior product is extended to the subspace of all tensors
of finite rank

which is an algebra with respect to the exterior product and it is a dense

Vol.50,n°2-1989. 6



148 J. KUPSCH

subset of the Fock space The exterior product cannot be extended
to a continuous operation on the whole space j~(~f), but nevertheless

will be denoted as the exterior algebra of the Hilbert space ~f ( 1 ).
If the Hilbert space ~f has the structure as assumed in Sect. 2 the invo-

lution can be extended to an involution on such that F* * = F and

II F* 1B = 1B for all F E and (F n G)* = G* n F* if the exterior
product exists.
The form (2.1) can be generalized to a continuous bilinear symmetric

and non degenerate form on  (F* G).
With the normalization (3.2) inner products of tensors FAG, where

F and G belong to orthogonal subalgebras, factorize, in particular

 F? n G2&#x3E; = (3.4)
is valid for arbitrary F1, F2, Gl, G2 E ~(~). The exterior algebra (3.1)
therefore factorizes into n j~(~*).
A continuous bilinear or sesquilinear form y(/, ~) == ~ or

( f ~ is denoted as a Hilbert-Schmidt form HS form if the operator A
is a HS operator, it is denoted as nuclear form if A is a nuclear operator.
An important property of skew symmetric HS forms is

LEMMA 1. 2014 The skew symmetric form cc~ is a HS form if and only if
it can be represented as

with a tensor Q E 
The proof is obvious.
For any Q E the exponential series

converges within The proof is given at the end of Sect. 4.
The linear functional

which is the exponential of a skew symmetric form (3. 5) within the form
algebra generates the moments of an anticommutative Gaussian distri-
bution

e) In Ref. [8] the estimate (2 . 4) is false, and also the statements that the spaces ~% (~)
and ~(~f) are Banach or Hilbert algebras are not correct. But the results of Sect. 2.2-7
of Ref. [8 remain unaffected. I am indebted to P. A. Meyer for pointing out these errors
to me.

Annales de l’Institut Henri Poincaré - Physique theorique



149FUNCTIONAL INTEGRATION FOR EUCLIDEAN DIRAC FIELDS

with ~ejf,~=l,2,...,2~the summation is extended over all per-
mutations I2n = (fi, ..., of (1, 2, ... , 2n). This is exactly the represen-
tation of the 2n-point function of a free Fermi field in terms of the two-
point function. The relation of this functional to the formalism of Bere-
zin [3] is explicated in Refs. [2] and [8 ].

Until the end of this section the skew symmetric forms are taken as
HS forms (2.3) coM generated by HS operators M on 8. The tensor Q is
then denoted by Q(M) and the functional (3.8) is written as LM.

Since ~ and S* are isotropic spaces of cvM the functional (3 . 8) simplifies
to

Here r(M) is the continuous linear operator on which is generated
by M : r(M) fi n ... n (M fi) n ... n 

The operator r(M) is selfadjoint/HS/nuclear on if M is selfadjoint/
HS/nuclear on S. If M is a positive operator then r(M) is also positive
and from (3.9) follows the inequality

This inequality cannot be extended to F E There is even the more

general result : if L is a continuous linear functional on such that

L(F* A F) &#x3E; 0 is valid for all then L is the trivial functional
L(F) = 1! F ~ with a &#x3E;_ 0.

4. TRIPLETS OF HILBERT SPACES

In this section the limitations due to the HS condition will be removed.
The mathematical techniques used here are well known, an extensive
presentation can be found in [14 ], see also [15 ]. A detailed theory of forms
on triplets of symmetric or exterior algebras has been developed by Kree [4 ].

