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ABSTRACT. - This article reviews the stochastic interpretation of the
quantum theory and shows in detail how it implies non-locality.

RESUME . - Cet article presente une revue de 1’interpretation stochas-
tique de la theorie quantique et montre en detail en quoi elle implique une
non-localite.

1. INTRODUCTION

It gives me great pleasure on the occasion of Jean-Pierre Vigier’s retire-
ment to recall our long period of fruitful association and to say something
about the stochastic interpretation of the quantum theory, in which we
worked together in earlier days. Because of requirements of space, however,
this article will be a condensation of my talk (*) which was in fact based on
a much more extended article by Basil Hiley and me [1 ].

It is well known that all the commonly accepted interpretations of the
quantum theory, including the causal (or pilot wave) interpretation imply
non-locality [2-8 ]. However, because of its very name, the stochastic

interpretation seems to imply a theory in which quantum mechanics could
be explained in terms of particles undergoing independent random pro-
cesses, so that at least in this interpretation, one might hope that there

(*) Delivered on February 19th 1988 at the « Journee Seminaire » in honour of Jean-
Pierre Vigier.
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288 D. BOHM

would be no need for non-locality. The main purpose of this paper is,
on the basis of a systematic and coherent account of the stochastic inter-
pretation, to make it clear that the latter also necessarily involves non-
locality.

2. THE STOCHASTIC INTERPRETATION:
THE SINGLE PARTICLE

The stochastic interpretation of the quantum theory was first introduced
by Bohm and Vigier [9 ]. Later Nelson and others [7~-7~] ] developed a
somewhat similar model which was, however, different in certain significant
ways. (This model was also discussed in some detail in the talk, and in the
paper [77]. ,

The basic ideas were first applied to a single electron. In particular
Bohm and Vigier assumed that the electron is a particle suspended in a
Madelung fluid whose general motion is determined by the Schrodinger

VS .

equation with the density 03C1(x) = |03C8(x) |2 and the local velocity v = m.

The particle suspended in this fiuid would be carried along with the local
velocity. It was then assumed that the fluid has a further random component
to its local velocity which could arise from a level below that of the quantum
mechanics. This random motion will also be communicated to the particle
so that it will undergo a stochastic process with a trajectory having the
average local velocity and a random component. No detailed assumptions
were made about this random component but it was shown that under
certain fairly general conditions an arbitrary probability distribution, t ),
would approach the quantum mechanical distribution P = p as a
limit. 

-

As pointed out by Bohm [14 ], this general result does not require the
assumption of a Madelung fluid. All that is needed is to suppose that
there is a mean velocity given by v = together with an additional
stochastic contribution. For example, this latter may come, as proposed
by Nelson [11 ], from a randomly fluctuating background field. Or else
it may be regarded as an implication of some kind of « vacuum fluctuations »
similar in some ways, to the effects of a space-filling medium or « ether »
which is undergoing internal random motions. This notion has been
emphasised by De Witt [15] and has also been used by Vigier [7~] in the
context of the stochastic interpretation.
The original model of Bohm and Vigier [9] was not developed in further

detail as this did not seem to be called for at that time. However, it now
seems appropriate to examine this again. To this end we assume that
whatever the origin of the random motion may be, it can be represented
by a simple diffusion process.
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To illustrate this, let us consider the Brownian motion of particles in a
gravitational field using the simple theory of Einstein. If P is the probability
density of particles, then there is a diffusion current,

where D is the diffusion coefficient. If this were all there was, the conser-
vation equation would be

and clearly this would lead to a uniform equilibrium distribution. However,
as Einstein showed, in a gravitational field there is what he called an osmotic
velocity,

The conservation equation then becomes

For the e uilibrium distribution 
aP - 

0 andFor the equilibrium distribution, - 1 and 

or

which is the well-known Boltzmann factor.
The picture implied by the Einstein model of diffusion is that the particle

is~drifting downward in the gravitational field and that the net upward
diffusive movement balances this to produce equilibrium.

