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ABSTRACT. 2014 We review some of the aspects of quantum cosmology
with respect to quantum mechanics and general relativity.

RESUME. 2014 Nous presentons quelques aspects specifiques de la cosmo-
logie quantique par rapport a la mecanique quantique et la relativite

generale.

1 INTRODUCTION

Quantum mechanics has inherited many basic features from its origin
as a theory of microscopic phenomena. The structure of time in quantum
mechanics is essentially Newtonian and it took several years to incorporate
special relativity into quantum mechanical theory. Quantum mechanics
has also inherited a commonly used interpretational framework which
makes a complete separation between observers and the system, contrary
to the spirit of the theory. This means that in quantum cosmology, where
attempts are made to model the universe as a quantum system, the prin-
ciples of quantum mechanics have had to be stretched. The result is arguably
a more attractive theory. Some of the rigid framework has disappeared
and many of us have to admit to being part of the quantum system.
Modern theories of cosmology make use of the principle of general

relativity, that the laws of physics can be expressed in an equivalent way
for any choice of coordinates. This means in particular that coordinate
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time should not be a physical observable. However, general relativity is
not unique in having a time reparameterisation symmetry. The same
symmetry can be written into any Hamiltonian theory and a theory for-
mulated this way has many advantages. It is well known that symmetry
can be used to reduce ambiguity in the form of the quantised theory.
DeWitt [1 ], for example, demonstrated that covariance on configuration
space could be used to fix the operator ordering in Schrodinger’s equation.
The time reparametrisation symmetry extends this still further, implying
that Schrodinger’s equation is covariant under conformal rescalings of
the wave function.

There are occasions in quantum cosmology where it seems necessary
to construct the quantum theory by a sum over random paths or a Feynman
path integral, rather than by the action of operators on a Hilbert space [2 ].
The choice of paths is part of the quantisation procedure. A sum over paths
which are closed and compact seems to suit applications both in cosmology
and particle mechanics. This gives some indication that a general quanti-
sation procedure exists which can be applied to all physical theories.

Finally, the tendency of quantum mechanics to mix levels of description
is important for the interpretation of quantum cosmology. Somehow, the
real world of experience has to be related to the quantum description in
terms of wave functions and operators. This process is what is usually
meant by « measurement ».
Our common experience is only directly about macroscopic phenomena.

This restricts the class of physical observables to those which cannot
discern microscopic changes of parameters. For these observables, the
quantum state can be replaced by an averaged density matrix, summed
over microstates. This averaging suppresses interference terms in the den-
sity matrix. In the words of J. A. Wheeler [3] ] microscopic phenomena
are brought into our experience by « irreversible acts of amplification ».
The expanding universe, continually increasing its own action, allows
for irreversible acts of self amplification. This is part of what we mean
by the self observing universe.

2. TIME REPARAMETERISATION SYMMETRY

In gravitational theory there is a freedom to choose the time coordinate,
and the quantum theory of gravitational systems has to respect this freedom.
The nearest that we come to a physical concept of time is when a clock
of some kind is introduced as part of the system. Then time evolution can
be defined in terms of correlations between events and configurations of
the clock.

A useful prototype model with time reparameterisation symmetry [4 ], [5] ]
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consists of a relativistic particle moving on a curved manifold. The action is

where xa and pa are the coordinates and momenta. The Hamiltonian

where is the spacetime metric. The lapse function N(t) measures
the rate of change of coordinate time with respect to proper time t. From
this action one obtains the classical equations from the variation with
respect to and xa,

These are the equations for geodesic motion in curved space.
Other models with time reparameterisation can be written in a very

similar way. The non-relativistic particle has an action of the same form
but with H = p2/2m - E. Quantum gravity also has a similar action,
though defined on superspace. The coordinates xa are replaced by the
three metric and gab is replaced by the superspace metric In this
case, spatial reparameterisation symmetry leads also to three additional
momentum constraints [6 ].

Returning to the relativistic particle, when this is quantised the operator
version of the constraint H = 0 becomes Schrodinger’s equation = 0

where is a wave function. The form of H is potentially a source of ambi-
guity, and in general it could take a form

with unknown functions Fl(x), F2(x). In canonical quantisation, the first
term is an obvious factor ordering ambiguity resulting from the commuta-
tion relations. The final term is needed to generate time evolution and is
also ambiguous because of factor ordering problems. In Feynman’s path
integral quantisation, the first term reflects the skeletonisation ambiguity
of the paths, and corresponds to the usual Ito-Stetanovich freedom to
choose stochastic integrals. The final term depends upon how one inter-
polates the action between nearby points [8 ].
DeWitt pointed out in 1957 that the coordinate invariance of the action

could be used to constrain some of this ambiguity and reduce H to
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where V and R are the connection and curvature of the metric g. In fact,
the relevant metric is not gab but rather

Coordinate invariance does not fix the value of F2 [7 ], though some results
suggest that it should be only linear in R [8 ].

