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ABSTRACT. - Let F denote Borchers’ test function algebra and Fc
the locality ideal. It is shown that the quotient algebra ~/~~ admits a
continuous C*-norm and thus has a faithful representation by bounded
operators on Hilbert space. This representation can be chosen to be Poin-
care-covariant. Some further properties of the topology defined by the
continuous C*-norms on this algebra are also established.

1. INTRODUCTION

The mathematical theory of relativistic quantum fields has mainly been
developed within two general frameworks. On the one hand there is the
approach initiated by Wightman and Garding [1 ], where the fields are
considered as distributions with values in the unbounded, closable opera-
tors on a Hilbert space. On the other hand there is the theory of Haag,
Kastler and Araki [2] ] [3] using nets of C*-resp. v. Neumann algebras asso-
ciated with bounded domains of space-time. It is a long standing problem
to establish conditions under which it is possible to pass from one scheme
to the other. We shall not attempt to review all previous work on this
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148 J. ALCÁNTARA-BODE AND J. YNGVASON

subject here, but mention only the papers [4] ] [5 ] [6] and the recent publi-
cation [7 ], where further references can be found.

In this paper we propose to consider this question from a point of view
that was developed in two papers by Dubois-Violette about 10 years
ago [8, 9 ]. In these papers it is shown how one can in a natural way associate
a C*-algebra B with any *-algebra u that is equipped with a family of
C*-seminorms. Moreover, every state co on u that satisfies a certain posi-
tivity condition determines a state w on the C*-algebra B in such a way
that M can be reconstructed from (5. In the special case where 2I is an algebra
of polynomials, the C*-algebra B is an algebra of continuous functions and
the construction of c~ amounts to solving a classical moment problem.
For this reason the term « noncommutative moment problems » has been
used in [8] ] [9] for the general case.

This formalism can be applied to a Wightman-Garding quantum field
theory in the algebraic version due to Borchers and Uhlmann [77].
A quantum field is here regarded as a representation of a tensor algebra
over a space of test function; in the simplest case with Schwartz test func-
tions this algebra is denoted by ~. The locality postulate of quantum field
theory means that the representation should annihilate a two sided ideal,
~, that is generated by commutators of test functions with space-like
separated supports. The relevant algebra for a local quantum field theory
is therefore the quotient algebra ~/~~ rather than ~ itself.

In [8 ] [9] Dubois-Violette considered the algebra _~ and showed that
every positive functional on it gives rise to a state on an associated C*-alge-
bra, called the « quasi-localizable C*-algebra ». While this C*-algebra
is generated by nets of subalgebras corresponding to bounded domains
of Minkowski space, it does not satisfy the locality postulate, i. e. commu-

tativity for space-like separated domains. There thus remains the pro-
blem to decide which states on F give rise to representations of the quasi-
localizable C*-algebra fulfilling the locality postulate. A sufficient condition
was stated in [8] in terms of quasi-analyticity of the vacuum, that implies
essential self-adjointness of the field operators on the natural domain.

111 an endeavour to obtain more general criteria, we would like to apply
the method of [8] ] [9] to the algebra instead of Y. The associated

C*-algebra has the local commutativity built in and is thus a quasi-local
algebra in the sense of [2 ]. It is not a priori clear, however, that this C*-alge-
bra is a useful object. The main ingredient required for its construction
is a family of continuous C*-seminorms on the algebra ~/~~. These
C*-seminorms determine the positivity condition which a functional on

has to satisfy in order to define a state on the C*-algebra: The func-
tional has to be positive on the closure of the positive cone in ~/~~ w. r. t.

the topology defined by the C*-seminorms. If this closure is too big, there
may be no nontrivial functionals that satisfy this requirement. This happens
for instance if one considers instead of the ideal corresponding to the
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149ALGEBRAIC QUANTUM FIELD THEORY. PROBLEMS I

canonical commutation relations, that have no bounded representation
at all.

