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1. INTRODUCTION

Variational principles of Lagrangian type [1] ] provide a solid foundation
for the whole structure of classical mechanics and classical field theory.
In a series of previous papers [2 ], [3 ], [4] ] (see also [5 ]), we have investigated
a generalization of the variational principles, in the case where the smooth
deterministic trial trajectories of classical mechanics are replaced by the
very irregular trajectories of random diffusions in configuration space.
In this approach, the main emphasis is put on the average hydrodynamic
field variables, as the density and the forward and backward drifts of the
diffusions. Through them one can define the action and its variations.
An interesting feature of these stochastic variational principles is that

the critical processes, making stationary the action under suitable time
boundary conditions, are strictly related to states of the associated quantum
dynamical system, according to the general scheme of Nelson’s stochastic
mechanics [5 ], [6 ], [7]. Therefore, apart from subtleties of physical inter-
pretation, for which we refer to [J], [7], [8 ], we can say that stochastic
variational principles provide a kind of stochastic simulation of quantum
mechanical behavior.
The hydrodynamic (Eulerian) approach, as introduced for example

in [2 ], can be usefully complemented by a Lagrangian approach, where
the main emphasis is put on trajectories and variations of trajectories, rather
than on field quantities. In fact, the first pioneering attempts of Yasue,
toward a stochastic calculus of variations [9], [10 ], [5 ], where based on
this Lagrangian point of view. However, very recently, Morato [77] ]
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316 F. GUERRA

and Loffredo and Morato [72] have introduced a very simple and natural
class of trajectory variations, allowing a direct treatment of the stochastic
variational problem in the frame of the Lagrangian approach. In particular,
they have discovered the existence of critical diffusions more general than
those associated to quantum states through Nelson’s stochastic mechanics,
and have investigated their possible physical meaning, especially in connec-
tion with the peculiar quantum behavior of liquid Helium at very low
temperatures [13 ]. 

’

One important feature of the Loffredo-Morato solutions is that the
mean velocity field is not necessarily irrotational, as in standard stochastic
mechanics. Moreover, the equations are not time reversal invariant and
any solution, with generic mean velocity field, relaxes towards a solution
of standard stochastic mechanics, with irrotational mean velocity field
and associated to a quantum state. From this point of view, each quantum
state, solution of Schroedinger equation, acts as a kind of attractor for a
family of solutions of the Loffredo-Morato equations.

This feature could play a very relevant role-also in the frame of the general
attempts towards the understanding of quantum behavior as effect of
random fluctuations of a subquantum medium, as advocated for example,
from different points of view, by Bohm and Vigier [7~] and by Nelson [J].
The main purpose of this paper is to analyze the connections between

the Eulerian and the Lagrangian approaches to stochastic variational

principles. In particular, it will be shown how different time boundary
conditions can select different classes of critical diffusions. For example,
solutions with irrotational mean velocity fields are selected by imposing
criticality of the action under variations which keep invariant the initial
and final densities of the processes. On the other hand, general solutions,
not necessarily irrotational, are found by exploiting time boundary condi-
tions where the local conditional expectations of the trajectory variations
are put to zero (see for example equation (25)).
By exploiting different classes of variations we can found a very large

class of critical solutions, characterized by a real parameter /L The Loffredo-
Morato equations are a special case, so as they are the equations based
on the original definition of acceleration given by Nelson [15 ], without
the irrotationality condition.
The organization of the paper is as follows.
In Section 2, we recall the hydrodynamic (Eulerian) form of stochastic

variational principles, as explained for example in [2 ]. The Lagrangian
frame is introduced in Section 3, where we use the forward process varia-
tions, originally exploited by Morato in [11 ]. In Section 4, which contains
the main results of this paper, we introduce a very general class of process
variations and analyze the consequences of stochastic variational principles
based on them. Finally Section 5 is devoted to some conclusions and
outlook for future developments.
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2. EULERIAN FORM
OF STOCHASTIC VARIATIONAL PRINCIPLES

Let us consider a dynamical system with configuration space Rn and
Lagrangian given by

We introduce a generic trial diffusion q(t), with constant diffusion coeffi-
cient v, and call p(x, t) and ~+~ t), v( -lx, t), t) and t) the density
and the forward, backward, current and osmotic velocities, respectively.
We have

Then the average action is defined, as in the classical case, by

where the limit is taken as A~ -~ 0 + .
A simple calculation shows

where + ... are infinite terms irrelevant for the variational principle,
since they do not depend on the particular trial diffusion and disappear
in the variation of the action [5 ].
We give two equivalent evaluations for the variation of A, under changes

of the process. The first expression is more appropriate to an Eulerian
point of view and can be introduced as follows.