It is worth while to provide a still more detailed picture of this process. -

To do this let us consider a simple one dimensional model in which there
is a unique free path ~, and a unique speed v. We assume, further that after
collisions the velocities are randomly distributed in positive and negative
directions while the speed is still v.

Let us now consider two layers which are separated by /L The net diffusion
current between these layers will be

Vol. 49, nO 3-1988.
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Between collisions the average velocity gained from the gravitational field is

The above is evidently the osmotic velocity. The net current is

Writing v2 - kT and D = 03C503BB we have
m 2

and this is just the equation that Einstein assumed.
It is important to emphasise that at least in this case the osmotic velocity

is produced by a field of force. Without such a field there would be no reason
for an osmotic velocity.
For the stochastic interpretation of the quantum theory we would like

to have a random diffusion process whose equilibrium state corresponds

to a probability density P = |03C8 |2 = p and to a mean current j = pu = p2014. .
m

Such a state is a consistent possibility satisfies Schrodinger’s
equation because this implies the conservation equation

In order to have p = I tf 12 as an equilibrium density under such a random
process, we will have to assume a suitable osmotic velocity. We do not
have to suppose, however, that this osmotic velocity is necessarily produced
by a force field, similar to that of the gravitational example, but rather it
may have quite different causes. (Thus as suggested by Nelson [16 ], some
kind of background field that would produce a systematic drift as well as
a random component of the motion.) At this stage it will be sufficient simply
to postulate a field of osmotic velocities, without committing
ourselves as to what is its origin. We therefore assume an osmotic velocity

and 0 a diffusion current j(d) = 2014 DVP. (11)

Annales de l’Institut Henri Physique theorique
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The total current will be

The conservation equation is then

h b 
. 

h.. I. 
VS vp

In the above equations there is a systematic velocity vs =  + D =2014.
- 

m p

This is made u p of two parts, the mean velocit 03C5 = ~S and the osmotic
pp _ 

’ 

p 
..

velocity uo = The mean velocity v may be thought to arise from
_ 

- 

- 

p 
_

de Broglie’s guidance condition. As explained earlier the osmotic velocity
will arise from some other source, but the main point is that it is derivable
from a potential D1n03C1 where p is a solution of the conservation eqn.

a at p + v , p yS - m 0.
It follows from (13) that there is an equilibrium state in which the osmotic

velocity is balanced by the diffusion current so that the mean velocity is

vsv= _ .
- 

m

But now we must raise the crucial question as to whether this equilibrium
is stable. In other words will an arbitrary distribution P always approach p?
To simplify this discussion let us first consider the case of a stationary state
in which ys = 0. Writing P = Fp we obtain the following equation

Let us now multiply the equation by F and integrate over all space

The right hand side is clearly negative unless F = 1 everywhere. On the
oF2

left hand side we have an average weighted with the probability

density p. Clearly unless the right hand side is zero F must be decreasing
somewhere. This decrease will only cease when F = 1 everywhere.

This proof can be extended to the case where ~S ~ 0. To do this, let
us first note that, as has been shown earlier, P = p is still an equilibrium
distribution. It has been shown by Bohm and Vigier [9 however that

Vol. 49, n° 3-1988.
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if P = p is such an equilibrium distribution and if p satisfies a conservation
equation, then for the general case, P approaches p.
For times much longer than the relaxation time, !, of this process we

will therefore quite generally encounter the usual quantum mechanical
probability distribution. It is implied, of course, that at shorter times this
need not be so and therefore the possibility of a test to distinguish this
theory from the quantum theory is in principle opened up. (As to the condi-
tions under which such a test may be possible is discussed in the article [1 ].)
For the equilibrium case the mean velocity is, as has been demonstrated,

v == 2014 . Clearly this relation by itself does not determine the acceleration.
m