In this paper we investigate the topology defined by the continuous
C*-seminorms on We show that the algebra admits a continuous
C*-norm, so the topology separates points. This means that the associated
C*-algebra is nontrivial, and the functionals on which satisfy the
positivity requirement span a dense set in the dual space (~/~~)’. We also
prove that the topology defined by the continuous C*-norms induces the
original Frechet-topology on each « finite segment » of i. e. the

subspaces generated by tensor powers of f/ up to a finite order. This means
in particular that every n-point Wightman-distribution can be written
as a linear combination of n-point distributions that correspond to a
representation of the test function algebra by bounded operators satisfying
the condition of local communtativity.

Finally, we show that the algebra j~/~c has a faithful, Poincare covariant
representation by bounded operators.

2. THE GENERAL FORMALISM

In this section we review the general formalism developed by Dubois-
Violette [8, 9 ].

Let 9t be a *-algebra over C with unit element t A seminorm p on u is
called a C* -seminorm if

for all a ~ u (1). Let r be a family of C*-seminorms on u and assume that
the topology ITr generated by r on u is Hausdorff, i. e. for every a E 9t,
a 7~ 0, there is apE r with ~(~) 5~ 0. Denote by j~(9t, r) (or simply j~,
if 2l and r are fixed) the completion of 2l w. r. t. ~ is in a natural way
a topological *-algebra. If a E ~, then the spectrum Sp(a) is the set of all
~, 6 C such that a - /L1! is not invertible in j~. Using standard results of
C*-theory one shows that

is a closed, convex cone in j~ and

We denote by u+0393 the intersection with 9t; this is also the 
sure in 9t of the convex cone |ai e 9t}. A linear functional 03C9

(1) This implies that p satisfies and p(a*) = J9(x), for all a, b = 9t,
cf. [13].
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150 J. ALCÁNTARA-BODE AND J. YNGVASON

on u is called 0393-strongly positive (or, for fixed r, simply strongly positive),
if (D is positive on 9t~.
The positive cone A+ defines an order relation on A denoted by s.

Let 9[R --_ 9K(9t, r) be the linear subspace of j~ generated by order intervals
with endpoints in 9t, i. e.

9Jl is a *-invariant, linear space, but in general not an algebra unless u
is commutative.
We have the following theorem ( [8 ], theorem 1 and prop. 4, cf. also [9 ],

prop. 26 .12) :
THEOREM 2.1. - A linear functional úJ on  has an extension ci~ to

a linear functional on 9Jl that is positive on 9Jl + = 9Jl n ~+ if and only if a~
is strongly positive.

The extension ci~ satisfies

where

The extension is unique if and oni y if úJ # = 
Consider next the algebra a

It is straightforward to ve n ify that B~ is a C*-algebra, when equipped with
the norm

Moreover B~ is contained in 9M, for if h E h*, then

= t In general, 9t and B~ will only have multi-
ples of the unit element in common. On the other hand, a strongly posi-
tive functional co on ~ can by theorem 2.1 be extended to a positive func-
tional ÔJ on 9K and ÔJ can be restricted This restriction in fact

determines 03C9 uniquely (cf. [8 ], theorem 5). In this way one has established
a connection between strongly positive functionals on 9t and states on
the C*-algebra The situation is illustrated by the following diagram.

Annales de l’Institut Henri Poincaré - Physique theorique



151ALGEBRAIC QUANTUM FIELD THEORY. PROBLEMS I

The spaces and B~ can be easily described in concrete terms if 9t
is the commutative algebra C[X1, ...,Xn] of polynomials in n indetermi-
nates and r is the family of all C*-seminorms on 9t. 9t can be identified
with the algebra of polynomial functions on !R", and the C*-seminorm are
of the form

with K c [R" compact. ~ is the algebra of all continuous functions on [?",
whereas 9M consists of the polynomially bounded continuous functions.
The algebra B~ is the C*-algebra of all bounded, continuous functions on [R"
with the sup-norm. Strongly positive functionals on u are those that are
positive on all positive polynomials. The positive functionals on m cor-
respond to positive measures on [R" of rapid decrease at infinity. The measu-
res are uniquely determined by the states they define It is also clear
that the subalgebra ~o(~) of function vanishing at infinity is sufficiently
large to determine the measure.

