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ABSTRACT. - Non local aspects of the geometric, gauge field and gra-
vitational quantum phases are discussed. The geometric phase is gene-
ralized to one obtained from a connection with an arbitrary Chern class
over the projective Hilbert space. A new geometric interpretation is given
to it as an area in the projective Hilbert space, regarded as a phase space,
and its relationship to the classical phase space area is pointed out. It
is argued that gauge fields provide a fundamental reason for introducing
Planck’s constant. Remarks are also made on the gravitational quantum
phase and its implication to Weyl’s theory of gravity. _

RESUME. - Les aspects non-locaux des phases quantiques geometriques,
de champs de jauge et de gravitation sont discutes. La phase geometrique
est generalisee a une classe arbitraire du second groupe de cohomologie
de De Rham. Une nouvelle interpretation geometrique lui est donnee en
terme de surface dans l’espace de Hilbert projectif, vu comme espace de
phase, et sa relation a l’espace de phase classique est signalee. On soutient
Fidee que les champs de jauge fournissent une raison fondamentale d’intro-
duire la constante de Planck. Des remarques sont aussi faites sur la phase
quantique gravitationnelle et ses implications au sujet de la theorie de Weyl.
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272 J. ANANDAN

1. INTRODUCTION :
NON LOCAL ASPECTS OF QUANTUM THEORY

The nature of human experience makes our thinking essentially local.
For example, it was believed for a long time that the earth is flat, which

, turned out to be a rather unreasonable extrapolation of our local expe-
riences. Similarly, it was believed that the flat Euclidean geometry is the
geometry of physical space (regarded by Immanuel Kant as being necessarily
true as an « a priori synthetic » proposition) until Einstein’s great discovery
that space-time, though locally flat, is in fact curved.
Quantum phenomena have revealed, since then, new types of « curvature » _

which can be most simply understood by their effects on quantum phases.
In 1959, Aharonov and Bohm [1] ] predicted that there would be a phase
shift in the interference of two coherent wave functions of a charged particle
due to an enclosed electromagnetic field, even if the wave functions are
in a region in which the field strength is zero. This caused tremendous
surprise and disbelief in the physics community. But it was pointed out
that this is analogous to the rotation of a vector when it is parallel trans-
ported around a curve on a cone enclosing the apex, even though the cone
is intrinsically flat everywhere except at the apex. This suggests that the
enclosed electromagnetic field strength may be similar to the curvature
of the apex of the cone which may be regarded as the cause of the rotation
of the vector. Indeed, the most important lesson to be learned from the
Aharonov-Bohm effect is, perhaps, that the electromagnetic field is a

connection, called a gauge field, whose curvature is the field strength.
Another curvature which was overlooked for about six decades since

quantum mechanics was created is due to the nature of the Hilbert space .Ye
itself. Even though ~f is a linear space which is flat, a physical state, as
pointed out long ago by Dirac [2 ], is represented by a ray, i. e. a one dimen-
sional subspace of And the set of all physical states of called
the projective Hilbert space, has a curvature arising from the inner product
in Jf. This causes the geometric phase in a cyclic evolution of a quantum
system which was discovered by Berry [3] ] for adiabatic evolutions and
generalized to all cyclic evolutions by Aharonov and Anandan [4 ], who
also pointed out the role of the curved projective Hilbert space in pro-
ducing this phase.