There is a way to fix the residual ambiguity by making use of the time
reparameterisation. This is based on the observation that N(t) ~ 
then the action

generates exactly the same classical equations as S. When we come to
quantise the theory, there seems no reason to prefer any particular S over
any other. Suppose, therefore, that we demand that when the quantisation
procedure is applied to it generates the same quantum theory as S.
This assumption fixes the value of F2.
Under the change of N,

the Hamiltonian becomes

where the derivative is now associated with the conformal metric g’ab .
We also have to transform 03C8 to t/1 ill to ensure that

This can only be achieved if H has the conformal coupling,

1-~ 
_

and = co 
2 t/1. However, the only physical appearance of t/1, which is

in the probability itself, remains unaltered because the integration measure
also rescales.
So far only the measure ambiguity of the path integral has been discussed,

but there is also the question of what set of paths should be included in
any given situation. A natural choice is to define the probability ampli-
tude x’) for a particle to be at position x at time x° and x’ at time x°’
to be

Annales de l’lnstitut Henri Physique " theorique "
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where the path integral extends over all paths which are timelike with
endpoints at x and x’ (see fig. 1).

It also includes an integral over the lapse function N. The result is the

same as the free field theory commutator function. If the spacetime mani-
fold is Euclidean, then the result is the analytically continued Feynman
Green function.

Unitarity in the path integral formalism corresponds to the statement
that

where the integral extends over all values of x which have a common time
coordinate (see fig. 2).
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Recently, J. B. Hartle [2] has argued that this decomposition of the under-
lying space is too restrictive for quantum cosmology, and other possibilities
such as the ones shown on fig. 3 have to be considered

In either of these two cases the unitarity condition breaks down. As pointed
out by Hartle this destroys any chance of constructing the usual Hilbert
space structure. (In the diagram on the right of fig. 3, we can recover a
Hilbert space structure at the expense of introducing many body theory
or second quantization.) The path integral still makes sense. Suppose that
the system preparation and observations which we make are expressed
as a set of conditions L on the location of the particle. Then the amplitude
for ce is expressed by a sum over paths ~ which are consistent with ce.

This prescription still leaves unspecified what measure is to be associated
with paths which go to infinity. A significant improvement can be made
if the path integral is constructed not to give the amplitude but the pro-
bability directly. For example, the probability for a particle prepared
at x to appear at x’ is given by

t/~

where /? is the closed path shown on fig. 4,
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The intrinsic time runs in the direction shown by the arrows, with the
result that

Quite generally, it would seem to be advantageous to define a probability
for conditions ~ by 

r

where ~ is the set of paths which are consistent with ~ and also compact.
It is instructive to see how this prescription works in the case that ~ ~

consists of a single point x. Suppose, first of all, that the particle is a simple
harmonic oscillator with H = p2/2m + mw2x2/2. The saddle point paths
with imaginary N start from x and return to x after bouncing of the potential
as shown on fig. 5

The time coordinate is also reversed at the bounce point. The main contri-
bution to the path integral comes from the limit where the path asympto-
tically reaches x = 0, and gives

which is the ground state probability distribution. In this case the prescrip-
tion is equivalent to the one given by Landau for the purposes of calculating
the ground state wave function [9 ].
Now consider a particle in a gas with temperature T, which is related

to a particle in a spacetime which has the imaginary time coordinate
periodically identified with period ~3 = T -1. The path integral prescription
for finding a particle at position x now contains a contribution from
closed curves (see fig. 6). 

-
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which move a distance /3 in the imaginary time direction. This is identical
to Feynman’s path integral prescription for the density matrix [10 ], that is

Finally, in quantum cosmology the point x represents a three dimensional
manifold with metric The probability of measuring g~~ is given by a
path integral over compact four geometries (fig. 7).

Those who are familiar with the Hartle-Hawking formula [77] ] for the
quantum state of the universe will recognise the result that, for simply
connected four geometries,
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This probability only applies in the absence of any further information
about the state of the universe. However, in practice we are interested
most of all by what is accessible to our observations, which of necessity
is a universe in which we are able to exist. This fact implies a set of condi-
tions which allows at the very least for the existence of information pro-
cessing systems. These conditions would include such things as a minimum
size for the universe and restrictions on the phase of its matter content.
The application of such conditions is also a part of what we mean by the
self observing universe.

[1] B. S. DEWITT, Rev. Mod. Phys., t. 29, 1957, p. 377.
[2] J. B. HARTLE in Gravitation in astrophysics (NATO ASI, 1986).
[3] J. A. WHEELER and W. ZUREK, Quantum Theory and Measurement (Princeton Univer-

sity Press, 1983).
[4] J. A. HARTLE and K. V. KUCHAR, Phys. Rev., t. D 34, 1986, p. 2323.
[5] C. TEITELBOIM, Phys. Rev., t. D 25, 1982, p. 3159.
[6] R. ARNOWITT, S. DESER and C. W. MISNER in Gravitation: An introduction to current

research, ed. L. Witten (Wiley, New York, 1962).
[7] J. S. DOWKER, J. Phys., t. A 7, 1974, p. 1256.
[8] L. PARKER, Phys. Rev., t. D 19, 1979, p. 438.
[9] L. D. LANDAU and E. M. LIFSHITZ, Quantum mechanics (Pergamon Press, Oxford).

[10] R. P. FEYNMAN, Statistical physics.
[11] J. B. HARTLE and S. W. HAWKING, Phys. Rev., t. D 28, 1983, p. 2960.

(Manuscrit reçu Ie 10 juillet 1988)

Vol. 49, n° 3-1988.