In the general situation it may also happend that a suitable subalgebra
of B~ is a more natural object to deal with than B~ itself. To construct
such subalgebras one can make use of the functional calculus established
in [8 ] : Namely, for every hermitean h ~ u, there is a unique homomor-
phism 03C6 of the algebra of continuous functions on S = sp(h) into A such
that = hand == D. If f is a polynomially bounded, continuous
function, then and if f is bounded, then 
Let G be a subset of hermitean elements of u. Define B(G, r) as the subalge-
bra of B~ generated by elements f(h) with h ~ G and f ~ G0(R). If G is a
set of generators for 9t, then the restriction of  to B(G, r) is sufficient to
determine co uniquely. On the other hand one has the following streng-
tening of theorem 2.1 (cf. [8 ], corollary 3).

THEOREM 2.2. - The restriction B(G,0393) is uniquely determined by 03C9
if and only if

In [9 it is shown that this uniqueness holds e. g. in the case that the ele-
ments in G are represented by essentially self-adjoint operators in the
GNS-representation of u defined by OJ.

Finally we remark that the choice of the algebras ~(~, r) is somewhat
arbitrary. Instead of using functions vanishing at infinity to generate an
algebra, one could just as well consider the C*-subalgebra of B~ generated
by the unitary elements E ~8.

Vol. 48, n° 2-1988.
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3. C*-SEMINORMS
ON PARTIALLY SYMMETRIC TENSOR ALGEBRAS

Let E be a linear space (over C) and p a relation on E, i. e. a subset of
E x E. The partially symmetric tensor algebra Sp(E) is defined as the quo-
tient algebra

where T(E) is the tensor algebra over E and Ip is the two-sided ideal in T(E)
generated by all commutators a (x) b - b with (a, b) E p. If E is a topo-
logical vector space, it is understood that T(E) is the completion of the
algebraic tensor produced w. r. t. some suitable tensor product topology
and that Ip is a closed ideal.
We consider first the case that E is a finite dimensional space with basis

{ el, ..., and p is a relation on the basis elements [14 ]. One can then
also regard p as a relation on the set {1, ..., N }. Sp(E) is in a natural way
a *-algebra, if the basis elements are considered to be *-invariant. We shall
construct representations of Sp by embedding this algebra into a group
algebra.

Let Gp denote the « partially abelian free group » corresponding to the
relation p. This is defined as the group with N generators ..., uN satis-

fying the relations

The group algebra ll(Gp) consists of all formal sums

with (Xg e C and

The product in ll(Gp) is the convolution

and the *-operation is

We embed Sp(E) into as follows : Define

and extend p to a homomorphism Sp(E) -~ ll(Gp). This is possible, because
[~p(e~), ~p(e~) ] = 0 in if [ei, e~ = 0 in SP(E).

l’Institut Henri Poincaré - Physique theorique



153ALGEBRAIC QUANTUM FIELD THEORY. PROBLEMS I

LEMMA 3.1. - The ’ homomorphism &#x3E; is injective. ’

Proof. - Let o(Gp) denote the subalgebra a of 11(Gp) consisting j of all
finite ’ sums Eagg. We define ’ a grading £ on o(Gp) with values in 7L by putting £

and extending this to all monomials, i. e. elements of Gp ci lo(Gp), by the
formula

Now Sp(E) is also a graded algebra with deg ei = 1 for all i. Moreover,
we have for all fi, ... , in

It follows that Sp(E) -~ lo(Gp) preserves the degree. In particular we
have ker ~p = {0 }.

