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Inverse scattering problem
for the Maxwell equations outside moving body

Vladimir GEORGIEV (*)
Institute of Mathematics of Bulgarian Academy of Sciences,

Section: Differential Equations, -

P. O. Box 373, 1090, Sofia, Bulgaria

Ann. Inst. Henri Poincaré,’

Vol. 50, n° 1, 1989, Physique théorique

ABSTRACT. 2014 We prove the existence of solutions to the Maxwell
system for moving obstacles. Moreover, we obtain a representation of
the scattering matrix and study the singularities of the matrix. Finally,
the results are applied to the inverse scattering problem connected with
the recovering of the convex hull of the obstacle.

Key-words : Maxwell, Scattering theory, Inverse problem.

RESUME. 2014 On prouve 1’existence des solutions pour Ie systeme de
Maxwell dans Ie cas d’un obstacle mouvant. On obtient une representa-
tion de la matrice de diffusion et on examine la singularity principale de
cette matrice. Finalement, on applique ces resultats pour Ie probleme
inverse de diSusion lie avec la determination de l’enveloppe convexe de
Fobstacle.

0 . INTRODUCTION

Cooper and Strauss examined in [7] the leading singularity of the
scattering kernel. In particular, they proved that the convex hull of the
obstacle can be recovered from the scattering data.

(*) Partially supported by Bulg. Comitee of Sciences under Contract 52/ 1987.
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38 V. GEORGIEV

In this work we study the same problem for the Maxwell equations
outside moving obstacles. Especially, we deal with the following three
points :

1. The existence of solutions to the mixed problem with initial data
distributions (disturbed plane waves).

2. Representation of the scattering matrix S* involving disturbed plane
waves.

‘ 

3. Examination of the leading singularity of the kernel S*(~, c/, s, cc~)
of S* in the case of back-scattering c/ - - cc~.

Our results combined with the approach of Cooper and Strauss [7] allow
us to determine the convex hull of the obstacle.
The first point for the case of the Maxwell equations leads to some

difficulties since the moving boundary could be nonuniformly charac-
teristic. For this reason Cooper and Strauss [8] ] used the symmetry of
the Maxwell equations and the results of Kato [15 in order to prove the
existence of solutions to corresponding mixed problem with initial data
in the energy space. To obtain an existence theorem for initial data dis-
tributions we transform the Maxwell equations so that the results in [17 ],
[18 ], [26 ], [27] ] for uniformly characteristic boundaries can be applied.
We obtain a representation of the scattering operator in the spirit of [19 ],

[20], [21 ], [2~] involving a solution to a mixed problem with initial data
5(~ + s -  x, a~ ~ ) for large negative time t. This gives us a basis to attack
the inverse scattering problem connected with the leading singularity
of the scattering kernel. In this problem the construction of microlocal
parametrix of the mixed problem plays a crucial role. The fact that the
boundary could be nonuniformly characteristic makes some essential
difficulties for the construction of parametrix. In fact, denoting by u = t(E, H)
the couple of the electric and magnetic fields E and H, we see the Maxwell
equations in vacuum has the form

where the differential operators A(V) and P(V) are defined by

Here and in the following we use units, in which the light velocity, the
magnetic and electric permeabilities in the vacuum are 1. If an electro-

magnetic field propagates ouside a stationary body, which is a perfect
conductor, the vectors E and H can be separated and we obtain two diffe-
rent mixed problems for the vector wave equation (see [20 ]). Since we
study the case, when the obstacle could change its shape and position,
the magnetic and electric fields interact on the boundary and they can
not be decoupled in the boundary condition. The difficulty is connected

Annales de l’Institut Henri Poincaré - Physique theorique



39MAXWELL EQUATIONS OUTSIDE MOVING BODY

with the fact the boundary is not uniformly characteristic and the sys-
tem (0.1) can not be microlocally diagonalized near the boundary. To
overcome this difficulty we propose a suitable microlocal transformation
of the Maxwell equations (0.1). Namely, we replace the first equation in (0.1)
by

where the matrix L(t, x) will be chosen appropriately. Following this way
we reduce the Maxwell equations to a system with noncharacteristic
boundary and this simplifies considerably the construction of the micro-
local parametrix near the points of the first reflection of the incoming wave.
There is a lot of papers in the physical literature treating inverse problems

for the Maxwell equations outside moving bodies (see [33] for references).
Nevertheless, it seems that the inverse problem for electromagnetic waves
reflecting from moving boundaries has not been treated rigorously.
The plan of the work is the following. In section 2 we construct a trans-

lation representation of the Maxwell equations. The existence and uni-
queness of solutions to mixed problem associated with the Maxwell equa-
tions are discussed in section 3. In section 4 we obtain a representation of
the scattering (echo) kernel. Localization of the singularities in the spirit
of [7], [19 ], [2~] is done in section 5. Section 6 is devoted to the transfor-
mation of the Maxwell equations and the construction of a microlocal
parametrix to the mixed problem for the Maxwell system. Finally, in sec-
tion 7 we obtain the leading term of the scattering amplitude and prove
theorems 1, 2 and corollary 3.

Acknowledgements are due to Vesselin Petkov for helpfull advice

during the preparation of the work.

1. ASSUMPTIONS AND MAIN RESULTS

We assume the electromagnetic wave propagates in an exterior space
time region Q c !R4 with smooth boundary aQ. Denoting by v = vx)
the unit spacetime normal to 5Q pointed into Q, we make the assumption

(HI) The normal v at aQ is spacelike, i. e. I  03BDx | I on 3Q.

This assumption means the boundary moves slower than the wave. The
body at time t is the set K(t) = { x ; (t, x) ~ Q }. We shall assume that there
exists a ball of radius p &#x3E; 0 covering the body at any time, i. e.

Vol. 50, n° 1-1989.



40 V. GEORGIEV

If the surface of the obstacle is a perfect conductor, the electromagnetic
wave is connected with the following mixed problem (see [8 ]).