Let T be an invertible HS operator on ~f then the spaces = 

03B1 ~ R, are (after closure) Hilbert spaces with the norms 
The antidual space of with respect to the pairing given by the inner
product of ~f is exactly 
The exterior algebras are defined as in Sect. 3

with the norm induced by I Ilex. For a &#x3E; 0 the spaces

are ordered by inclusion and and are antidual spaces with
the pairing given by the inner product of The symplectic structure
of the Hilbert space S* as assumed in Sect. 2 is naturally trans-
ferred to the exterior algebras n ~(~« ).

Vol. 50, n° 2-1989.
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The consequences for bilinear forms are special versions of the Kernel
Theorem [14 ], [15 ]. The Lemma 1 of Sect. 3 has the obvious generalization
in

LEMMA 2. 2014 The bilinear skew symmetric form g) is a HS form in
the norm of if and only if there exists a tensor Q E such that

A form cvM derived from a bounded operator M on ~a is continuous on 
and consequently HS on The representation (4.1) is therefore valid
with Q(M) E and the exponential series exp Q converges within

The linear functional (3 . 7) is then defined on 

with (4 . 2)

The relation (3 . 9) can be derived on and continuity allows
to extend (3.10) again to 
The tensors and Q(M2)e~(~) are elements of dual

spaces, i. = - a, if and only if the product is a nuclear operator
on S. The calculation of

see e. g. [8] ] Sect. 4, yields the well known fermionic determinant. If
Q(M) E then M is a HS operator on E and

gives a proof of the convergence of the exponential series (3 . 6).

5. MEASURES AND INTEGRALS

In this and the following Sections it is assumed that M is a positive
bounded operator on ~. Then the sesquilinear form ( f ~ is nuclear
on Sl and (F r(M)G) is a positive nuclear form on The Theorem
of Minlos [7~], [7J], [7~] J then guarantees the existence of a Gaussian
measure on ~(~_ 1 ) such that

if F, G E More precisely, this measure is a Gaussian measure on
the underlying real space ~(~_ 1)~ ^-_r ~(~_ 1~).
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The relation (5.1) implies that

if The integrant can be written as, cf. Eq. (3.4),
( F* A G ~* A 4&#x3E; ). Since any clement of H E can be represented

as H = ¿ F: A Gn with Fn&#x3E; the relations (3.9) and (5.2)
n

yield that the linear functional (4.3) coincides with the integral

for any This identity is equivalent to

A necessary and sufficient condition to identity y a linear functional (4. 3)
with an integral (5 . 3) is the positivity of M, i. e. the positivity condition (3.10)
has to be fulfilled for all F E 

If H E the integrant in (5 . 3) is a continuous function on the mea-
sure space ~(~_ 1). The class of integrable functionals in larger, it includes
the algebra of functions {( H ~* which corresponds
to the argument in (4.2) for a = 0.
The projection operator ~ E-1 induces a measure  on S - 1

with the Fourier-Laplace transform

The main properties of the measure p can already be derived from the
simpler measure ,u. But one can go an essential step further and transfer
the integration on the Fock space to an integration on the « one particle »
space S - 1. The following construction has some similarity with the repre-
sentation of fermionic stochastic processes in refs. [9] ] and [10 ].

Let { ea be a CONS of such that (ea = Then a multilinear

mapping ~« x ... x is defined by

for i = 1, ... , N. This mapping is continuous,

Vol. 50, n° 2-1989.
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The essential difference compared to the exterior product is that (5.6)
does not necessarily vanish if ~ ==...= fn. In that case it satisfies the
stronger norm estimate

The product (5.6) depends on the basis. In the following the basis
is chosen such that I Me~ ) _ i. e. the basis diagonalizes

the operator M.
For F E ~m(~1) and G E the function ... 

o o... at/J)
is a homogeneous polynomial on ~_ 1. An easy calculation with decompo-
sable tensors yields the integral

To write a closed expression it is convenient to defined the exponential
of 03C8 with respect to the product (5.6)