Define the forward and backward transport operator

Introduce the generalized Hamilton-Jacobi principal function 
defined by the antiparabolic equation

with an arbitrary final specification S(x, t 1 ). Under an arbitrary small
change of the process, with corresponding changes 03B403C1, 03B4v(±), in Ref. [2] ]
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318 F. GUERRA

it is proven that the action is changed, up to first order terms, according to

Then we have the following stochastic variational principle (Guerra-
Morato [2 ]). The action is stationary under arbitrary small variations
5r(+), with the time boundary ~p(’~i)=0. if
and only if the current velocity field of the process can be expressed in
the Hamilton-Jacobi form

where S is a function satisfying the equation (6). However, (6) and (8) are
equivalent to the Hamilton-Jacobi-Madelung equation [16 ]

Moreover, the continuity equation must hold

It is well known that the two equations (9) and (10) can be reduced to
the Schroedinger equation

provided one introduces the following expression of v in terms of Planck’s
constant [6 ]

and defines the wave function through the following De Broglie Ansatz

Therefore, we see that the stochastic variational principle selects critical
processes associated to quantum states.
We can also introduce the Nelson acceleration [15 ], [6] ]

and recognize that the dynamical equation (9) is in fact equivalent to the
stochastic Newton equation
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which originally was put by Nelson [15] at the basis of stochastic mecha-
nics, together with the irrotationality condition (8).
Here we see that both the Hamilton-Jacobi expression (8) and the Newton

equation ( 15) derive from the stochastic variational principle, where a
crucial role has been played by the time boundary conditions ~(’, to) = 0,
~(’. t 1 ) = 0. Let us notice that the time boundary conditions = 0,

= 0, usually employed in the variational principle of classical mecha-
nics, have been replaced by the weaker boundary conditions requiring that
the original process q and the varied process q + 5~ have the same distri-
butions at the initial and final times.
The second form of the action variation will be given in next Section.

3. THE LAGRANGIAN FRAME

In the Lagrangian frame the basic role is played directly by the varia-
tions ~q of the process. A very simple way to build a large class of suitable
variations 5~ has been introduced by Morato [77] and further exploited
by Loffredo and Morato [72], [13 ].

Let us introduce a random variable with values in Rn, independent
of q, and define, in the probability space of q and the stochastic pro-
cess r~(t) as solution of the differential equation

with as initial condition. In (16) /(+~(~ ~) is such that

where 8 is a small variational parameter.
Having found ~(t), we define the Morato [77] family of processes 

such that

Let us also define the conditional average

so that

at each generic point x of the trajectory of the trial process 
For the density of we have immediately

Vol. 49, n° 3-1988.
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Through a very simple computation (see [11 ], [72] ] and [17 ]) one can

easily prove the following important result.
Define the action A(to, t1 ; qE) as in (3) and (4) with q replaced by qE.

Then we have

where a is the Nelson acceleration (14) and a’ is an additional term, dis-
covered in [77], given by

Notice that, while a in ( 14) is time reversal invariant, a’ is not. In fact,
it changes sign under time reversal.
The main point of the previous result is that the expression (22) coincides

with the previously found (7), provided (17) holds and is adjusted
so that (~(’, to) is correctly reproduced by (21) at to (then it will be correctly
reproduced at each later time).
Then we can exploit the expression (22) to establish a new variational

principle. In fact, we have that the action is stationary, under arbitrary
process variations, with the time boundary conditions ~(-,~0) = 0 and

Ø( . , t 1 ) = 0, if and only if the following Loffredo-Morato equation holds

Notice that there is no irrotationality condition of the type (8). More-

over, the time evolution (24) is not time reversal invariant.
Therefore, the same expression of the action (7), (22) can give very diffe-

rent results, if different time boundary conditions are exploited. In this
case, the time boundary conditions are equivalent to require

These boundary conditions imply ~(’, to) = 0, ~p(’~i) = 0, but they
are in fact more restrictive. As a result, critical diffusions, associated to

them and satisfying (24), form a larger class. In fact, in the special case
where (8) holds, then (24) reduces to (9), (14).
As it is usual in variational principles, the shift from one class of time

boundary conditions to another can be compensated through appropriate
generalized Lagrangian multipliers. In our case, we can insert an additional
term in the starting Lagrangian (3), (4) of the form
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for a given fixed S( ~, tl) function, as proposed also by Marra [18 ]. Then
the variation (22) acquires an additional term given by

Now the stationarity of the corrected action, with the same boundary
conditions ~(-~o) = 0 and ~(’, t 1 ) = 0, is equivalent to (24), but in addition
we have also the condition

Therefore, the irrotationality condition is enforced at the final time
and one can easily prove (see for example [77]) that it must hold at any
time, as a consequence of (24). Therefore, in this case (24) reduces to the
previous (8) and (15).

In conclusion, the two systems of boundary conditions can be put in
agreement through the introduction of the generalized Lagrangian multi-
plier (26). However, without this term, the time boundary conditions with .

~(’,~o) = 0 and ~( ~ , t 1 ) = 0 give rise to critical processes satisfying the
Loffredo-Morato equations (24), which are more general than those
obtained through the density boundary conditions.