One can use the results in [8] (see section 3 too) and define a family of
Hilbert spaces H(t), t and a two parameter group V(t2 , tl) of operators
acting from H(tl) into H(t2), such that the solution to (1.1) can be repre-
sented in the form u = V(t, provided f E Indeed, given any
open subset U c 1R3, we denote by L2(U; (resp. ~)) the spaces
of functions f(x) = ..., fk(x)), such that E L2(U), E 

j = 1, ... , k. Setting = { x; (t, x) E Q } we define the Hilbert space H(t)
as the closure of functions f = ( fl , f2), I~3), j _ 1, 2, satis-
fying the boundary condition

and = 0 in the sense of distributions on S2(t) with respect to the
L2-norm in 
The wave operators connect the solution to the mixed problem (1.1)

with a solution to the free Maxwell equations

where g(x) E Ho and Ho is the Hilbert space of functions g = (gl , g2),
gj E L2~; ~7 = 1, 2, satisfying P(V)g = 0 in the sense of distributions
on 1R3. The unperturbed Hilbert space Ho can also be defined as the abso-
lutely continuous Hilbert subspace of L2(1R3; 1R6) with respect
to the self-adjoint operator Ao = - fA(V). The solution to (1.2) can be
represented as u = Uo(t - where Uo(t) is a unitary group of ope-
rators acting in Ho. Then the scattering operator can be defined by (see [16],
[24 ])

where g E Ho. For simplicity of symbols H(t) will denote the Hilbert space
introduced above or the orthogonal projection from Ho on the Hilbert
space H(t ). If f EHo then H(t)f is the restriction of f onto 
(t, x) E Q }. Moreover H*(t) is the operator adjoint to H(t).
Our last assumption is 

.

(H3) { The scattering operator S exists and S is a bounded operator in Ho.
The above assumption can be weaken if the motion of the obstacle is
periodic (see [5 ], [6]). Moreover, by using the approach in [7], [2 ] one

Annales de l’Institut Henri Poincaré - Physique theorique



41MAXWELL EQUATIONS OUTSIDE MOVING BODY

can prove the above assumption provided the energy of the perturbed
system is uniformly bounded. Since our main goal is the leading term of
the scattering amplitude we shall not search for sufficient conditions for (H3).
To state our main results introduce the vector bundle N over the unit

sphere 52, such that any fiber N(cv) over cv E 52 consists of vectors
k = t(k 1, k2), k 1, k2 E such that k 1 .1 03C9 and k2 = 03C9  k1. Any section
of the bundle N is a function from 52 into (R6. Then the translation
representation, constructed in section 2 is a unitary operator ~ from Ho
onto L2(N)), where L2(N) is the Hilbert space of square integrable
sections of the fibre bundle N. By using the Schwartz kernel theorem and
the assumption (H3) one can find the kernel of the operator ~’ ~ S 0 
and connect this kernel with the scattering (echo) kerneal S *(8’, M),
which is a (6 x . 6) matrix valued distribution for (s’, s, x 52 x (R x 52
(see section 4). An important role in the investigation of the scattering ampli-
tude is played by the arrival surface

which is the projection of the intersection of the arrival 
and the boundary 5Q onto the space of variables x. As in the case of the
wave equation the singularities of the scattering kernel S*(~, c/, s, with

respect to s’ are closely connected with the quantity

The first result in the work is

THEOREM 1. - - - OJ be fixed. Then we have the properties :
a) max supps’ S*  s + h(s,(D),
b) max sing supps’ S* = s + h(s, cv).
In order to study the singularities of the scattering kernel near

introduce the filterred scattering amplitude (see [20 ]).

where is a smooth cut-off function, which is 1 near s’ = s + h and the
integral is taken in the sense of distributions.

In order to state our main result set

Given any (t, x) E aQ we denote by y(t, x) the surface velocity at (t, x), i. e.

Vol. 50, n° 1-1989.



42 V. GEORGIEV

The second result is

THEOREM 2. - There exists a dense subset T ~ IR x 52, such that
given any (s, E T the filterred scattering amplitude (1. 6) has the following
asymptotic expansion near s’ - s + h(s, co) as /), -+ +00

where xl, x2, ...,~ are discrete points forming the set R(s, 
is the Gauss curvature at x~ E r(s, and is the linear

operator acting on the fibres N(cv) of the bundle N as the (6 x 6) matrix

REMARK 1. - The dense subset T c: [R x ~2 is chosen so that the set
R(s, cv) _ ~ x E r(.s, ~); 2014 2 ~ x, c~ ~ = cc~) ~ consists of finite number of
isolated points ..., The choice of T is done by using Sard’s theorem
(see lemma 7. 5).

REMARK 2. - We see that the leading term in the asymptotic expan-
sion ( 1. 7) is similar to the leading term obtained in [20 ]. The influence of
the moving body is connected with the Dopler factor ( 1 + 03B3j)/(1 - 7j).
Since the Gauss curvature with respect to r(s, cv) can be represented
by (see [7]) ~__ . ~__ _ _ _

K’(Xj) is the Gauss curvature with respect to the boundary 
we can rewrite (1.7) in the form

REMARK 3. - The above theorem shows that the leading singularity
of the scattering matrix S(s’, - OJ) is

Following the approach in [7], [79] one obtains

COROLLARY 3. The convex hull of the obstacle Q(~)= { x; (x, t) E Q }
at any instant t can be recovered from the support of the back-scattering
data of the scattering (echo) kernel S # .

Annales de l’Institut Henri Poincaré - Physique theorique



43MAXWELL EQUATIONS OUTSIDE MOVING BODY

2. TRANSLATION REPRESENTATION
FOR THE FREE MAXWELL EQUATIONS

Translation representation for the free Maxwell equations was obtained
in [6 ], [28 ]. We construct this representation in a form suitable for our
investigations and closely connected with the Radon transform

Here (, ) denotes the inner product in ~3, s E [?, co is unit vector in ~3,
while d Sx is the surface measure on the plane ~,(D~ = ~ Moreover
f(x) E space of smooth functions tending to 0 at infinity faster
than any polynomial of 1/! Consider the matrix

where D(ç) is the linear operator in [R3 defined by D(ç) = ç the vector

product of the vectors 03BE and 03BD in [R3. The matrix A(ç) is the symbol of the

operator 1/n ( 0 

rot0) of the Maxwell equations. The eigenvalues of the
matrix A(ç) are - 1 ç I, 0 and I ç I. They have constant multiplicity 2 for ç
nonzero. The corresponding projectors are

where = - is the projection in ~3 on the plane orthogonal
to the vector c~ E S)2. The projections satisfy the properties

which follows directly from the definition of the projections.
The main goal of this section is to construct a Hilbert space N and a

unitary operator

such that the unperturbed group introduced in section 1 can be

Vol. 50, n° 1-1989.