There are also two other non local aspects of quantum mechanics,
which are not related to any « curvature », at least at present. One is the
quantum correlation between two particles due to interference between
products of wave functions of the particles. This was discussed qualita-
tively by Einstein, Podolsky and Rosen [5] ] and quantitatively by
Bell [6 ], who derived a set of inequalities that a local, realistic theory
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273NON LOCAL ASPECTS OF QUANTUM PHASES

must satisfy. These are violated by quantum mechanics. The second non
local aspect seems to occur when a measurement is made on a quantum
system. According to the usual Copenhagen interpretation, the wave
function « collapses » instantaneously which, for a position measurement,
must be a non local phenomenon. Also, the outcome can only be predicted
statistically, so that a pure state undergoes a transition to a mixed state
during the measurement [7 ].
The last mentioned phenomenon has been subject to heated controversy

during the six decades since quantum mechanics was discovered. There
are basically two possible ways in which we may try to avoid this strange
transition from a pure state to a mixed state. We may let a pure state evolve
to a pure state or a mixed state evolve to a mixed state during a measurement.
The Everett interpretation [8 ] of quantum mechanics belongs to the

first category, but it pays the tremendous cost of introducing infinite number
of unobservable « worlds », which is unacceptable to most physicists. Also,
it is not clear how the probabilities, observed in a laboratory in our own
« world », can be obtained in this purely deterministic picture. This cannot
be obtained as in classical statistical mechanics which becomes statistical
on « coarse graining » a more fundamental deterministic theory. For
example, suppose that every electron that passes through a Stern-Gerlach
apparatus is in a quantum state so that the probability of it being found
to have spin up is 1/3. According to the Everett interpretation, as each
electron passes through the apparatus the world splits into two worlds
corresponding to the electron having spin up or down. In an arbitrarily
chosen world, therefore, the probability of an electron having spin up
is the same as the probability of it having spin down, if we define probability
as a relative frequency as we normally do, which is in conflict with the fact
that in the laboratory 1/3 rd of the electrons have spin up (*).
An interpretation of quantum mechanics that belongs to the second

category is the « causal interpretation » of quantum mechanics [9 ]. In
this view, a quantum system, such as an electron, has a definite trajectory
which is guided by a non local quantum potential. But it is not possible
to know which of the many possible trajectories corresponding to a given
wave function that the particle actually takes without changing the wave
function and therefore the quantum potential. Hence this description
really represents an ensemble of particles and therefore describes a mixed
state throughout because it is not possible to predict the trajectory of a
given particle.

Perhaps, the solution to the measurement problem requires a modi-
fication of quantum theory that would be non local and non linear. This
non locality would be fundamentally different from the non locality of
quantum theory that will be discussed in this paper, which is really non

(*) I first heard this argument from Yakir Aharonov.
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274 J. ANANDAN

local aspects of a fundamentally local theory. An interesting question that
will not be answered in this paper is whether there are any connections

between the different non local aspects mentioned above.

2. THE GEOMETRIC PHASE

21. The Geometric Phase as a Consequence of Curvature.

Suppose a quantum system undergoes cyclic evolution in the inter-
val [0, r], by which we mean that its state vector evolves so

that = !/(0) ~. Then the curve y in ~f representing the evolution
projects to a closed curve C in If the evolution is according to the Schro-
dinger equation with Hamiltonian H, then it can be shown that [4]

and

where B is a 1-form field on P defined as follows : if C is a piece-wise smooth
curve then we can choose an open set U of P containing C such that |03C8&#x3E;
is a differentiable function on U with values in Jf satisfying ( ~ ~ = 1.
Then . 

_

where d is the exterior differential operator on f!}J. Now, ~ depends on H
and is therefore called the dynamic phase. But /3 depends only on C and
is therefore called the geometric phase. ~3 and ~ have been generalized
to evolution according to any first order differential equation which may
be non linear [10 ], [77].
More generally, we can choose an open covering {U03B1} of P such that

on each Ua a differentiate function ), called a section or « gauge »,
satisfying 03C803B1 |03C803B1&#x3E; = 1, can be defined. It is a consequence of the geo-
metry of J~ that one section cannot cover all of f!}J. Define also

f ( on each Ua. On Ua n Ua, if it is non empty,

I ~(l) = exp where exp is called a transition function.
Now C is a union of segments Ca contained in Ua. Then it is easily seen that

exp (i03B2) is a product of the factors exp (i L" Ba and the values of the
Annales de l’Institut Henri Poincaré - Physique theorique