Due to (5 . 7) this series converges in If ~r* E ~*_ 1 ~ = 

is defined in the same way, then  H E j~(~fi), is an entire
function on S - 1, which can be integrated. The integral

coincides with the integral (5 . 3) as a comparison of (5 . 2) with (5 . 8) shows.
This integral is the anticommutative counterpart of the usual bosonic
(commutative) integral (which can be recovered from (5.10) in substituting
the algebraic products /B and  by the symmetric tensor product). In both
cases the Gaussian functionals evaluated for (symmetric or antisymmetric)
tensors of rank n are given by Gaussian integrals over homogeneous poly-
nomicals of degree n. For bosonic integration this yields the moments
of the measure, whereas in the fermionic case the polynomials are rather
complicated to account for the anticommutativity.

6. THE EUCLIDEAN DIRAC FIELD

The family of Schwinger functions of a Fermi field corresponds to a
linear functional on an exterior algebra of test functions. In this Section
the generating functional of the Schwinger functions of a free Dirac field
will be constructed as integral on a measure space.

de l’Institut Henri Poincaré - Physique theorique



153FUNCTIONAL INTEGRATION FOR EUCLIDEAN DIRAC FIELDS

6.1. Eight-component spinors.

The notations for the Euclidean variables are as follows

The Fourier transform is defined as

The Schwinger function related to the Feynman propagator is then

o~=l,2,3,4, with the matrix

It is assumed that the mass m is positive. The mass zero case will be
considered in Sect. 7.
The Hilbert spaces S). are taken as

with Wo = Y2(R4) and W03BB = T03BBW0 as defined in Sect. 4. The HS operator T
may be defined on as

The operator S : ~ -~ 8

Vol. 50, n° 2-1989.
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is continuous in the for According to Eq. (2 . 3) this
operator generates a continuous symplectic form on ~P such that

The family of Schwinger functions of the free Dirac field is then reproduced
by the functional (4. 3) Ls. This functional is well defined on 
the operator S is not positive and, consequently, the positivity condi-
tion (3 .10) is violated. Hence the functional does not allow the identification
with an integral.
The non-positivity of the Schwinger functions of a Dirac field is an old

problem of Euclidean quantum field theory which makes the construction
of Euclidean Dirac fields much more involved than the construction of
scalar fields. In his pioneering paper [7~] ] Schwinger proposed an eight-
component Euclidean Dirac field. In [77] ] Osterwalder and Schrader
presented a rigorous construction with a doublet of four-component fields.
The following solution restores positivity in using the doubling 
of Sect. 2.
On 8;. the operator S has the polar decomposition S = AU = UA with

the positive operator A = and a unitary operator U. The explicit
representations of these operators are

The spaces are extended to spaces of eight-component spinors

where the subspaces 811) and ~~,2~ of four-component spinors are isomorphic
to (6 . 4) ~. The operator S is then extended to the positive operator (2. 8) M
on ~~, (with A 1 = A2 = A). This operator has the non trivial kernel (2 . 9) 
The kernel and the factor space ~/~ are isomorphic to 
As indicated in Sect. 2 the skew-symmetric form a~M is equivalent to 

Consequently the linear functional LM on is equivalent to the func-
tional Ls on The advantage of LM is the positivity of M such that
LM has the integral representations (5.3) and (5.10).

Since M is a bounded positive operator on ? the Theorem of Minlos
guarantees that there exists a unique Gaussian measure  on -1 with

Annale de l’Institut Henri Poincaré - Physique theorique
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the Fourier-Laplace transform (5 . 5). The Schwinger functions of the Eucli-
dean Dirac field can then be calculated from the integral, cf. (5.10),

The non-trivial kernel of the operator M implies that the Gaussian
measure is concentrated on a subspaces of ~_ 1. Since the quadratic form
( f ~ Mf ), f E 8, vanishes the measure p is concentrated on that
subspace which annihilates i. e.

cf. Ref. [15 ], p. 339 or Ref. [7~L § 19.
If the integral (6.11) is written in the form (5. 3) the corresponding mea-

sure on is concentrated on the subalgebra which is gene-
rated by the elements $ E 
To obtain more explicit relations between the Schwinger functions and

the measure  the test functions in the integral (6.11) have to be chosen
in a specific way.