44 V. GEORGIEV

represented by Uo(t) _ ~ - with Tt the operator of the right trans-
lation in N). For this purpose denote by N the Hilbert space

It is easy to see that any k E rBJ has the form k2) with

The properties (2 . 2) were used in [6] ] to characterize the translation
representation as an asymptotic wave profil. We introduce the translation
representation by the equality

where

THEOREM 1. The operator c = (27c) B can be extended
as a unitary operator from onto ~), such that 
and the equality

holds for any k E S(tR x ~2, 1R6).

Proof. 2014 By the aid of the Fourier transform

it is easy to see that given any f E S(~3, ~6) the properties

are equivalent. The equality (see [77])

together with the equivalence of the properties (2.6) imply

Now we use the following identity (see [11 ])

Annales de Henri Poincare - Physique " theorique "



45MAXWELL EQUATIONS OUTSIDE MOVING BODY

and obtain the equality

where

The function is an odd one. This fact and the property (2 .1 )d )
enable one to change the variables s’ - - s, - - cv in I + and derive that

I+ =1-. Now we are going to

with Rtr = The density property in (2 . 7) shows Rtr can be
extended as an isometry.

In order to recover f(x) = we use the

identity (see [70])

provided f E S((~3, (~6). Taking advantage of (2. 7) and (2. 8) we get
- 8~c2 f (x) = J + + J - , where

Making the change of variables c/ = - OJ and by using the properties (2.1)
together with the fact that is an even function we get J+ = J- .
This observation leads to the equality

from which we obtain (2. 5).
Finally, we shall verify the equality Tt = Applying the

transform to the Maxwell equations and using the properties (2.1)
of the projection 03C0_ we obtain the equations

where

The Cauchy problem for m can be resolved straightforward. We find
= ~ - ~ co). This proves the translation property 

and completes the proof of the theorem.

Vol. 50, n° 1-1989.



46 V. GEORGIEV

COROLLARY 2 . 2. - Suppose f E n ~6) and k(s, ~) = 
is the translation representation of f. Then we have

Proof. 2014 It is sufficient to exploit the translation property

together with the inverse formula (2. 5). This completes the proof.
Next we introduce the deparing and entering spaces DP and EP (see [6 ]).

DEFINITION 2.1. - Given any p E M, the deparing and entering spaces
are defined by

We close this section with the following result obtained by Cooper and
Strauss in [6 ]

PROPOSITION 2 . 3 (see [6]). - We have the equalities .

3. SOLUTIONS TO THE PERTURBED SYSTEM

An important role for the representation of the scattering matrix will
play the solution G = (G’, G") to the mixed problem

where f = ~’(t + ~ 2014 ~ x, and v E [R6 is any vector in the fibre

N(cv)= ~ v= (v’, v"); v’ .1 (/), v" x v’ }. The matrix A of the boundary condi-
tion is determined by (1.1), i. e. given any vector w = (E, x [R3 we have
A(t, vx, H )). Setting G= -~t+s- ~ 
one can reduce the mixed problem (3.1) to the following one for u

Annales de l’Institut Henri Poincaré - Physique - theorique -



47MAXWELL EQUATIONS OUTSIDE MOVING BODY

where = + S -  x, and the function d(s) is 0 for s  0
and d(s) = s2/2 for 5 &#x3E; 0. We shall use the notations

Introduce the local space formed by f = ( f 1, f 2), E R 3),
such that E H(t) for any E It is easy to see that gE 
Following [18 ], [26 ], [27] introduce

DEFINITION 3.1. - A function tl); ~6) is a (strong)
solution to (3 . 2) if there exists a sequence of functions x) E 
such that A(uk) = 0 on tl) and the following properties are fulfilled

a) atuk - A(V)uk tends to 0 in tl); ~6),
(3 . 3) b) tends to 0 in 

c) x) tends to in ~6).

REMARK 3 . 2. - In the case, when g(x) E H(t), the Hilbert space intro-
duced in section 1, one can replace Lfoc by L2 and COO by in the above
definition.

THEOREM 3 . 3. - Suppose Then there exists a unique strong
solution to the mixed problem (3.2) for the Maxwell equations.

Proo, f. 2014 By using the principle of causality (see [8 ]) and the assump-
tion that the obstacle lies in a fixed ball one can reduce the mixed pro-
blem to a similar problem where Q(t2, tl) and tl) are replaced by
Q n V and 3Q n V, where V is a sufficiently small neighbourhood in ~4
intersecting aQ and the plane t = The solution u = (E, H) describes
an electromagnetic wave, for which one can define the field strength ten-
sor F~k in the coordinate system (t, x) by

The tensor F~k is antisymmetric, i. e. F~k = - and hence (3.4) defines
correctly this tensor. Since we shall use the transformation laws of tensors
under coordinate transformations, we shall denote the coordinates by
upper indices, x3 and shall use the rule of changing the
upper and lower indices by means of the metric tensor, which in the coor-
dinate system x’ has the form = diag (1, - 1, -" 1, - 1). For instance
F’k = is the inverse matrix Notice that
here and below in this section we use the summation convention for repeated

Vol. 50, n° 1-1989.