275NON LOCAL ASPECTS OF QUANTUM PHASES

transition functions exp at each point where two neighboring seg-
ments C« and C~ meet. Also, on using Stoke’s theorem, we can write

where S is a surface in spanned by C and

In an overlapping region U« n Up, G is independent of which section ~~ ~
is used to evaluate G, which is why we have omitted the subscript a in
the definition of G. This makes it clear that exp (i/3) is independent of
the choice of the open covering and the sections. But to keep our formalism
simple, we shall work with just one section that covers C, as described in
the previous paragraph.
A geometric interpretation that has already been given to the phase

factor exp (i~3) is the following: B may be regarded as the pullback of a
connection with respect to the section ~ ~ ~ defined on any one of three
different bundles over ~ that are described elsewhere [4 ], [12 ]. Then
exp (i/3) is the holonomy transformation or the operator that parallel
transports a state vector around C with respect to this connection. Clearly,
exp (i~3) is independent of the choice of the chosen section only if C is a
closed curve and is different from 1, in general, because of the curvature G
of this connection. In this sense, exp (i(3) is a non local consequence of this
curvature in the same way that the Aharonov-Bohm effect is a non local

consequence of the curvature of the electromagnetic gauge field.

22 Generalization of the Geometric Phase to an Arbitrary Chern Class
in the Second De Rham Cohomology Group.

There is a beautiful global topological aspect of the relation between ~f
and P that can already be seen in the simplest non trivial case of H being
a two dimensional Hilbert space, so that ~ is the one dimensional complex
projective space Pl(C), which when regarded as a real manifold is a two
dimensional sphere. Then, P may be given polar- coordinates (0, and

we may choose |03C8&#x3E; = cos 03B8 2, e-i03C6 sin - j. Then

Clearly ~ ~ ~ and B are well defined except at 8 = 7L The corresponding

Vol. 49, n° 3-1988.



276 J. ANANDAN

point on the sphere can be covered by a different section or gauge

! &#x3E; = ( . cos e sin 8 . Then

are defined everywhere on P except along 0=0.
Also, G = d B or d B’ is given everywhere on P by

Now, (2 . 6) and (2 . 7) are the vector potential and field strength of a magnetic
monopole [13] of unit charge multiplied by e/hc on a sphere surrounding
the monopole. This can be verified by computing the flux on this sphere :

More generally, if ~f has arbitrary dimension then G over any closed
2-surface [/ that is obtained by smoothly deforming an embedding of
Pl(C) in is 0 or 27r. This means that G, like the electromagnetic field
strength of a magnetic monopole, belongs to a Chern class that is an ele-
ment of the second de Rham cohomology group. These classes are classified
by integers, which in the electromagnetic case corresponds to the strength
of the magnetic monopole. The geometric phase, as treated so far, is obtained
from a curvature for which this integer is - 1. This raises the question
whether there is a geometric phase corresponding to a Chern class of
arbitrary integer. We answer this question now in the affirmative.

Suppose there are n identical bosons in the state ~ ~ ). Then
| 03A8&#x3E; = |03C8 &#x3E; ! ...|03C8&#x3E;, i. e. the tensor product of with itself n ,
times, represents this n-particle state. Let |03A8&#x3E; = |03C8&#x3E;|03C8&#x3E;...|03C8&#x3E;. The
corresponding connection coefficient that replaces (2.3) is

on using Leibniz’s rule and  ~ I ~ &#x3E; = 1. Similarly, the curvature

Hence the geometric phase ~3 for I ’P ) is n times the geometric phase for
the single particle state. To obtain a geometric phase corresponding to
a negative integer, take the dual ), i. e.  ’P I, which may be regarded
as representing the time reversed state. Then

on using Leibniz’s rule and 03C8|03C8&#x3E; = 1.
Annales de l’Institut Henri Poincaré - Physique théorique