The (nondegenerate) representations of ll(Gp) correspond uniquely to
the unitary representations of Gp. If V is a representation of ll(Gp), then
rc = y o ~p is a representation of Sp(E), and

Since is unitary, we have (  1. Conversely, if 7r is a represen-
tation of Sp(E) with II  1 for all i, we can define a representation V
of satisfying (3.2) by

We may picture the situation by the diagram

Since (p is injective, we obtain a faithful representation 7r of SP(E) with
 1 by picking any faithful representation V of ll(Gp) (it suffices

that V is faithful on lo(GP)) and combining it with ~p. We may for instance
consider the left regular representation V~, defined on

Vol. 48, n° 2-1988.
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as follows :

This representation is faithful because the unit element of the group defines
a separating vector in ~. We have thus proven

THEOREM 3 . 2. - Suppose E is finite dimensional and p is a relation on
a set of basis elements for E. Then the algebra Sp(E) has a faithful represen-
tation by bounded operators on Hilbert space.
The construction above can be described quite explicitly if Sp(E) is the

totally symmetric tensor algebra S(E). Here Gp = The left regular repre-
sentation Yz is defined on H = l2 @N, and ui resp u-1i is represented by a
right resp. left shift in the i-th factor. The Fourier transform

establishes an isomorphism between jf and L2([20147r,7c]~~c). Here ui
resp. u-1i is represented as multiplication with the function exp resp.
exp ( - Hence is multiplication by cos The C*-algebra gene-
rated by is the algebra of all continuous functions on [-7r,7r]~
that are even w. r. t. inversion of each coordinate. After a variable trans-

formation, yi = cos xi, this algebra is manifestly isomorphic to the algebra
of all continuous functions on [ - 1, 1 ]N equipped with the sup norm. Under
the same isomorphism the algebra 7c(S(E)) is mapped onto the algebra of
polynomials restricted to [20141,1]~.
Any bounded representation 7c of SP(E) gives rise to a C*-seminorm

Further bounded representation and C*-seminorms can be constructed by
combining 7c with automorphisms of the algebra. Thus one can for each ~, &#x3E; 0

define an automorphism a of Sp(E) by := and obtain a representa-
tion 03C003BB = 03C003B103BB and a C*-seminorm p03BB = In the case of the totally
symmetric tensor algebra discussed above, p03BB is the sup norm on [-03BB, 03BB]N.
One thus obtains a basis of C*-norms for the symmetric tensor algebra
by combining the regular representation of the group algebra and the
automorphisms a~,. It is an open question whether this is generally true
for the algebras Sp(E).

Consider now the partially symmetric tensor algebra ~/~~ that is of
interest in quantum field theory [13 ]. Here !/ = T(!/) is the tensor algebra
over Schwartz space of the test functions, ~ _ ~((~d), and is the two

sided ideal generated by commutators f (8) g - g (8) f, with f, g E !/
having space-like separated supports.

Annales de l’Institut Henri Poincaré - Physique theorique
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THEOREM 3.4. - The algebra i ~/~~ admits a i continuous C*-norm
and i thus has a faithful representation by bounded operators on Hilbert space. ’

Proof 2014 We " use the method of [7~] to o map o the algebra a onto o partially
symmetric tensor algebras over finite dimensional spaces. Let ~= {~ ...,~N}
be a set of points in Define ’ a relation Pff i on { 1, ..., N } by

Denote by the partially symmetric algebra corresponding to the
relation pp£. Let el, ..., eN be the generators for and define a homo-

morphism !&#x3E;p£ : F/Fc ~ SB(E) by

for and canonical extension to other elements of the algebra. It
was shown in [14 ], lemma 4 . 3, that the homomorphisms D~ separate
points in ~/~ when ~’ runs through all finite subsets of ~d. Suppose now
that p is a C*-seminorm on S~. Then p~. := p o c~~. is a C*-seminorm on
~ /~~. Moreover,

so p~. is continuous w. r. t. the LF-topology of ~ /~~. If we combine this
N

seminorm with an automorphism with 03BB = p(el ) -1, we obtain a
new C*-seminorm q~ with the same null space, and