48 V. GEORGIEV

upper and lower indices running from 0 to 3. Then the mixed problem (3 . 2)
locally in V reads (see [32 ])

where ~j = ~xj, * Fjk = 1/2 ~jkmnFmn is the tensor dual to ~jkmn are the

Levi-Civita symbols and is determined by (3.4) and the initial data
in (3.2). Let the boundary 5Q be determined by x3 - ~B x2) locally
in V, while the domain Q is defined by x3  ,u. Changing locally the variables

..... - ay’ ayk Sr

we see that the metric tensor m the new variables y becomes g - -ð ~ .

Similarly fjk = ~y3 ~xs - 
Fsr represents the strength tensor in the new coor-

dmates y . Finally, Fjk m the new coordinates becomes fsr = ~yj ~xs ~yk ~xr Fjk.ax ax

Moreover, the Jacobian of the transformation (3.6) is 1 and the metric

volume in the new coordinates is g = det (g’k) _ - 1 = det Therefore,
the Maxwell equations in the new coordinate system y~ can be written in
the form (see [32 ]).

where ~’j = Setting 03C6(x) = x3 - xl, x2) we see that the boundary
condition in (3 . 5) is (* = 0 on aQ. In the new coordinates y’ it
becomes ~3kmn fmn = O. The initial data are determined by = ajsakmFsm
at t 1, where as = at y° = t 1 . Thus we are going to the
mixed problem

Here V* is the image of V under the transformation (3 . 6). As usual (see [8 ],
[32 ]), one can introduce the vectors called respectively electric
field, magnetic induction, deplacement and magnetic field by the equalities

Annales de l’Institut Henri Poincaré - Physique theorique



49MAXWELL EQUATIONS OUTSIDE MOVING BODY

Then the mixed problem (3 . 7) becomes

Next by using the assumption together with the results in [8] ] one
can prove that b) = M(t, h) for some positive symmetric (6 x 6)
matrix depending only on the function /1. Since the boundary conditions
are fulfilled, for 0 we have

To prove the existence and uniqueness of a strong solution to (3.9)
consider the mixed problem

By using the results in [18 ], [27] one can prove the existence and uniqueness
of a strong solution to the above problem since the boundary is uniformly
characteristic and the boundary condition is conservative one. To approxi-
mate any solution to (3.11) by smooth functions one can use Friedrich’s type
molifiers. More precisely, choose j E Co(~3), such that y° &#x3E; 0 }

Then e£, hE, bE, d£ are smooth with respect to y’ and satisfy
(3.12) in 

On the other hand, in the coordinates xk the electric and magnetic fields
satisfy for x° = t 1 the equalities
(3.13) divE=divH=0

in the sense of distributions in S2(tl). From (3.12), (3.13) and the transfor-
mation laws of f’k and fjk one obtains div’ dE = div’ 0, where dE
and bE are the traces of d~ and bE on y3 - 0. By using once more (3.12)

Vol. 50, n° 1-1989.



50 V. GEORGIEV

we get div’ dE = div’ bE - 0 in {y3  0} n V* and conclude that (3.13)
together with the above equalities can be written in the form

where A3( y) is an invertible (6 x 6) matrix. Therefore eE, hE, dE, bE are smooth
functions V*. From the Maxwell equation (3.12) we
obtain ~’0b~3 + ~’2e~1 = 0. Choosing y3 - 0 and using the boundary
condition in (3.11) we get 0 = ei = e2 = ~’0b~3 on y3 - 0. Now the pro-
perty (3 .10) implies that b3 = 0 on y3 = 0. Therefore, (3.9) holds with e, h,

replaced by eE, hE, dE, bE.
This completes the proof of the Theorem.

REMARKS 3.4. - a) Replacing by L2 and COO by Co in defini-
tion 3.1, one can prove the existence and uniqueness of the solutions to
the mixed problems with the initial data in H(t ). Therefore, one obtains
a result similar to the one obtained in [8 and can construct the operator
V(t, s) acting from H(s) into H(t ).

b) By using the techniques developed in [26 ], [27] one can prove HS esti-
mates assuming the initial data in (3.2) satisfies certain compatibility
conditions.

c) Extending bE, hE, eE, dE as 0 for y3 &#x3E;_ 0 and using the inverse trans-
formation to (3 . 6), one can prove the injection H(t ) c Ho.

d ) The above Theorem shows that the mixed problem (3 . 2) for u = t(E, H)
can be transformed locally in V under the transform (3 . 6) and w( y) = N( y)u
into the following mixed problem for w

where M( y) is a positive (6 x 6) matrix defined by the equation

while N( y) is an invertible (6 x 6) matrix defined by

We close this section by a verification of a representation formula for
the solution x) to (3 . 2) with initial data u(t 1, x) = x).

THEOREM 3 . 5. - Suppose oc(t, jc) = Uo(t)f, f ~)),
where ~ is the translation representation constructed in section 2, while

Annales de l’Institut Henri Poincaré - Physique theorique



51MYXWELL EQUATIONS OUTSIDE MOVING BODY

x ~2). Then the solution M(r) to (3 . 2) with initial data
= can be represented by

where G is the solution to (3.1).

Proof. 2014 We know that G = - ~’(t +s-(~~~)u+ where w is
a solution to (3 . 2) with initial data w(t 1, x) = d(t 1 + 5 - ~ x, )v. Thus
the right-hand side of (3.14) is

Now the Corollary 2.2 implies that the right hand side of (3.14) is

c  w(t, x, s, This function is also a solution to (3 . 2)

with initial data x), according to Corollary 2 . 2. Applying the unique-
ness of the solution to the mixed problem (3.2) we obtain (3 .14).

This completes the proof of the Theorem.

4. REPRESENTATION OF THE SCATTERING KERNEL

The scattering operator is defined by

for f E Our goal is to represent the operator S* = 
-+ N), where Rtr is the translation representation cons-

tructed in section 2 and  = ~ k(cc~) E L2(~2, C~); 7r-(~)A; = k ~. The defi-
nition of the Hilbert space N together with the properties (2 .1 ) of the pro-
jection imply the equality S* = on ~i). The operator
in the right hand side of this equality can be extended as an operator on
L2(~ x ~2, ~6). The assumption (H3), concerning the existence of the
scattering operator S, guarantees that this operator is bounded. The
Schwartz kernel theorem enables one to find a kernel ~ # of the operator
~ _ (S* - which is (6 x 6) matrix-valued distribution

where S k are distributions on R x S2 x [R x S2, s and s’ are real numbers,
while OJ and OJ’ are unit vectors on ~2. The Schwartz kernel theorem asserts
that the equality

Vol. 50, n° 1-1989.



