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An explicit determination
of the non-self-adjoint wave equations

on curved space-time that satisfy Huygens’ principle.
Part I: Petrov type N background space-times

R. G. McLENAGHAN and T. F. WALTON

Department of Applied Mathematics, University of Waterloo
Waterloo, Ontario, Canada.

Ann. Inst. Henri Poincaré,

Vol. 48, n° 3, 1988, Physique ’ theorique ’

ABSTRACT. - It is shown that the validity of Huygens’ principle for
the non-self-adjoint wave equation on a general Petrov type N space-time
implies that the equation is equivalent to the conformally invariant scalar
wave equation on the exact plane wave space-time. This result solves
Hadamard’s problem for this class of equations since it is known that the
latter equation is the only self-adjoint Huygens’ equation on type N space-
times.

RESUME. - On demontre que la validite du principe de Huygens pour
1’equation des ondes scalaires non-auto-adjointe sur un espace-temps
general de type N de Petrov implique que 1’equation est equivalente a
1’equation invariante conforme des ondes scalaires sur 1’espace-temps des
ondes planes. Ce resultat resout Ie probleme de Hadamard pour cette
classe des equations puisqu’on sait que la derniere equation est la seule de
type Huygens sur les espaces-temps de type N.

1. INTRODUCTION

In a recent series of papers Carminati and McLenaghan [3] ] [4] ] [J] ]
(referred to as CMl, CM2 and CM3 respectively in the sequel) have under-
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268 R. G. MCLENAGHAN AND T. F. WALTON

taken a programme [2] for the solution of Hadamard’s problem for the
conformally invariant scalar wave equation, Maxwell’s equations, and
Weyl’s neutrino equation on curved space-time based on the conformally
invariant Petrov classification [79] of the Weyl tensor. To date the Petrov
types N, D, and III have been considered. The present paper is the first of
a series whose purpose is the extension of the above analysis to the general
non-self-adjoint scalar wave equation which may be written in coordinate
invariant form as

In the above equation D denotes the Laplace-Beltrami operator corres-
ponding to the metric gab of the background space-time V4, u the unknown
scalar function, Aa the components of a given contravariant vector field,
and C a given function. The metric tensor gab, background space-time V4,
vector field Aa and scalar function C are assumed to be of class All

considerations in this paper are entirely local.
According to Hadamard [9] Huygens’ principle (in the strict sense)

holds for Eq. (1.1) if and only if for every Cauchy initial value problem and
for every xo E V4, the solution depends only on the Cauchy data in an arbi-

trarily small neighbourhood of S n C-(xo) where S denotes the initial

surface and C-(xo) the past null conoid from x0. Such an equation is called
a Huygens’ differential equation. is that of determining
up to equivalence all the Huygens’ differential equations. We recall that
two equations of the form (1.1) are equivalent if and only if one may be
transformed into the other by any combination of the following trivial

transformations which preserve the Huygens’ character of the equation.

a) a general coordinate transformation,
b) multiplication of the equation by the function exp ( - 2~(x)), which

induces a conformal transformation of the metric :

c) substitution of 03BBu for the unknown function u, where 03BB is a non-

vanishing function on V4.
Hadamard’s problem for (1.1) has been solved in the case when V4

is locally conformally flat. In this case it has been shown [72] ] [10 ] [1] ] that
a Huygens’ equation is necessarily equivalent to the ordinary wave equation

on flat space-time. For a more detailed description of existing results see
the review of the subject by one of us [16 ]. The problem has also been solved
for the self-adjoint equation on Petrov type N, D, and III backgrounds.
In CMI it is shown that every Petrov type N space-time on which the
conformally invariant scalar wave equation
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269NON-SELF-ADJOINT WAVE EQUATIONS. PART I.

satisfies Huygens’ principle is conformally related to an exact plane wave
space-time with metric

in a special coordinate system. In Eq. (1.4) R denotes the curvature scalar
of V4 ; in (1. 5) D and e denote arbitrary Coo functions. Gunther [8 has
shown that Huygens’ principle is satisfied by ( 1. 4) on every exact plane
wave space-time. This result when combined with the previous one yields
the following theorem which solves Hadamard’s problem for the equa-
tion ( 1. 4) on a type N space-time [3 ] :

THEOREM I. - The conformally invariant wave equation (1.4) on any
Petrov type N space-time satisfies Huygens’ principle if and only if the
space-time is conformally related to wave space-time with metric (1. .J~)
in a special coordinate system.