The is therefore equicontinuous, and

is a continuous The statement of the theorem now
follows from lemma 4 . 3 in [14 and theorem 3 . 3.
To construct further C*-norms on ~ /~~ one can make use of automor-

phisms of the algebra. In particular, we can consider graded automorphisms
that are generated by mappings ~ -~ ~ of the form

where P(D, x) is a linear differential operator with polynomially bounded
C~-coefficients and {a, A} is a Poincare-transformation. This mapping
Vol. 48, n° 2-1988.
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leaves the locality ideal invariant and thus generates an automorphism
(XM : ~/~c ~ ~/~c. is a continuous C*-norm on the algebra,
then"~~’)!! is another continuous C*-norm. By using such automor-
phisms we can make more detailed statements than theorem 3.4 about
the topology defined by the continuous C*-norms 
We recall from [7~] that is a locally convex direct sum of nuclear

Frechet-spaces :

with = C and = ~’(M"’’’)) for H ~ 1. The

topology on can e. g. be defined by the Schwartz-norms on 

An explicit formula for the corresponding quotient norm is given in [14]
(formula (4. 2) and prop. (4. 2)).

THEOREM 3.5. - The topology defined by the continuous C*-norms
N

on F /Fc induces the original Frechet topology on the subspaces Ef) (f/ 
forall N  00. 

n=o 
-

N

Proof We have to show that every Schwartz-norm on ~n=0 (f/ can

be dominated by a C*-norm on the algebra. Since we can combine C*-
norms with mappings of the type (3 .6), it suffices to consider the simplest
Schwartz norms on .

N
V~ N

and the corresponding = !! . 0 
/ j "-o

n=0

f e F(Rd.n) the supremum in (3 . 7) is reached at a point ..., xn) e Rd.n.
N

Hence, for every a e 0 (~/~c)~ there is a set ~ with at most N(N - 1)/
M=0

2 points such that

where 03A6~ is the homomorphism F/Fc ~ S(E) defined by (3 . 4) and p
is a norm on S~(E). The norm p depends only on the algebra S~(E), but is
otherwise independent of a. Also the constant, const~, depends only on the

N

relation 03C1~. Moreover, 03A6~ maps ~ (F/Fc)n onto a finite dimensional
n=0 
-

subspace of S~(E), where all norms are equivalent to each other. By theo-
rem 3 . 2 we may therefore assume that p is a C*-norm. As ~ runs through

Annales de l’Institut Henri Poincaré - Physique theorique
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all sets with at most N(N - 1)/2 points the algebra S~(E) will change.
However, there are only finitely many different relations p~ and hence only
finitely many different algebras to be taken into account. Because of this
and (3 . 8), the family of C*-seminorms p o D~ is equicontinuous. The
supremum over ~’ defines then a C*-seminorm that dominates !! . 

4. POINCARE-COVAMANCE

The Poincare group ~ operates in a natural way as a group of continuous
automorphisms If r is a family of C*-seminorms and r
is invariant under this action, then the group is also represented by auto-
morphisms of the C*-algebra B(~/J~r), defined in section 2, cf. [9 ],
prop. 3. However, his action is in general not continuous in the group ele-
ments. In fact, suppose r contains the C*-seminorms

where K runs through the compact sets of characters on the algebra. For
the on B we then have

for all a, ~e~/J~,, If a, &#x26;e(~/~)i are linearly independent,
there is a X with x(a) = 1 and = 0. Thus we have

Since a Poincare-transformation L takes an element a E (~/J~,), ~ ~ 1i
into a linearily independent element, it is clear that L ~ is not a
continuous function on the group 1!, /(0) 7~ f ( 1 ).

This situation, however, is not unexpected; what matters is that the alge-
bra should have many nontrivial covariant representations, where the
group action is unitarily implemented in a continuous way and satisfies
the physical spectrum condition. (See [7~] for a general characterization
of representations that are quasi-equivalent to covariant representations.)
The question whether this is the case for the C*-algebra B associated with
the family of all continuous C*-seminorms on ~/J~. is a very difficult one,
and we shall not deal with it here. Instead we present an example of a
Poincare-covariant representation (without spectrum condition) where
the algebra ~/~~ is faithfully represented by bounded operators.