52 V. GEORGIEV

holds. Here (, ~K denotes the inner product in the Hilbert space K, k(s, 
i(s’, Co( x ~2, 1R6) and the integral in the right hand side of (4. 2)
is taken in the sense of distributions over IR x ~2 x IR x ~2.
The matrix-valued distribution S* is called scattering (echo) kernel

(see [7 ], [24 ]). The main goal of this section is to represent the scattering
(echo) kernel S*.
For the purpose choose to be smooth vector-valued in C6

functions, such that ’

Since f, g E S(1R3, (6), the functions a and 03B2 are smooth for (t, x) E 1R4.
Moreover, the property 7c-(c~)A:eL2(~~) together with the fact that

maps ~) onto yield Similarly, 
On the other hand, combining (4.3), (4.4) with the Definition 2.1 of

the entering and deparing space D p and Proposition 2 . 3, we obtain
the properties

For completeness we shall verify (4.5) d) since the proofs of the other
properties are similar. To prove the mentioned property we start with the
identity ~co). Assuming s  p and t &#x3E; a + p,
we derive s - t  - a and the property (4.3) shows that we have the
property = 0 for s  p. Hence, The inclu-

sion Dp c H(t) follows from proposition 2. 3. This proves the property (4. 5).
The definition (4.1) of the scattering operator suggests us to consider

the function u(t, x, t’) = t’)H(t’)Uo(t’) f, t’  - P.. Then u(t, x, t’) is a
strong solution to the mixed problem -

Using the uniqueness of the strong solution and the inclusion

we obtain the equality u(t, x, t’) = x(t, x) for t  - pa. Hence u(t, x, t’) is
independent of t’ and solves the mixed problem

Annales de l’Institut Henri Poincaré - Physique " theorique 
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The results in [8 ] (section 3 too) show that M(x) is smooth up to the

boundary aQ since a is a smooth function. Moreover, finite dependence
domain argument yields

After this preparation, we turn to the representation of the scattering
kernel. Setting

we see the existence of the scattering operator leads to the property

Since a and 6 are elements of we have the equality

Now using (4.5), (4.7) we find the equality

Next we need the relation

where T &#x3E; p + a, X(T) - {(x, t) E t  T }. To prove (4 . 9) we exploit
the smoothness of u, x, J3 up to the boundary aQ and the identities

Integrating the above identities into domain Q(T)={ (x, t ) E Q, t  T }
using (4. 5), (4 . 7) and the property u(t, x) - 

= 0 for t  p + a, we

obtain (4.9). Thus we derive the equality

For u - a one can use the representation formula
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obtained in Theorem 3.5, while for 03B2 Corollary 2.2 yields

Therefore the equality (4.10) leads to

THEOREM 4.1. - The scattering (echo) kernel is

where

and the function

is the unique strong solution to the mixed problem

By using HS-estimates with s  0 (see section 3) one can derive the
property 

i.. i W ̂1.. i m,..r-W T T - r / !1 /TB (TT 
~f 

1 ~1 B B

for any integers r &#x3E; 0 and T &#x3E; 0. This fact leads to

COROLLARY 4.2.2014L*((~o/,~) and are smooth

functions of (s, E IR x ~2 x ~2 with values in the space of distri-
butions of s’ E IR.

5. LOCALIZATION OF SINGULARITIES

An important role in the investigation of singularities of the scattering
kernel is played by the arrival surface

Throughout this section suppose a) =~ E 52 x 52 fixed. Set

The following j two lemmas due " to Cooper and o Strauss [9 ], will play an

important role in our investigation.
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LEMMA 5.1 (see [9 ], [24 ]). Let (t*, ~)eE(5*, cv). Given any s &#x3E; s*,
there exists (t, x) E E(s, co), such that

LEMMA 5 . 2 (see [9 ], [24 ]). - Given any E &#x3E; 0 there exists 5(s) &#x3E; 0,
such that for 0  5  ~(E) we have

Given any smooth function E cÜ(1R3), denote by u,~(t, x) the solution
to the mixed problem

where A(t, x) is the operator of the boundary condition and

Introduce the cut-off function

where 5 &#x3E; 0, ~(7) is a smooth function with support in the segment ( -1,1)
and 03C6(03C3) = 1 for |03C3| ~ 1/2. The main result of this section is

PROPOSITION 5.3. - Suppose supp 03C8 n r(s, OJ) ~ 0. Given any E &#x3E; 0,
there exists 5(s) &#x3E; 0 with the property

Given any (t, y) E aQ n sing supp there exists x E supp ~,
such that the inequalities

(5.4)  

( ~Y~~~-~~-h(s)~+~ ~x~~~-~~-h(S)~ I + 
I  E hold for diam (supp  ~  5(s).

Here diam (supp is the diameter of supp 03C8 and

Proof. Let (t, y) E aQ n sing supp The first step the proof
is to choose x E supp 03C8, such that  t - Tmin .
To prove this we need the following

LEMMA 5.4. - Given any (t, n sing supp (u,~ the distance

between y and supp 03C8 satisfies the inequality

(5 . 5) dist ( y, supp  t - 
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Proof of Lemma 5 . 4. shall follow closely the proof in [24 ]. Denote
by r", the solution to the mixed problem

where o x) = + s -  = 7~/2 0 and
d(u) = 0 ,  0. Since o j i = ~’ the uniqueness of the solution to (5.2)
yields

If the property (5.5) is not valid, we have the inequality

for some ~i &#x3E; 0. Denote by Cy,t the cone

Therefore, we are going to

Now the principle of causality (see [8 ]) for the solution r", implies
that h~(t, x) = 0 in which contradicts the assumption