In CM2 and CM3 it is shown that there exist no Petrov type D or III
space-times on which the equation (1.4) satisfies Huygens’ principle. The
proof of Petrov type III required an additional weak assumption on the
covariant derivative of the Weyl tensor Cabcd.
The proofs of the above results are based on the following set of necessary

conditions for (1.1) to be a Huygens’ differential equation [77] ] [7] [l3]
[22] [15]:

In the above conditions

where Aa = g’abAb, Rabcd denotes the Riemann curvature tensor of V4,
Rab := gcdRcabd the Ricci tensor, and R := gabRab’ Our sign conventions are

Vol. 48, n° 3-1948.



270 R. G. MCLENAGHAN AND T. F. WALTON

the same as those in [15 ]. The symbol TS( ... ) denotes the trace-free sym-
metric part of the enclosed tensor [13 ]. It should be noted that the Condi-
tions I-V are necessarily invariant under the trivial transformations.

In the case of Petrov types N and D it was also necessary to invoke a
further necessary Condition VII valid for the self-adjoint equation (1.4)
derived by Rinke and Wunsch [27] ] in order to complete the proofs.

In this paper we solve Hadamard’s problem for (1.1) on a Petrov type N
background space-time. We recall that such space-times are characterized
by the existence of a null vector field l that satisfies the following condi-
tions 6 :

Such a vector field, called a repeated principal null vector field of the Weyl
tensor, is determined by Cabcd up to an arbitrary variable factor.
The main results of this paper are contained in the following theorems:

THEOREM 2. - Any non-self-adjoint equation (1.1 ) which satisfies
Huygens’ principle on any Petrov type N background space-time is equivalent
to the conformally invariant scalar wave equation (1.4).
When this theorem is combined with Theorem 1 we obtain the following:

THEOREM 3. - Any non-self-adjoint equation (1.1 ) on any Petrov type N
background space-time satisfies Huygens’ principle if and only if it is equi-
valent to the wave equation

on an exact plane wave space-time with metric ~7.~.
The plan of the remainder of the paper is as follows. In Section 2 the

formalisms used are briefly described. The proof of Theorem 2 is given in
Section 3.

2. FORMALISMS

We employ the two-component spinor formalism of Penrose [7$] ] [20]
and the spin coefficient formalism of Newman and Penrose (NP) [17]
whose conventions we follow. In the spinor formalism tensor and spinor
indices are related by complex connecting quantities 6aAA (a =1, ... , 4 ;
A=O, 1 ) which are Hermitian in the spinor indices AA. Spinor indices are
lowered by the skew symmetric spinors BAB and BÄB defined by ~01 =~01 =1,
according to the convention .

where 03BEA is any 1-spinor. Spinor indices are raised by the respective inverses
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271NON-SELF-ADJOINT WAVE EQUATIONS. PART I.

of these spinors denoted by 8~ and The spinor equivalents of the Weyl
tensor ( 1.14), the tensor Lab defined by ( 1.12), and the tensor Hab of ( 1.11 )
are given respectively by

where denotes the Weyl spinor, 
denotes the trace-free Ricci spinor, = 4&#x3E;(AB) denotes the Maxwell

spinor and where

The covariant derivative of spinors denoted by « ; » satisfies’

It will be necessary in the sequel to express spinor equations in terms of
a spinor dyad { satisfying the completeness relation

Associated to the spinor dyad is the null tetrad m ~ defined by

The NP spin coefficients associated to the dyad are defined by the equa-
tions [4] ]

where

The NP (dyad) components of the Weyl spinor, trace-free Ricci spinor,
and Maxwell spinor are defined respectively as follows :

where the notation lA1 ... A := lA1 ... etc. has been used and « c.c. »

Vol.48, n° 3-1988.



