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Spectral resonances
for the Laplace-Beltrami operator

Stephen De BIÈVRE (1) Peter D. HISLOP (2)
Mathematics Department, University of Toronto,

Toronto, Ontario, Canada, M5S lAl

Inst. Henri Poincaré,

Vol. 48, n° 2, 1988, Physique theorique

ABSTRACT. - We study the Laplace-Beltrami operator - Og on a class
of spherically symmetric, complete Riemannian manifolds M = !R" with
metrics g. We formulate conditions on g such that (M, g) has a suitably
large set of bounded geodesics in a compact set. Under these conditions,
we prove that - Og has either spectral resonances or positive eigenvalues zn .
The Re (zn) is approximately an eigenvalue of - Og restricted to the region
where the bounded orbits are concentrated. Sufficient conditions on g
are given which guarantee that Opp(- Ag)n IR + = ~. When these are
satisfied, - Og has spectral resonances. In the proofs, the angular momentum
quantum number ~ plays the role of the semi-classical parameter. The
widths of the resonances are proved to be exponentially small in ~f. These
results also apply to manifolds of the form M = X x N where X = [R
or N is compact, and the metric has the form ds2 - dr2 + 
An application to surfaces of revolution is given.

RESUME. - Nous etudions l’opérateur de Laplace-Beltrami - Og sur
une classe de varietes Riemanniennes completes M = [R" munies d’une
metrique g a symetrie rotationnelle. Nous formulons des conditions sur g
pour que (M, g) ait une collection suffisamment large de geodesiques bornees
dans un ensemble compact. Sous ces conditions, nous montrons que - Ag
a des resonances spectrales ou des valeurs propres positives zn. La partie
reelle de zn est proche d’une valeur propre de l’opérateur 2014 Ag restreint a
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106 S. DE BIEVRE AND P. D. HISLOP

la region ou les trajectoires bornees sont concentrees. Des conditions suffi-
santes sur g sont donnees pour assurer que o-pp(2014 Og) n IR + = 03C6. Si celles-ci
sont satisfaisantes, - Og a des resonances spectrales. Dans les demonstra-
tions, Ie numero quantique du moment angulaire t joue Ie role de parametre
semi-classique. Nous montrons que les parties imaginaires des resonances
sont de type exponentiel en ~. Ces resultats s’appliquent aussi aux varietes
de la forme M = X x N, ou X Nest compacte et la métrique
est de la forme ds2 - dr2 + Nous donnons une application aux
surfaces de revolution.

1. INTRODUCTION

In this paper, we strengthen the connection between the occurrence of
bounded orbits for classical Hamiltonian systems and of either bound states
or spectral resonances for the corresponding quantum systems. More pre-
cisely, we prove that the Laplace-Beltrami operator - Ag on a class of
complete Riemannian manifolds with sufficiently many bounded geodesics
has either bound states or spectral resonances. The manifolds which we
consider are of the form g), n &#x3E;_ 2, where the metric g is SO(n)-invariant.
Hence, it is given by

ds2 - + (1.1)
in radial coordinates where is the usual metric on 
We establish our results for metrics g on fR" satisfying the following

conditions (they are given in detail in the text). We require that the metric
is C2 and give conditions on f such that it is geodesically complete. We
can then change coordinates such that on the metric has the form

ds2 = dr2 (1.2)
where &#x3E; 0, and h satisfies certain regularity conditions as
r ~ 0. We characterize those functions h for which the metric admits a

sufficiently large number of geodesics lying entirely inside a compact set
Q c whereas all geodesics with initial conditions in a suitable neigh-
borhood of infinity leave every bounded set. These conditions follow from
studying the flow on T*M ~ generated by the Hamiltonian vector
field corresponding to the classical Hamiltonian

where Hsn-1 is the Hamiltonian for with metric d03C92 and is a constant
of motion.
For such metrics, we consider Hg = - dg acting on 
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107SPECTRAL RESONANCES FOR THE LAPLACE-BELTRAMI OPERATOR

== (det as a quantization of the classical system described by (1. 3)
on T*M (we drop the factor of 1/2). We are interested in the effect of the
large family of bounded geodesics on Hg. Because of the spherical sym-
metry, we can reduce the problem to a one-dimensional one. For angular
momentum ~, the reduced Hamiltonian acting on dr) has the form

where Y2 is a bounded function away from the origin and ~,(~) _ ~(~ + n - 2).
We show that under the conditions on h outlined above, the potential h(Y) - 2
is of the same form as a shape resonance potential. Hence, states with non-
zero angular momentum will experience an effective trapping potential.
By adapting the machinery developed in [1] ] to solve the shape resonance
problem, we are able to prove that and consequently Hg = - Llg
has either spectral resonances or bound states. Moreover, these are approxi-
mately given by the energy levels of Hg restricted to the region Q c [R"
where the bounded geodesics are concentrated.
We emphasize that although we have transformed the problem to a