This proves the lemma.
Turning again to the proof of Proposition 5 . 3, one can apply the above

lemma and find x E supp t/J, such that

On the other hand, we have the inequality

since x ~ supp 03C8. Consider the identity (see [24 ])

where

Each of the terms Di, D2, D3 has a small lower bound. Indeed,

in view of (5.7) and (5.8). By using the assumption

together with the estimate diam (supp  5, we can arrange the inequality
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Finally, Lemma 5 . 2 guarantees that t + s   y, ~ ~ + E/6 provided
(t, y) E supp ~. Since ~+.s2014~C!/~+ h(s) ~  ~, we obtain

(5.12) D3 = [~s-~~)+~)+y,~)-t-~]/2&#x3E;-~/2-s/12.
Since the left hand side of (5.9) satisfies the estimate | t + s - y,03C9’&#x3E; + |03B4,
combining (5.10)-(5.12), we get

provided diam (supp ~ 5. From (5. 8) and (5.10) we get

Finally, the equality

leads to

The above estimates imply that

provided diam (supp  b. Choosing 03B4 ~ 03B4(~) and 03B4(~) small enough
(say ~)  E/28), we obtain the property (5.4).

This proves the Proposition.

6. TRANSFORMATION OF SOLUTIONS
AND CONSTRUCTION OF MICROLOCAL PARAMETRIX

TO THE MAXWELL EQUATIONS
IN THE PRESENCE OF MOVING OBSTACLES

In this section we shall construct suitable local transformations of the

variables (t, x) and the solution

to the Maxwell equations near a fixed point

The localization of the previous section suggests us to study only the case,
when r(s, o) = { x E 1R3; (( x, ro ) - s, x) E is an isolated point
on r(s, with the property
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Choose 1/ c ~4 as a small neighbourhood x*) and the boundary aQ
is defined locally in 1/ by the equation x3 = ,u(t, x’), x’ = (xl, x2), while
the domain Q is determined in 1/ by the inequality x3  ,u(t, x’).
The mixed problem for the Maxwell equations, needed for a represen-

tation of the scattering matrix has the form

where A = A(t, x) is the matrix of the boundary condition in (1.1).
The purpose of this section is to study the local transformation of the

mixed problem (6.1) under the following local coordinate transformation

(6 . 2) Yo = t~ Yi = Y2 = ~2, Y3 = x3 - ,~(t, 0.
The rotation and translation invariance of the Maxwell equations show,
that without loss of generality we can assume

Denote by ~*, y*, Q* the images of "’f/, (t*, x*) and Q respectively under
the coordinate transform (6.2). Then Q* locally is defined by 3/3  0.
Moreover the boundary aQ* is flat and defined by y3 = 0.
One natural idea is to use the transform of section 3 based on the tensor

properties of the Maxwell equations. The remark (3 . 4)d ) shows that we have
to solve the equations

with respect to the unknown matrices N, M. Then the substitution

will allow us to construct a parametrix of the Maxwell system. The direct
calculations of N( y) and M( y) are too complicated. Therefore, we propose
another substitution

where

This substitution is similar to the one obtained in section 3. Namely, one
can verify the property

The main advantage of the new substitution is the simplification of the
exact computation of the leading £ singularity of the scattering £ kernel.
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The first result of this section is

PROPOSITION 6.1. - Suppose is a solution to the mixed pro-
blem (6 .1 ). Then w(y) = [I + yA(e3)]u is a solution in the new variables y,
defined by (6.4), to the mixed problem

where A* = A [I + yA(i3)]-i, oy. _ 0), i3, n, yare defined accor-
ding to (6. 5) and D is a differential operator of order 0.

Proof The eigenvalues of the matrix A(i3) are 0, :t 1. Therefore the
matrix [I + is an invertible one. Comparing the boundary condi-
tions in (6 .1 ) and (6 . 6) we see they are equivalent. To obtain the first
equation in (6. 6), we use the fact that the solution to (6.1) satisfies also
the equation

where L(t, x) is an arbitrary (6 x 2) matrix. Next, we use the equalities
Vx = Vy’ + = a,,o - and see that (6 . 7) in the new varia-
bles y takes the form

The vector i3 enables one to introduce the orthogonal projection
onto the linear space spanned by f3 = t(i3 , i3) E ~6 and

the complementary projection = I - ~norm(~) = ~+(~3) + ~ _ (i3).
Then the solution u can be represented in the form u = + 

We shall need the following properties of these projectors

We choose the linear operator L( y) : ~2 ~ ~6 so that the term in (6 . 8)
involving the normal derivative vanishes in 1/’*. Therefore
we are going to the equation

An operator L( y) with the above property can be found directly

To check the property (6.10) choose f3 - t(i3, i3) E Im Then

P(~)~=(1, l)e~ and the definition (6.11) of L implies that LP(~)= -~3.
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Since Im 03C0norm is one dimensional linear space this proves the property
(6.10). Next we shall use the relation

which can be verified directly from the form of the differential operators P, A
and the definition (6.11) of the operator L. The relation (6.12) yields

differential operator of order 0.

Combining (6.8) and (6.13), we obtain

with D being a differential operator of order 0.
This completes the proof of the Proposition.
Our next goal will be to construct a parametrix to the mixed problem

(6.6) near the fixed point

and f defined in the new variables y by

Now our choice of the coordinate system implies that

It is not difficult to calculate locally the coordinates of the unit outem
normal N(x) at Since is defined locally near x* by
~(~, (D~ 2014 s, x) = 0, where ~(t, x) = x3 - x’) and the outern domain
for is determined locally by 03C6  0, we conclude that N(x) is parallel
to - ~~t ~ - On the other hand, the equality

(6.1) and the concrete form of the function ~ lead to

in the coordinate system we have chosen. To construct a microlocal para-
metrix of the mixed problem (6.6) we use the projections and 03C0tan
introduced above. Setting and and applying
the operator 03C0norm to the first equation in (6.6) we obtain microlocally
the equality 

...

where K is a pseudodifferential operator of order 0, defined o micro locally
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near p*, whose principal symbol at p* is 0. Applying the projection v

to the first equation in (6.6) and substituting wnorm from (6.17) we get

where and Q(y, Dyo, Dy’) is a pseudodifferential operator of
order 1, whose principal symbol at p* is