Consider the on ~/~~ defined by (3.5). This norm is
obviously invariant under Poincare-transformations. Moreover, the action is
continuous in the group elements for every fixed element of the algebra. In
fact, since the norm is invariant, it suffices to consider the action on the gene-
Vol. 48, n° 2-1988.
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rators, i. e. But there ~.~~ is the usual sup-norm and
the assertion is obviously true. We can now apply a standard method for
constructing covariant representations by forming cross products (cf. [76],
ch. 7 . 6) :

Let 7T be a representation on a Hilbert space H with ~ 03C0(a)| = II a ~~.
Define a representation X of the algebra and a unitary representation U
of the Poincare group ~ on ~f = by

and

Then

for all a ~ F/Fc. Moreover, X is faithful since 03C0 is faithful.

ACKNOWLEDGEMENTS

Parts of this work were carried out at the Institute for theoretical Physics
in Gottingen while J. A.-B. was a fellow of the Alexander von Humboldt

Foundation. We would like to thank Professor H. J. Borchers for his hos-

pitality.

[1] A. S. WIGHTMAN and L. GÅRDING, Fields as operator valued distributions in relati-
vistic quantum field theory. Ark. f Fys., t. 28, 1965, p. 129.

[2] R. HAAG and D. KASTLER, An algebraic approach to quantum field theory. J. Math.

Phys., t. 5, 1964, p. 848.

[3] H. ARAKI, Einführung in die axiomatische Quantenfeldtheorie. ETH Zürich 1961-1962.

[4] H. J. BORCHERS and W. ZIMMERMANN, On the self-adjointness of field operators.
Nuovo Cim., t. 31, 1963, p. 1047.

[5] W. DRIESSLER and J. FRÖHLICH, The reconstruction of local observable algebras
from the Euclidean Green’s functions of relativistic quantum field theory. Ann.

Inst. H. Poincaré, t. 27, 1977, p. 221.

[6] FREDENHAGEN and J. HERTEL, Local algebras of observables and pointlike localized
fields. Commun. Math. Phys., t. 80, 1981, p. 555.

[7] W. DRIESSLER, S. J. SUMMERS and E. H. WICHMANN, On the connection between

quantum fields and von Neumann algebras of local operators. Commun. Math.

Phys., t. 105, 1986, p. 49.
[8] M. DUBOIS-VIOLETTE, A generalization of the classical moment problem on *-algebras

with applications to relativistic quantum theory. I. Commun. Math. Phys., t. 43,

1975, p. 225.

[9] M. DUBOIS-VIOLETTE, A generalization of the classical moment problem on *-algebras
with applications to relativistic quantum theory. II. Commun. Math. Phys., t. 54,

1977, p. 151.

Annales de l’lnstitut Henri Poincaré - Physique ’ theorique



159ALGEBRAIC QUANTUM FIELD THEORY. PROBLEMS I

[10] H. J. BORCHERS, On the structure of the algebra of field operators. Nuovo Cim,. t. 24,
1962, p. 214.

[11] A. UHLMANN, Über die Definition der Quantenfelder nach Wightman und Haag.
Wiss. Zeitschr., Karl Marx Univ., t. 11, 1962, p. 213.

[12] G. CHOQUET, Lectures on Analysis, vol. 2, New York, Benjamin, 1984.
[13] H. ARAKI and G. A. ELLIOTT, On the definition of C*-algebras. Publ. RIMS Kyoto,

t. 9, 1973, p. 93.

[14] J. YNGVASON, On the locality ideal in the algebra of test functions for quantum fields.
Publ. RIMS Kyoto, t. 20, 1984, p. 1063.

[15] H. J. BORCHERS, C*-algebras and automorphism groups. Commun. Math. Phys.,
t. 88, 1983, p. 95.

[16] G. K. PEDERSEN, C*-algebras and their Automorphism Groups. London, New York,
San Francisco, Academic Press, 1979.

(Manuscrit reçu Ie 13 aout 1987)

Vol.48,n°2-1988.