4. A GENERAL CLASS OF VARIATIONS

It is very simple to extend the class of process variations considered in
the previous Section. In fact, independently of the variations based on (16),
(17), we can introduce also backward variations based on a time inverted
procedure. Let us introduce a random variable r~~ _ ~(t 1 ), independent of q,
and define the process r~~ _ ~(t) as solution of the differential equation

with ~(-)(t1) as final condition (see also [18 ]). In (29) 1(’-) is such that

where 5’ is a new variation not necessarily connected with the 03B4 variations
introduced before.

By following the same method as in the previous Section, we can intro-
duce process variations of the type

Vol. 49, n° 3-1988.
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with

Then the new variation of the action VA can be expressed as in (22)
with ø substituted by ~~ _ ~ and a’ substituted by - a’. Therefore, if we
establish a variational principle based on b’A = 0, with time boundary
conditions (~-)(’~o) = 0 and ~(-)(’, = 0, we end up with a criticality
condition

which is the time inverted of (24).
At this point, as it has been remarked in [18 ], we could impose criticality

with respect to both sets of variations. Then we would get (24) and (33)
at the same time. But in this case we have necessarily a’ - 0 [18 ], and the
system (24), (33) reduces to satisfy (8) and (15).

But there exist a more subtle procedure.
In fact, it is easy to prove the following simple result [17 ]. For any

forward variation ~(+)(~), as introduced in the previous Section, it is possible
to find a backward variation such that the following equality holds

The proof is very simple, but it involves long calculations, which can not
be reported here. We refer to [77] for a complete proof.
For a generic real parameter ~, let us consider the class of process varia-

tions given by

Due to linearity, the associated action variation is given by

where 5(+), 5(-) are the variations associated to ~(+), ~(-), respectively.
Recalling (22) for ð( +)A and its time inverted (with - a’ in place of a’)

for 5(-)A, we find immediately the following general form

where ~ is the common value of ~+), ø( -) as in (34), and the new accele-
ration ~ is given by

Of course, ~, = 1 gives the Loffredo-Morato expression and ~, = 0 its
time inverted one.

Therefore, we see that if we require stationarity of the action under
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process variations of the type (35), with time boundary conditions Ø( ., to) = 0
and ~(’, t 1 ) = 0, we obtain the criticality condition in the form of a gene-
ralized stochastic Newton equation

In particular, we obtain the important result that the original Nelson
dynamical equation (15), without the irrotationality condition (8), can be
obtained in the frame of a stochastic variational principle, with appropriate
boundary conditions. In fact, it is sufficient to select ~, = 1/2 in (35), (38).
Boundary conditions based on the density give rise to the irrotationality

condition (8). Boundary conditions based on the less restrictive (25) do not
enforce (8). For ~, &#x3E; 1/2 we have Loffredo-Morato type equations with
a generic coefficient (2~, - 1) multiplying the a’ correction. For ~,  1/2
we have their time inverted counterpart. The symmetric case ~, = 1/2
gives rise to the time reversal invariant Nelson equation, without the irrota-
tionality condition.
By exploiting the same methods as in [12 ], we see also that the solutions

with ~, &#x3E; 1/2 relax to solutions with ~, = 0 and the irrotationality condition
(i. e. Schroedinger solutions) as t -~ 2014 oo. The same happens to solutions
with ~,  1 /2 as t ~ oo .

On the other hand, the solutions with ~, = 0 are in general different from
solutions associated to Schroedinger equation (see also Morato [19 ]).
Of course, systems of solutions associated to different values of ~, can

be related through generalized Lagrangian multipliers, equivalent to

interactions with suitable external vector potential fields, as analyzed
in [77].

5. CONCLUSIONS AND OUTLOOK _

We have seen that stochastic variational principles have an extremely
reach structure. In particular, by exploiting different classes of time boun-
dary conditions, we can obtain a simulation of quantum mechanics, with
the irrotationality condition and the Madelung equation, or a class of not
necessarily irrotational solutions relaxing toward those of quantum mecha-
nics.

Moreover, we have also seen that Nelson formulation of the second
principle of dynamics, without irrotationality, can be obtained in the frame
of these stochastic variational principles.

It would be very interesting to see whether the time boundary conditions
employed here, and in particular the parameter /)., are connected with
some physical meaning at the observational level, or are purely formal
constructions.
Of course, this is strictly related to the problem of the possible physical
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reality of the quantum fluctuations affecting the particle motion. Surely,
this problem can not be settled yet, mainly for the lack of concrete models
simulating the Brownian disturbances appearing in stochastic mechanics.
However, the general structure of stochastic mechanics, as explored till

the present times, seems to tell us that these quantum fluctuations, if they
exist, must have very peculiar features, well beyond those of thermal fluc-
tuations or general disorder fluctuations, suitable to incorporate the main
quantum mechanical properties, and in particular the full coherence of

the wave function in configuration space.
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