277NON LOCAL ASPECTS OF QUANTUM PHASES

Hence, in mathematical terms, there is a geometric phase arising from
a curvature belonging to a Chern cohomology class of any non zero integer.
This curvature G may be regarded as due to the canonical connection on
the tensor product of the natural line bundle [4] over 9 or the dual of this
line bundle with itself n times. Indeed, these tensor product bundles are,
up to isomorphism, all possible line bundles that we can have over 9. Also,
G satisfies

where ~ is a closed 2-surface in defined above, and n is an integer,
positive or negative, that is determined entirely by the tensor product
bundle chosen or, in physical terms, on the number of particles or time
reversed particles in the quantum state of interest.

If the closed curve C is on 03C6 which it divides into 03C61 and 03C62 then (2.12)
may be rewritten as

where ~31 and /~2 are the geometric phases evaluated on [/1 and [/2 using
Stoke’s theorem on the integral around C of B, given by (2. 9) or (2.11), by
means of the sections that are defined on [/1 and [/2. Then = exp (fjSJ
and since it is exp that is experimentally observed it does not matter
which surface spanned by C is used to evaluate /3, provided (2.12) is satisfied.
Conversely, this physical requirement may be used to derive (2.12) which
is a restriction that any connection on P must satisfy. This is analogous
to the derivation [7~] ] of Dirac’s quantization condition for magnetic
monopoles, in which case 9 is replaced by space-time and 03B2 is the Aharo-
nov-Bohm phase. 

’

2.3. The Uniqueness of the Geometric Phase.

It may be asked why we cannot split the phase change during a cyclic
evolution as, (2/3)~ + ~’ and call j3’ = (2/3)~, which is as gauge
invariant as j8, the geometric phase. We shall give two answers, one mathe-
matical and the other physical. Mathematically, the requirement (2.12)
places a restriction on the connection from which the geometric phase
is obtained so that the latter is an integer multiple of (2.2). This can be
understood as due to the canonical connection on the tensor product
bundle described above. But the « connection » represented by B’ = (2/3)B
that would give /3’, for all cyclic evolutions, is not mathematically admis-
sible in any bundle over 9, because it would not satisfy (2 .12). On the other
hand, we can add to B any 1-form field A on P that is differentiable every-
where and thereby obtain a connection which satisfies (2.12). But A is
then arbitrary so that the corresponding connection is not naturally
Vol. 49, n° 3-1988.
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given by the geometry of ~ or its dual The requirement that the
geometric phase should be determined naturally by the geometry of the
relevant natural tensor bundle over ~ makes it unique.
The above argument shows the advantage of the projective Hilbert space

over the parameter space, which was originally used as the arena for the
Berry-Simon connection [3 ], [7~], even in the adiabatic limit. The use
of (2.12) in this argument to isolate the geometric phase uniquely from
the total phase is similar to Dirac’s quantization [7~] ] of the magnetic
monopole that placed a restriction on the possible magnetic monopoles
that could occur in nature. So far, magnetic monopoles have not been
observed. But the beautiful mathematical structure that made Dirac propose
its possibility is in fact realized in nature through the geometry of the
Hilbert space. Nature often takes advantage of beautiful mathematics,
although not necessarily in the way that physicists envisage it would.
Our second answer to the above question is that the Hamiltonian defines

a natural dynamical frequency OJ according to

This generalizes the Planck-Einstein-De Broglie law E = that was

originally formulated for a free particle in a stationary state, to arbitrary

states. It is then remarkable that if the dynamical phase - is
Jo

subtracted from the total phase 03C6 acquired during a cyclic evolution then
the remainder /3 is geometrical [14 ].