To find this we need a differential equation for S. Thus, if 03C8 = ReiS/h satisfies
Schrodinger’s equation then, as pointed out, for example in Bohm and
Hiley [18 ], S. will satisfy an extended Hamilton-Jacobi equation and from
this it follows that the mean acceleration will be

where Q is the quantum potential, which is

It is clear that in the present approach the quantum potential is actually
playing a secondary role. The fundamental dynamics is determined by the
guidance condition and the osmotic velocity along with the effects of the
random diffusion. All these work together to keep a particle in a region
in which 12 is large and where its average velocity fluctuates

around 2014. The quantum potential merely represents the mean accele-
m

ration of the particle implied by the de Broglie guidance conditions, and
this will be valid only if 03C8 satisfies Schrodinger’s equation. If 03C8 had satisfied
another wave equation, the mean acceleration would have been different.
In fact in the article [1] ] this theory is extended so that the wave function
satisfies the Dirac equation, for which a very different mean acceleration
is implied and in which the quantum potential does not apply.
To illustrate the stochastic model, let us consider the two slit interference

experiment. A particle undergoing random motion will go through one
slit or the other, but it is affected by the Schrodinger field coming from both
slits. In the causal interpretation this effect was expressed primarily through
the quantum potential. In the stochastic interpretation it is primarily
expressed through the osmotic velocity which reflects the contributions
to the wave function coming from both slits. Near the zeros of the wave
function the osmotic velocity approaches infinity and is directed away from

Annales de l’Institut Henri Poincaré - Physique theorique
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the zeros. Thus a particle diffusing randomly and approaching a zero
is certain to be turned around before it can reach this zero. This explains
why no particle ever reaches the points where the wave function is zero.
And, as we have indeed already pointed out, the osmotic velocity is
constantly pushing the particle to the regions of highest and this
explains why most particles are found near the maxima of the wave function.

Without assuming an osmotic velocity field of this kind, there would
be no way of explaining such phenomena. As a result of random motions
for example a particle just undergoing a random process on its own would
have no way of « knowing » that it should avoid the zeros of the wave
function.

To obtain a consistent picture we must consider the random background
field. This is assumed, as we have already pointed out, to be the source
of the random motions of the particle, but in addition it must determine
a condition in space which gives rise to the osmotic velocity. Indeed, a
single particle in random motion cannot contain any information capable
of determining, for example, that every time it approaches the zero of a
wave function it must turn around. This information could be contained
only in the background field itself. Therefore, as has already been pointed
out in section 1, the stochastic model does not fulfil the expectations that
would at first signt be raised by its name, that is to provide an explanation
solely in terms of the random movements of a particle without reference
to a quantum mechanical field (which may be taken as p and S or

as 03C8 = 
In the causal interpretation this field has the property that its effect does

not depend on its amplitude. As has been suggested elsewhere [18 ], this
behaviour can be understood in terms of the concept of active information.
i. e. that the movement comes from the particle itself, which is however
« informed » or « guided » by the field. In the stochastic interpretation there
is a further effect of the quantum field through the osmotic velocity, which
is also independent of its amplitude. We can therefore say that along with

the mean velocity field, 2014, the osmotic velocity field constitutes active
m

information which determines the average movement of the particle. This
latter is however modified by a completely random component due to
the fluctuations of the background field.

Clearly then, there are basic similarities between the causal interpretation
and the stochastic interpretation (some of which will however be discussed
only later). Nevertheless, there are also evidently important differences.
One of the key differences can be seen by considering a stationary state
with S = const. e. g. an s-state. In the stochastic model the particle is
executing a random motion which would bring about diffusion into space,
but the osmotic velocity is constantly drawing it back so that we obtain

Vol. 49, n° 3-1988.



294 D. BOHM

the usual spherical distribution as an average. But now the basic process
is one of dynamic equilibrium the average velocity, which is zero, is the
same as the actual velocity in the causal interpretation. Such a view of the
s-state as one of dynamic equilibrium seems to fit in with our physical
intuition better than one in which the particle is at rest.