Let I(i), i = 1, 2, be the isomorphisms between ~(~1) and ~(~li~) ~ 
which are defined by the identification with ~1. For and

f = I(1~ and g = I(2)g the form c~M yields g) _ ( f ~ ( f ~ Sg)

and all other matrix elements are not relevant for the calculation of the

Schwinger function.
More generally, if F, G E and F = E and

and the integral reduces to the functional Ls. The sub algebra ~(~ 11 ~* EÐ 8B2») .
of the test functions is therefore sufficient to determine the Schwinger
functions of the Dirac field. This subalgebra corresponds by duality to
the field algebra C ~~2 i*~ c ~( ~-1 )~

6.2. A doublet of four-component spinors.

The Euclidean quantum field theory of a Dirac field presented in Sect. 6.1
corresponds to the construction of a degenerate measure on a space of
« classical » eight-component spinor fields which are elements of a Grass-
mann algebra. Only four of these components are independent variables.
This result can be formulated in a different way [8] which is more closely
related to the Euclidean field operators of Osterwalder and Schrader [77].
The original symplectic form a~s defines by the equation (2.4) a unique

positive form (2 . 6) on On the subspace S 1 this form is given by ( f ~ lAg)

Vol. 50, n° 2-1989.
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where A is the positive operator (6.8). Then one can define a Gaussian
measure  on with the Fourier-Laplace transform exp [ - 
The related measure p on ~(~_ 1) has the Fourier-Laplace transform

The operator (6 . 9) U is continuous in the norm !! for any ~. E [?,
and it satisfies (U +f, g) = ( f, U g) if f and g E 

Given the Gaussian variable 03C8 E can define the linearly depen-
dend (and a fortiori correlated) Gaussian variables

The Fock space variables are then given by the construction of Sect. 5
~~1) - and ~~2~ = e’~~2&#x3E; = r(U+)4J(1). For F, the identity 

‘~

allows to calculate the integral

which coincides with the linear functional Ls. Therefore all Schwinger
functions can be obtained from the integral

If Eq. (6.15) is evaluated for F and G = g E ~2 one obtains

or

Under the action of the Euclidean group the fields i = 1, 2, transform as

where the notation of Ref. [77] ] Eq. (3 .15) has been used for the group

variables. Therefore is the bilocal scalar field which

" v
corresponds to the Minkowski space scalar 03A8+03B1(x)(03B30)03B103B203A803B2(y). The

~~

Annales de l’Institut Henri Poincaré - Physique théorique
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relation to the Euclidean field operators of Osterwalder and Schrader [11 ] is

The two fields ~~ 1 ~ and which show up in the integral (6.16) are related
by the antilinear mapping 1/1 = ~~ 1 ~ ~ ~r~2) = (U+f/J)* which originates
from the conjugation (2. 7) of the symplectic form If one does not care
about the positivity (3.10) (which has not to be confused with Osterwalder-
Schrader positivity) one can use 03C8 ~ (U+f/J)* as the basic involution
of the theory. Exactly these fields ~ and (U+f/J)* show up in the formal
Berezin integral.

In a bosonic theory the Schwinger functions are given as moments of
a positive measure which allows to derive correlation inequalities. For the
free Euclidean Dirac theory the 2n-point Schwinger function is obtained
from the Gaussian integrals (6.11) or (6.16) over homogeneous polyno-
mials of degree 2n. But these polynomials have a rather complicated struc-
ture as has been seen in Sect. 5. Moreover, in the case of Dirac fields there
is the additional complication due to the doubling (or, equivalently, due
to the unitary operator U + in (6.14)). So far no calculatorial consequences
from the existence of the positive measure can be presented. But the pro-
babilistic approach gives a natural basis for the definition of Euclidean
Dirac fields which have the correct degrees of freedom. As further appli-
cation this method will be used in the following Section to define in a
unique way Euclidean Weyl fields.