Alternatively, we may postulate the above connection on P so that a
vector field along a curve in is parallel transported with respect
to this connection if

and measure the phase 9 of the dynamically evolving with respect
to i. e. = exp Then, Schrodinger’s equation
implies that 03C9 = d03B8/dt satisfies (2 .13). This is like a quantum principle
of equivalence in that )&#x3E;, has now been given a globally well defined
frequency as if it is a free particle state with energy  ~.
The only previous physical interpretation of  is that it
is an ensemble average of the energies of the eigenstates of H in the mixed
state obtained when a measurement of energy is performed, whereas we
now have an interpretation of it for the pure state |03C8 &#x3E;.

2.4. The Geometric Phase as an Area in a Phase Space.

The n complex dimensional space Jf may be regarded as a 2n real dimen-
sional space. On this space, define the complex coordinates and

Annales de l’lnstitut Henri Poincaré - Physique theorique



279NON LOCAL ASPECTS OF QUANTUM PHASES

Pj = where are the components of If/) in some orthonormal basis
of H. Let B = i (/! d |03C8&#x3E; = and OJ = dB = dPj^dQj. (We are
using Einstein’s summation convention.) Then ~) is twice the ima-
ginary part of the Hilbert space inner product of the tangent vectors
and (~. Thus, ~f may be regarded as a phase space {(Q, P) } with a natural
symplectic structure defined by OJ, which is derived naturally from the
inner product in J~, Now, the section ~a ~ may be regarded as a map
from Ua into c~f and the skew symmetric 2-form G on Ua is the pull
back of (u with respect to X But since G is independent of which sec-
tion ~ra ~ is chosen, G is non degenerate and d G = 0, G is a natural sym-
plectic 2-form on ~. Hence ~ is a phase space with this natural symplectic
structure.

Also, on writing = + = exp (~), where i/r~, a~ and ~~
are real 03C9 = Hence, two other convenient
choices for the generalized coordinates and momenta for Jf, regarded as
a phase space, are i ) ~~rR, P; == ~~r; and ii) Q; = a; , Pk = - ~~ .
These are real coordinates, unlike the earlier choice. For any of the above
three pairs of (Qj, evaluated on !~~, defined on U containing the
closed, curve C, it can be easily shown that

Since, as mentioned, j8 is independent of the chosen I t/J ), (2.15) is the area
of S determined by the symplectic structure in ØJ, defined above. Thus, it
is not necessary to leave the projective Hilbert space in order to give a
geometric interpretation to /3. Also, (2.15) is invariant under canonical

transformations provided, of course, that C is a closed curve. This shows,
again, that ~3 is geometrical only when it is associated with a closed curve
in the projective Hilbert space, and is therefore a non local phase.

At first sight it would seem that the symplectic structure in ØJ has nothing
to do with the symplectic structure in the classical phase space CC. For a
particle in one dimension, for example, ~ is two dimensional whereas
the phase spaces of Jf and P described above are infinite dimensional.
However, the submanifold 03B6 of P corresponding to Gaussian wave packets
peaked around all possible (q, p), with a given width A~ = ç and Op = ~ -1 ~,
can be identified with the classical phase space ~ _ ~ (q, 7?) } in the classical
limit in which the particle has large enough mass so that a wave packet
undergoing Schrodinger evolution has negligible spread during the time
interval of interest. Then, for a cyclic evolution of such a Gaussian wave
packet [22 ], [23 ], to a very good approximation the geometric phase is

Vol. 49,n" 3-1988.
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Therefore, the usual symplectic structure on 03C6 may be regarded as the
symplectic structure induced on ’ð due to the above mentioned symplectic
structure on The observation of Berry and Hannay [79] that Hannay’s
angles [19 ], [20] ] and their non adiabatic generalization [7~], [27] ] can
be obtained from an area in the classical phase space averaged over a torus
is now not surprising.

Eq. (2.16) suggests that

is the classical analog [27] ] of the quantum geometric phase /3. Even if
we were ignorant of quantum theory, we may conclude that ~ is geometrical
because it is a canonical invariant. However, for ~ to be in the exponent
of a holonomy transformation of a connection, it is necessary to make it
dimensionless by dividing it by a constant having the dimension of action.
This raises the question of whether the geometric nature of ~ requires the
introduction of Planck’s constant. We shall return to this question in the
next section.