3. THE MANY PARTICLE SYSTEM

The extension of this model to the many particle system is straightforward.
The wave function, which is defined in a 3N-dimensional configu-
ration space, satisfies the many-body Schrodinger equation. We assume
that the mean velocity of nth particle is

In addition we assume an arbitrary probability density and a random

diffusion current of the nth particle

We then make the further key assumption that the osmotic velocity
components of the nth particle is

where p = 

From here on the theory will go through as in the one-particle case and
it will follow that the limiting distribution will be P = I t/J12.
Equation (19) describes a stochastic process in which the different particles

undergo statistically independent random fluctuations. However, in equa-
tion (20) we have introduced an important connection between the osmotic
velocities of different particles. For the general wave function that does
not split into independent factors, the osmotic velocities of different particles
will be related and this relationship may be quite strong even though the
particles are distant from each other. This means that we cannot eliminate
quantum non-locality by going to the stochastic model. For in this model
there is tacitly assumed an effectively instantaneous non-local connection
which brings about the related osmotic velocities of distant particles (and
in addition, of course, the mean acceleration equation (which will be given
by an extension of eqn. (17)) will still be determined by a non-local quantum
potential).
To bring out the full meaning of this non-locality it is useful to discuss

the Einstein, Podolski and Rosen experiment in terms of the stochastic
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interpretation. This requires, however, that we extend the theory of the
measurement process which was developed in connection with the causal
interpretation to the stochastic model. We therefore first give a brief resume
of how the causal interpretation treats the measurement process [7~].
The point that is essential here is that in a measurement process the

« particles » constituting the measurement apparatus can be shown to enter
a definite « channel » corresponding to the actual result of the measurement.
After this they cannot leave the channel in question because the wave
function is zero between the channels. From this point on the wave function
of the whole system effectively reduces to a product of the wave function
of the apparatus and of the observed system. It was demonstrated that

thereafter, the remaining « empty » wave packets will not be effective.
It follows that the net result is the same as if there had been a collapse
of the wave function to a state corresponding to the result of the actual
measurement.

It is clear that a similar result will follow for the stochastic interpretation
because here too there is no probability that a particle can enter the region
between the « channels » in which the wave function is zero.

Let us now consider the EPR experiment in the stochastic interpretation.
We recall that in this experiment we have to deal with an initial state of
a pair of particles in which the wave function is not factorizable. A measu-
rement is then made determining the state of one of these particles, and it
is inferred from the quantum mechanics that the other will go into a cor-
responding state even though the Hamiltonian contains no interaction
terms that could account for this. In the causal interpretation the behaviour
of the second particle was explained by the non-local features of the quantum
potential which could provide for a direct interaction between the two
different particles that does not necessarily fall off with their separation
and that can be effective even when there are no interaction terms in the
Hamiltonian.

In the stochastic interpretation all the above non-local effects of the
quantum potential are still implied, but in addition there is a further non-
local connection through the osmotic velocities. And when the properties
of the first particle are measured the osmotic velocity will be instantaneously
affected in such a way as to help bring about the appropriate correlations
of the results.

It is clear that the stochastic interpretation and the causal interpretation
treat the non-local EPR correlations in a basically similar way. The essential
point is that in an independent disturbance of one of the particles, the fields
acting on the other particle (osmotic velocities and quantum potential)
respond instantaneously even when the particles are far apart. It is as if
the two particles were in instantaneous two-way communication exchanging
active information that enables each particle to « know » what has happened
to the other and to respond accordingly.

Vol. 49, n° 3-1988.



296 D. BOHM

Of course in a non-relativistic theory it is consistent to assume such
instantaneous connections. In the talk, as well as in the article [1 ], it was
shown that this approach can be extended to the Dirac equation, thus
permitting the development of a consistent relativistic stochastic interpre-
tation of the quantum theory in a basically similar way.
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