272 R. G. MCLENAGHAN AND T. F. WALTON 
,

denotes the complex conjugate of the preceeding terms. The NP differential
operators are defined by

The equations relating the curvature components to the spin coefficients,
the commutation relations and the dyad form of Maxwell’s equations are
given in NP. The Bianchi identities may be found in Pirani [20 ].
The subgroup of the proper orthochronus Lorentz group L~ preserving

the direction of the vector l is given by

where q and ware complex valued. The transformation formulas for the NP
operators, spin coefficients and curvature components induced by (2.18)
may be found in CM3. The induced transformation formulas for the Maxwell

components are _ _ _ ,

We shall also require the transformation laws for the coefficients of ( 1.1 )
induced by the trivial transformations. Excluding consideration of a),
we consider only the effect of b) and the transformation Hadamard calls bc)
defined as follows :

be) substitution of ~,u for u and simultaneous multiplication of the equa-
tion by ~, -1.

This transformation leaves invariant the space-time metric. The trans-
formations b) and bc) transform the differential operator F defined in (1.1)
into an operator F of the same form with different coefficients gab, Aa
and C defined by (see 15 for details).

The relation between the coefficients of F and F are given by (1.2) and

It is well known that Cabcd, Hab transform as follows under b) and be) :
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273NON-SELF-ADJOINT WAVE EQUATIONS. PART I.

The conformal transformation (1. 2) is induced by the following transfor-
mation of the null tetrad :

where r is any real constant. Some of the transformation formulas induced
by (2.26) are ,

3. PROOF OF THEOREM 2

The idea of the proof is to show

(compare with Lemma 4 of [7~]). If this equation holds we have by (1.11)

which implies that the 1-form

. 
is closed. Thus by the converse of Poincare’s lemma A is locally exact,
that is there exists a function h such that

It follows from (1. 6), (2 . 21) and (2 . 25) that for the transformation be) defined
by

one has

We conclude that if (3 .1 ) holds then the non-self-adjoint equation ( 1.1 )
is equivalent to the conformally invariant scalar wave equation (1.4).
We prove (3 .1 ) by showing that the contrary

is incompatible with the Conditions II-V.
We begin the proof of this assertion by giving the spinor form of Condi-

tions 11-V:

Vol. 48, n° 3-1988.
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We next make the hypothesis that the space-time V4 is of Petrov type N.
The conditions for this are given by ( 1.15) and ( 1.16) which are equivalent
to the existence of a principal null spinor oA of the Weyl spinor such that

where T :== ~’4 ~ 0. We select oA to be the first spinor in a spinor dyad
~ o s , i s ~ which implies b (2 .14) that

for i = 0, ..., 3. We use the transformation (2 .18) to obtain a spinor dyad
in which the Weyl spinor has the form

We proceed by substituting for from (2.16) and for from the

above in (3.8)-(3.11). The covariant derivatives of oA and lA that appear
are eliminated using Eqs. (2.9)-(2.13) ; derivatives of the form S;AA are
expressed as

The dyad form of Eqs. (3.1)-(3.4) is obtained by contracting the resulting
equations with all possible products of oA, lA and their complex conjugates.
In view of the invariance of Conditions II- V [1 S ] [2~] under the trivial
transformations b) and bc) it follows that each dyad equation must be
invariant.
The first contraction to consider is oAlBCABC with Condition IVs which

yields the condition _

We first assume K: ~ 0. It then follows that

The contraction oAlBCABC with IVs now gives
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which implies

Finally the contraction yields

This equation implies

However, this is impossible since the inequality (3.7) implies that not all
of ~o. ~i ? and 4&#x3E;2 are zero. We thus conclude that (3.10) implies