3. GAUGE FIELDS AND THE AHARONOV-BOHM EFFECT

3.1. Structure of a Gauge Theory.

Symmetry groups were very important in physics, even prior to the
introduction of gauge theory, partly due to the fact that they gave conserved
quantities via Noether’s theorem. This connection is even stronger in
quantum field theory where the conserved quantities generate the symmetry
group that acts on state vectors. It was also known that these conserved
quantities or « charges » sometimes acted as sources of fields according to
certain field equations. These fields in turn influence the motion of particles
or fields which carry these charges. For example, the invariance of the
Lagrangian of a matter field under the U( 1 ) group of electromagnetism
implied the conservation of electric charge, which is the source of the electro-
magnetic field. The charged fields are in turn influenced by the electro-

l’Institut Henri Poincaré - Physique " theorique "



281NON LOCAL ASPECTS OF QUANTUM PHASES

magnetic field, as in the Aharonov-Bohm effect [1 ]. The profound impor-
tance of the « gauge principle », due to Weyl [7d] and Yang and Mills [77],
lies in the fact that it completes the third side of this triangle by establishing
the field as a connection corresponding to the group (fig. 1), which are
therefore called gauge field and gauge group respectively.
The gauge principle was stated by Weyl and Yang-Mills as the enlar-

gement of the global gauge group G to a local gauge group, consisting of
transformations of the form ~ U(x) E G. This leads to
the introduction of gauge potentials as compensating fields for the Lagran-
gian to be invariant. But perhaps a more physical way of stating this prin-
ciple [24 ] is that, due to the locality of the laws of physics, we cannot compare
the directions of with when x and x’ are two different space-time
points, unless we introduce a connection so that can be parallel
transported along a curve joining x and x’ and compared with tJ(x).
The necessity to compare them, formally, arises from the need to take

derivatives of in forming the Lagrangian, whose (global) gauge inva-
riance leads to the conserved quantities and which also yields the field
equations. When the parallel transport between two points is path depen-
dent, a non trivial gauge field is present. More generally, by gauge principle
we may simply mean the introduction of a connection. On the other hand,

represents the probability density (which should not depend on
the path along which is parallel transported because number is a
global concept unlike the direction of a vector which is a local concept.
The triangle in fig. 1 is essential for a gauge theory, and may be used

as its definition. We shall call it the gauge triangle. If we encounter one
side of this triangle then it is reasonable to look for the other two sides in
order to see if we have a gauge theory. But there are four important examples
in which we know of only one or two sides of this triangle. One is the isospin
conservation in strong interactions which corresponds to the first side of
this triangle with SU(2) as the symmetry group. It was this invariance that
originally led Yang-Mills [77] to introduce non abelian gauge fields. But
so far there is no clear evidence for the other two sides of this triangle and
strong interactions are now explained by a gauge theory based on the color
SU(3) gauge group. 

’

A second example is the magnetic monopole [7~] which would be an
additional conserved quantity that generates a field, but it is not necessary
to introduce a new U( 1 ) group and the new electromagnetic field may be
regarded as a connection of the old U( 1 ) gauge group. Indeed, the presence
of a clear gauge triangle in electromagnetism only if no magnetic monopoles
exist may be used as an argument against introducing magnetic charges,
which have not been observed so far.
A third example is the geometric connection described in section 2 which,

as mentioned, contains the beautiful mathematics of magnetic monopoles,
But the other two sides of the gauge triangle seem to be missing. This is

Vol. 49, n° 3-1988.
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also different from gauge fields in that it is a connection on the projective
Hilbert space and not on space-time.