To construct a parametrix for (6.18), we shall prove that the system in
(6.18) has characteristic surfaces of constant multiplicity. More precisely,
we shall prove that the roots of the equation

have constant multiplicity for p = ( y, r~’) close to p*. Indeed, choosing
p = p* we see direclty from (6.19), (6.16) that the roots of the equation
for this case are -

and they have multiplicity 2. Since the roots of (6.19) are continuous
functions of p, we conclude that any root ~, of (6.19) satisfy the property

0 for p close to p* ad À arbitrary root of (6.19). Then the
above decomposition of w into + wtan implies that any root to (6.19)
is also a root to the equation

The transformation constructed in the proof of proposition 6 .1 guarantees
the above equation is equivalent to

Setting Ço = r~o - = r~’ + ~,n we see that ~o ~ 0 is close
to ~,n. By using the projections 7c+(~), 7Co(~) and the property

we see that the matrix çol - A(~) - ~P(ç) in the basis 7E+(~ 1t-(ç), 1to(ç)
has the form diag « Ço - I ç 1)12, (ço + I ç ~l2-LP(~o(~)). The last
matrix (~ol2 2014 LP(ç)1to(ç) is an invertible one since ~o ~ 0, ~ is close to ~,a~
and P(~)7ro(~) = 0. Thus /). is a root to the equation

and the roots of (6.19) have constant multiplicity 2.
Denotes these roots by ~±(p). The corresponding projections on the

eigenspaces are
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with G &#x3E; 0 sufficiently small. Decompositing wtan into = w + + w-,
where being a pseudodifferential operator of order 0
with principal symbol n±(p). Then the first equation in (6 . 6) reads

_ 

where are pseudodifferential operators of order 0. Applying Taylor’s
decoupling procedure (see [30 ], ch. IX, p. 205, or [31 ]) we get

where R+ are pseudodifferential operators of order 0. The propagation
of singularities of w + ( y) is along the bicharacteristic curves of the principal
symbol of the operator Dy3 - 03BB+(y, Dy0, Dy.). Choosing w- = 0, we can
arrange the last equation in (6.6) modulo smooth function in a small
conic neighbourhood of p*. We construct w+ in the form

where J is a local Fourier operator

The local integral operator satisfies in a small conic neighbourhood
~’ c fR x T*(~) - {0} of p* the property

The phase function ~ is a solution to the equation

2

with initial = The symbol a(p) is classical one of
j=O

order 0 and a(p) = I for y3 = 0. The distribution function g will be deter-
mined from the boundary condition in (6.6) having the form

The principal symbol of [I + II+ at p = p* is (~ + 7r+(~). One
sufficient condition which enables one to solve the pseudodifferential
equation with respect to g is

Then any v E ([6 can be represented in the form

for p close to p*, b( p) is the linear operator in C6 defined by the above
equality. Hence g can be represented in the form g = b( f ), where b is a
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pseudodifferential operator of order 0 with principal symbol b( p). Finally,
we obtain

and

where L is a pseudodifferential operator, whose principal symbol 
at p* is the linear operator defined by

This completes the construction of the parametrix. Especially, in the case
of a perfect conductor the principal symbol restricted to Im 7r-(~)
has the simple form

Indeed, the boundary matrix A for this case is (3 x 6) matrix

where

Then we have the equality A(y*) = [ - Let v = (v’, v") E ~6,
v’ E ~3 and v E Im 7c-(~). Let = w, w = (w’, w") E Im 7r+(~). Then
the property (2 . 2) implies that!/ .1 co, t/’ = a~ x v’ and w’ 1 cv, w" = 2014 cv x w’.
Now the equality A(y*) [v + w] = 0 can be written down in the form
a~ x [( - 1 + y)v’ - (1 + y)w’ = 0 and we derive that has the
form (6 . 25) on Im 7r-(~). This completes the construction of a microlocal
parametrix needed in the next section.

7. LEADING SINGULARITY
OF THE SCATTERING KERNEL

AND THE INVERSE SCATTERING PROBLEM

The representation of the scattering (echo) was

obtained in section 4. Throughout this section we assume 03C9’ - - wand
(D E ~2 fixed. The main goal of this section is to investigate the singularities
with respect to 7’ of the scattering kernel. First, we need

Proof The representation formula of the scattering kernel implies
that (t’, x’) E supp G, t’ + s’ + ( x’, a~ ~ = 0 for some (t’, x’) E E provided
s’esupp S*. On the other hand, we have shown in section 4 that
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where co) is the solution to the mixed problem (3 . 2). Denote by Ct,x
the cone

and choose (t", so that (t’, If

by using an integration by parts in the cone (see Theorem 4 . 2 in [8 ])
we see that G = w = 0 in C~,~. This contradicts the assumption (7.1).
Therefore, choosing (t", x") tending to (t’, x’) so that (7 .1) is not true, one
can find ( t, )~suppt,x [d( t + s - x, 03C9&#x3E; ], such that ( t, 
closure of the cone and

Our choice of (t’, x’) guarantees that ( x’, cv ~ + t’ + s = 0. Combining
this equality, (7 . 2) and the fact that ( t, x) E we get

This completes the proof of the lemma.
In order to study the singularities of the scattering kernel near s’ = s + h(s),

choose a cut-off function E C~0(R) with for |03C3| &#x3E; 1, 03C6(03C3) = 1
for  1/2 and consider the filterred scattering amplitude (see [20 ])

where the integral in the right hand side is taken in the sense of distributions.
Our goul is to investigate the asymptotic behabiour as ~, tends to 00 .
The substitution of the representation formula of S # into (7 . 3) gives

with 1 h(s) ]/(5). First, we turn to the

Proof of T heorem 1. The ’ assertion a) follows directly from lemma ’ 7.1.
To prove b) consider the set

where r(s, cv) = min { ( ~ ~ ); y E r(s, (D)}. By using a partition of the
unity on R(s, cv) and the construction of the parametrix near the points
of R(s, cv) we get G lôQ = L(/), where L is zero order classical pseudodifferen-
tial operator defined locally near R(s, co) and f =~’(~+~2014 ~ ~ )7r-(co).
Since the principle symbol of the operator 03BB+(y, Dy0, Dy.), introduced in
the previous section, is real valued from transport equations for the ampli-
tudes of the local Fourier integral operator, which is a parametrix for
Dy3 + ~- , we conclude that the symbol 6L of L has asymptotic expansion
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where are real valued homogeneous of degree - k
functions. Choose v = (v’, v") so that