We note that this condition is invariant under the tetrad transformation
(2.18) and the conformal transformation (2.26).
We next observe that (3.22) and the oABAB contraction with Ills implies
immediately that

The dyad form of Condition II (Maxwell’s equations), frequently required
in the sequel, now take the form [77] ]

We proceed with the proof writing the oABlCABC contraction with IVs :

Combining this with (3.22) we obtain

which implies

This follows in the case

from the oAlBAB contraction with Ills which reads

Since we have shown that

it follows from (3. 7) that

Vol. 48, n° 3-1988.
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We are now able to conclude from (3.24) that

It should be noted that the conditions (3 . 31) and (3 . 33) are invariant under
the tetrad transformation (2.18) and the conformal transformation (2.26).
The next step consists in combining (3 . 23) with the contraction

with IVs to obtain (3.29). Thus

We now invoke Condition Vs for the first time. The oABlCDABCD contrac-
tion yields after a lengthy calculation

where (3 . 23) has been used. The above equation and NP Eq. (4. 2 a) imply

from which we obtain

We observe that (3.36) is invariant under the dyad transformation (2.18)
and the conformal transformation (2.26) while (3.37) is not. The dyad
and conformally invariant form of this equation is (see CMI)

This result is based in part on the following transformation formula induced
by (2 . 26) :

We may now use the conformal transformations (2. 27) to set

This is done by choosing the function ~ in (2.26) to be a solution of the
differential equations

This system of equations has a solution since it may be shown, in a manner
similar to that in CMI, that the required integrability conditions are satisfied
We note that the conditions (3.40) are invariant under a general dyad
transformation (2.18).
The results obtained to this point may be summarized as follows : Condi-

tions IIs-Vs imply that with respect to any null tetrad { l, n, m, m ~ for which l
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is a principal null vector of the type N Weyl tensor there exists a ’ conformally
related tetrad in which

The Eqs. (3.46) above follow from (3.42) and NP Eqs. (4.2). Following
CMI we may write the conditions (3 . 42), (3 . 43) and (3 . 45) in spinorial
form as 

’

where

where

We recall that (3 ~ 47) is the defining equation for a complex recurrent
space-time [7~] [7~]. ’

At this point of the proof it is advantageous to employ a different choice
of spinor dyad than the one in which (3.14) holds. The appropriate choice
is one for which

which is always possible in view of (2 .19). It follows immediately from (3 . 23)
and (3.25) that

which implies by (3 . 43) and NP Eq. (4 . 2 d ) that

The contraction with Vs now yields

while the oAlBCDABCD contraction gives

When the latter equation is combined with NP Eqs. (4 . 2 f ) and (4.2)
we obtain

Vol. 48, n° 3-1988.
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The NP Eq. (4 . 2 l ) now reads

In view of (3 . 55) and (3 . 58) we are now able to compute [~ 5](x; it follows
from this expression, Eq. (3.54) and the NP Eqs. (4.4) that

which implies

We next compute the lABCDABCD contraction with Vs obtaining

When this equation is combined with NP Eqs. (4 . 2 0) and (4 . 2 r) we find

The remaining equations in Conditions Ills, IVs and Vs obtained with
the help of (3 . 47)-(3 . 51 ) are respectively

while the Bianchi identities reduce to

From (3.66), (3.67) and the NP Eqs. (4.4) it follows that

The above and (3.63) imply that

It is a consequence of (3 . 64), (3 . 69) and NP Eqs. (4. 4) that

The Eq. (3 . 65) may now be written as

Applying the 03B4 operator to this equation we obtain

where " the Eqs. (3 . 66), (3 . 68), (3 . 69) and 0 NP Eqs. (4. 2) and 0 (4.4) have " been
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used. Noting that ~~2 T = 0, by (3 . 54), (3 . 70) and NP Eqs. (4 . 4), the appli-
cation of a to (3 . 72) finally yields the contradiction
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