Finally, for gravitation, which we shall deal with in the next section, the
first two sides of the triangle are present. In general relativity, the energy-
momentum which is the conserved quantity of translation invariance acts
as the source of space-time curvature. In the modified Sciama-Kibble
theory [25 ] and its generalizations, energy-momentum and spin, which
are the conserved quantities of the Poincare group, are the sources of
curvature and torsion. But it would be fair to say that the third side of the
gauge triangle has not been clearly formulated [26 ].

32 Aharonov-Bohm Effect, Charge Quantization
and Planck’s Constant.

Electromagnetism is the simplest and the most dramatic example of a
gauge theory. The U(I) symmetry group not only gives a conserved charge
but also requires that this charge must be quantized, which is due to the
compactness [27] ] of the gauge group. Also, the gauge principle then
implies the existence of the electromagnetic field which must interact with
the charge to complete the gauge triangle. Thus the existence, conservation,
quantization and interaction of the electric charge all follow from the chosen
gauge group. Also, the path dependence of parallel transport in the electro-
magnetic connection results in the Aharonov-Bohm effect which is a non
local manifestation of the hypothesis that electromagnetism is a U(I) gauge
field [28 ].
Wu and Yang [29 have argued, using the Aharonov-Bohm effect, that

the complete description of the electromagnetic field is provided by the
phase factor

which parallel transports around a closed curve (holonomy transfor-
mation) and physically determines the fringe shift in the Aharonov-Bohm
experiment. This can be generalized to an arbitrary gauge field by the
generalization [30 ] of the Aharonov-Bohm effect for an arbitrary gauge
field and the theorem [31 ] that the gauge potential can be reconstructed
from the holonomy transformations and it is then unique up to gauge
transformations.
Now the Aharonov-Bohm effect is a quantum phenomenon. But even

in classical electromagnetism, we can argue that

Annales de Henri Poincaré - Physique theorique



283NON LOCAL ASPECTS OF QUANTUM PHASES

has more information than the field strength in a non simply connected
region and it is invariant under the gauge transformation A~ ~ 
However, from this we cannot conclude that the electromagnetic field is
a gauge field (connection) because the exponent of the holonomy trans-
formation of a gauge field, which is an element of a Lie algebra, must be
dimensionless. So, in order to describe the electromagnetic field as a gauge
field, we need to introduce a new constant, ~, having the dimension of the
action so that I/n is dimensionless.
The above argument, which seems to suggest a fundamental reason for

introducing the Planck’s constant h, does not tell us if the gauge group

of electromagnetism is U(I) or T(I), the translation group in one dimension
which is non compact. The holonomy transformation

would correspond to the T(l) group, unlike (3.1) which corresponds to
the U(I) group. But we note now the empirical fact that charge is quan-
tized. This implies that the homomorphism defined on the loop group in
the reconstruction theorem [31 ], mentioned above, gives a representa-
tion [2~] of a fundamental U(I) group if (3.1) is used instead of (3 . 3) as
the holonomy transformation. With this choice, the reconstruction theorem

implies that electromagnetism is a U(I) gauge field.
Now, (3 . 2) is similar to (2.17) if we regard as a « potential energy-

momentum » due to the electromagnetic field. So, we may conclude in the

spirit of the above arguments that in order for the area in the classical phase
space, which is a canonical invariant, to be proportional to the exponent of
the holonomy transformation of a geometric connection, we must introduce
Planck’s constant.

4. GRAVITATIONAL QUANTUM PHASE

It is sometimes said that the difference of phases at two different space-
time points is not well defined because of local gauge invariance. This

statement needs to be qualified. Consider for simplicity a scalar field for
which the wave function exp where and ~(x) are real scalar
functions of space-time. If a particle has charge q, then A~ = ~(~) 2014 is

not invariant under the local gauge transformation ~(x) -~ ~(x) + qA(x).