7. ZERO MASS DIRAC SPINORS AND WEYL SPINORS

If m = 0 the operator (6.6) S is unbounded in the norm of E and (6. 7)
cos is an unbounded form on Jf. For the construction of a measure it is
essential to define Sl c 8 in such a way that is nuclear on That
is achieved if the imbedding operator (6 . 5) is modified to T = ( - 
This operator is a HS operator and T + ST is a nuclear operator on F.
With Sl = TS and I I .f 1B1 - I I the form cos is nuclear on ~1 and
the measures can be constructed as in Sect. 6.1. All results of Sects. 6.1-6. 2
remain valid.
For m = 0 the inverse Dirac operator (6.6) anticommutes with y5,

whereas A = commutes with ~5

The operators

Vol. 50, n° 2-1989.
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are projection operators on orthogonal subspaces of  = ~~1~ Q+ ~~2~.
They can be extended to the whole space  by P±/=(P±/*)* if 
As a consequence of (7.1) the operator M commutes with Pj,

Hence for m = 0 the operator M separates into two positive mappings
M = M + + M- which operate nontrivially on the orthogonal subspaces
ix. = Consequently, the measure p on ¿ 1 factorizes into the Gaus-
sian measures on ~+ _ 1 with the quadratic forms ( f ~ Moreover
the skew symmetric form cvM separates into two forms

where

are nontrivial forms on the orthogonal subspaces P± ~. Hence
the theory of a massless Dirac field is split into the theory of two Weyl
fields 

8 . INTERACTING DIRAC FIELDS

The results of Sect. 6 can be generalized to Dirac particles which interact
with classical vector or axial-vector fields (which may originate in a bosonic
system). The classical Euclidean action is then I (~ + with the
Dirac operator ~ = 2014 ~ + m and an interaction term

where and are real vector and axial-vector fields. Without
investigation of the admitted potentials it is assumed that (!Ø + 
is a bounded operator on E such that Sv and SU map the subset $1 into
itself. The polar decomposition of S" on the space S leads to

SU = The extension of S" to a positive operator M"
on E is defined as in Eq. (2 . 8). - -

Then Gaussian measures P" and v can be constructed on the spaces
j~(~-1) and ~-1, respectively, as in Sect. 6. The measure ;u" is concentrated
on the subspace

For a non vanishing but well behaved potential V (e. g. a nuclear operator)
the operator U" differs from the operator (6.9) of the free theory and the
subspaces (8 . 2) - and (6.12) do not coincide. Therefore the measures for
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an interacting theory and the measure for the free theory are mutually
singular even if the potential is weak and regularized.
The situation is better if the fields of Sect. 6.2 are used. For a theory

with the bosonic interaction (8.1), the generating functional for the Schwin-
ger functions is still given by (4. 2), i. e.

which can be written as the integral (6.16) where the Gaussian measure
is defined with the quadratic form ( f ~ and the fields t/1 (1) and t/1 (2)
are related by ~r~2~ = For a sufficiently regularized interaction
D-1Vreg is a HS operator on E and the measures ,uv and  are mutually
equivalent. Then (8 . 3) has an integral representation with the free measure.

If the mass vanishes Euclidean Weyl fermions can be defined as in the
case of free fields. The relations (7.1)-(7.3) are still valid for the interac-
tion (8.1). Hence the measure space of the interacting Dirac field facto-
rizes into the measure spaces of two Euclidean Weyl fermions, and the
form algebra of the Dirac field factorizes into the form algebras of the
Weyl fermions. In the literature some problems have been seen to define
Euclidean Weyl spinors, see e. g. [19 ], but the framework of this paper
yields a unique solution.
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