Hence v E and set t;* = (v’, - v"). Then v* E Im 7r+((~). Consider
the term I(À) = ( a(~,)v, v* ~. Then modulo O(~,- °°) we have

By using the localization principle (Theorem 5.1), we get

where L* is the operator adjoint to Land Wo is a small neighbourhood
of Ro. If the boundary ~Q is defined by x3 = x’) locally near Ro,
we have the equality

where 03C803B4 = + and D is a compact set in R3. Applying the
formula for the action of a pseudodifferential operator on an exponential
type function, we are in situation to apply the following result of Soga [29].

where D is a compact set in is real valued and ~,) ~ 
as 03BB tends to 00 with real valued and supp 03B2j c D. Assume 0,

&#x3E; 0 on the = min ~(y)}. Then there exists 
depending only on the dimension n so that

In our case the phase function has minimum on R(s, cv) and the
integral iI(~,)/~, has the form given in the above theorem with

In the previous section we have shown that on R(s, a~) we have

7j~* ~ = d ~ v ~ 2, where d is nonzero. Hence &#x3E; 0 on Ro.
Applying the result of Soga we complete the proof of theorem 1.

Vol. 50, n° 1-1989.



66 V. GEORGIEV

Proof of Theorem 2. 2014 To construct a dense subset T of tR x S)2 consider
the Gauss map

Applying Sard’s theorem we find a dense subset K(t) c ~2, such that
for co E K(t ) there are only finite number of isolated points ..., xk E 
such that ( x~, = min {  ~ ~ ); x E r(s, co)} and the boundary 
is strictly convex near = 1, ..., k.
Next we need

_ LEMMA 7.4 ([7]). - Suppose and r(s, co) are defined by

Then the equality t + s = implies that = r(s, co).

Proof. Any point x* E with ( x*, cc~ ~ = belongs to 
for s = ( x, ~ ) 2014 t. Hence we, have

To prove the opposite inequality choose ~), such that ( x, cc~ ~ = r(s, a~).
Let Then t + s = ~ x, a~ ~ and from (7 . 5) we get ? ~ 
choose x* E such that  x*, a~ ~ = t + s = Since (t, x*) and
(x, t) are on the arrival plane, we have the relations

On the other hand, the points (t, x*) and (x, t ) are on the boundary aQ
and t ~ t. Therefore the inequality in (7 . 6) contradicts the assumption (HJ
that the boundary is timelike. Thus we get t = t and the proof is complete.
The above lemma suggests us to consider the functions

Lemma 7 . 4 guarantees that the unique solution to the equation 
with respect to t is t = t(s, cv). Set

Since K(t) is dense in S2, we conclude that T is dense in R x S2. Turning
again to the proof of theorem 2, we assume (s, cv) E T fixed and t* = t(s, ~).
We see that Lemma 7.4 yields the set

coincides with

for t* = t(s, cv) determined o by (7 . 7). The definition of the set T implies that
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R(s, a~) = Ro(t*, a~) consists of a finite number of isolated points Xl, ..., ~
such that and co) are strictly convex near = 1, ... , k.
To obtain the leading term of the asymptotic expansion of a(~,) we quote

Proposition 5. 3 with = - 03C9 and see that given any s &#x3E; 0, one can
choose 5 = 5(s) &#x3E; 0 sufficiently small so that [A(vx) - (7 . 4)
can be replaced by

where

Indeed, their difference is a smooth function according to Proposition 5 . 3
and the fact that = 1, ... , k, form the set R(s, Integrating by parts
with respect to t into the integral

we see that the above integral is 0( ~, ~ 1- (0) and

The support of GE lies in a small neighbourhood 1/’ of Ro. Thus one can
choose the coordinate system as in section 6, i. e. aQ is defined by x3 = x’)
with xj = (xj’,0)~x’ (t*,xj’) = 0 and Q is defined locally by x3  x’).
The property (6.16) enables one to simplify the integral in (7 . 9) and obtain

where ~,u - Combining (7 . 8), (7 . 9) and (7.10) and choosing
v = (v’, v") E ([6 to be a constant vector we derive

Replacing G by the parametrix L(f) constructed in the previous section
we obtain ( ~)~ ~ ) = ~(2?c)~  v, I(~,)v ), with

where L* is the pseudodifferential operator adjoint to L. The action of a
pseudodifferential operator on exponential type function 
has the expansion
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where is the principal symbol of L*. Thus we derive

with 7L* = 1 + Vx. /4 Since

we can use the equality

where t(x’) is the local solution to the equation t + s = x’) near
(t*, x) E R(s, co) and f(t, x’) is any smooth smooth function with compact
support. Thus we are going to the equality

+ terms involving lower powers of /).
Here

Applying stationary phase method ([72], ch. VII, p. 260) and using the fact that

being the Gauss curvature of x’, we obtain

This completes the proof of theorem 2.

Proof of Corollary 3. Theorem 1 guarantees that

max sing supps’ S*(s’, - 03C9, s, co) = s + h(s, 
Therefore, one can recover

Applying Lemma 7 . 4 we conclude that the equality

holds with ~ = 2014 ~ 2014 From (7.12) one can recover

~ = 2014 ~ 2014 and min { ( x, co ) ; (x, t*) E from the back-

scattering data. On the other hand, the support function of aQ n ~ t = t* ~
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determines the convex hull of the obstacle 3Q n { t = t* ~. Therefore,
one can recover the convex hull of the obstacle at all times from the back-

scattering data.
This proves the Corollary.
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