However, can be split into the electromagnetic phase - 2014 A dx
and the remainder "

Vol. 49, n° 3-1988.
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where Cxx’ is a path j oining x and x’. Then y is a path dependent but gauge
invariant phase difference. We shall call it the gravitational phase because

in the WKB approximation~ = - ~ + q AI’ ) is the energy-momen-
tum which determines the inertial mass and couples to the gravitational
field because of the equivalence of inertial and active gravitational masses.
The existence of this gauge invariant phase associated with open curves C

distinguishes gravity from gauge fields. This y is a local quantity unlike the
Aharonov-Bohm phase or the geometric phase {3 that depends on infor-
mation around an entire closed curve and is therefore non local. To under-
stand the origin of this difference, consider a wave function in the WKB
limit and choose y to be an integral curve which is a possible classical
trajectory. Then using the eikonal equation = 

i. e.-y is the length along the path in units of Compton wave length of the
particle. (4.2) has been experimentally observed for a closed curve C
in the non relativistic limit in neutron interference [32-3~] ] and in the
relativistic case, for a charged particle, using superconductors [36 ], [37].
(4.2) suggests that the reason for y to be an invariant for open curves is
because distance is meaningful for open curves in general relativity.
Weyl [38 ], on the other hand, proposed a generalization of general rela-

tivity in which distance is subject to the same type of gauge invariance that
the electromagnetic phase is subject to. We noted in section 3 that the
direction of a vector is a local concept whereas the magnitude of a vector
is a global concept for gauge fields. This is true also for gravitation, as
described in general relativity, except that the vectors involved are tangent
vectors. This results in the invariant length along any path. But Weyl
removed the restriction that the magnitudes of two vectors at x and x’
can be compared in a path independent way. If Weyl’s theory is correct,
then we cannot define a gauge invariant observable y associated with open
curves as we did above. However y associated with an open curve is measured

by the Josephson effect [2~] ] and, in the WKB approximation, in kaon
decay [35 ]. Hence, these phenomena are experimental evidences against
Weyl’s theory.

It may be noted that in the determination of the geometry of space-time
by the classical motions of freely falling particles by Ehlers, Pirani and
Schild [39 ], the Weyl Structure is obtained naturally, but to obtain the
Riemannian structure it was necessary to introduce the additional assump-
tions of the absence of « the second clock effect » and vanishing torsion.
In quantum mechanics, the existence of the invariant, observable gravi-
tational phase y provides another, perhaps a more elegant, reason for
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eliminating the gauge freedom of the metric which Weyl postulated. But
as far as we can see, quantum mechanics provides no natural reason for
setting torsion to be zero.

There is, however, a non local phase due to the gravitational field. This
is the phase shift due to the coupling of spin to space-time curvature [34], [30]
of a connection, that may contain torsion, which can be understood as due
to parallel transport of a spinor or a vector around a closed curve through
the interfering beams. This is a gravitational analog of the Aharonov-Bohm
effect.

This raises the question of whether the curvature that is measured by
this effect is a non local concept. To answer this question, it is useful to
distinguish between intrinsic and extrinsic curvature. The cone that was
used in section 1 to illustrate the Aharonov-Bohm effect has zero intrinsic
curvature, except at the apex; but its extrinsic curvature due to its embedding
in a three dimensional space is non zero everywhere. The extrinsic curvature
of a manifold can be recognized by a local experiment such as the deviation
between a geodesic in the manifold and a geodesic in the embedding space
which initially have the same tangent vector. But the measurement of
intrinsic curvature, e. g. curvature of space-time, needs a non local expe-
riment such as parallel transporting a vector around a closed curve.
The curvature of the earth, mentioned at the beginning of this article,

was discovered by observations such as the gradual disappearance of a
ship as it sails away from the shore or the ancient Greek measurement
based on the simultaneous shadows of vertical objects at two different
locations on the earth’s surface. These were really measurements of extrinsic
curvature. This may be why it was easier to convince people of the fact
that the earth is curved than of the reality of the Aharonov-Bohm effect.
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