Schrodinger operator problem, the effective potential h - 2 is purely of
geometric origin. Moreover, the angular momentum ~ plays the crucial
role of a semi-classical parameter, although it is not explicit in Hg.
To discuss these aspects of the problem in more detail, we recall that the

existence of resonances (in the absence of positive bound states) has been
previously established for certain classes of Schrodinger operators 
of the form

where Y(,1; x) is a potential depending explicitly on a parameter ~,. Examples
of these are Schrodinger operators for shape resonances [7] ] [2] ] [3 ] ;
the AC Stark effect [4 ] ; the DC Stark effect [5 ] ; and the Zeeman effect [~] ]
[6 ]. In all of these cases, the corresponding classical system has a set of
initial conditions with non-zero measure for which the orbits are bounded
but to which no bound states of the corresponding Schrodinger operator
can be associated. Instead, the bounded orbits give rise to resonances.
The confining of classical orbits in these systems arises from the conser-

vation of energy together with the existence of a potential barrier formed by
V(,1; x) which is made large (in the sense that the width of the barrier in the
Agmon metric is made large) by increasing the external parameter ~,,
which is, for example, Planck’s constant or the inverse of the electric field
strength. We call ~, the semi-classical parameter and in the large ~, regime
the tunneling through the barrier is suppressed. In the semi-classical region
of large ~,, one expects to be able to see the influence of the bounded geodesics
more easily, and this is indeed the case for the systems mentioned above.

In the systems we study, the trapping of orbits originates in the geometry
through the form of the metric and in the dynamics through the conserva-
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108 S. DE BIEVRE AND P. D. HISLOP

tion of angular momentum. The latter plays the role of the semi-classical
parameter but, unlike the examples (1.5), it is an internal parameter not
appearing explicitly in Hg. That resonances should be more easily discerned
at high values of l can be understood as follows. It is basically believed that
in the limit of high energy, the behavior of quantum systems is partially
determined by classical quantities and consequently, the influence of the
bounded geodesics should be more readily detected at high energies E.
On the other hand, it is seen from the classical equations of motion (see
(2 .14)) that for fixed E, but small values of ~, there are no bounded geodesics.
Equivalently, the quantity ~h-1(2E) ‘1~2 measures the sine of the angle
between the geodesic and the radial direction. If this angle is too small,
the geodesic will not be bounded. Consequently, we expect to be able to
locate the resonances more readily in the large E and l region (of course,
the latter implies the former). This explains the role of l as the semi-classical
parameter.
When Hg has no positive eigenvalues, the proofs presented here imply

that Hg has spectral resonances with Im  0 for all l sufficiently
large. We give two conditions on the function h which are sufficient to prove
that 03C3pp(Hg) n IR+ = 03C6. One condition is due to Escobar [7] who found
sufficient conditions on a spherically symmetric metric on [R" to insure the
absence of positive eigenvalues for Hg (for more general results, see [8 ].) The
Im can be estimated as in the shape resonance problem. Since the reso-
nances arise because of tunneling, the width is exponentially small in ~,(~)1~2.
We show that for any e &#x3E; 0, there exists a cn &#x3E; 0 such that for all l suffi-

ciently large 
_ _

Here, 03BB(l)1/20 is the leading asymptotic contribution in l to the width,
in the Agmon metric, of the potential barrier through which the particle
with energy Re must tunnel.
The proof of the existence of resonances or bound states for Hg follows

the procedure developed in [7] ] with one major change. The potentials
occurring in (1. 4) are more general than those discussed in [1] ] and require
a different method for obtaining uniform estimates on the resolvent of
the distorted Hamiltonian restricted to the exterior of the potential well.
We develop here a quantum non-trapping condition in the exterior region
for the potential based upon the general results derived in [9 ]. We formulate
a condition on the metric which guarantees that all geodesics with initial
conditions in the exterior of a ball of radius RNT leave every bounded set _

and prove that this insures that the effective potential in (1.4) satisfies the
quantum non-trapping condition in 
We mention that our results apply to the Laplace-Beltrami operator

on manifolds M of the form M = X x N where X = R or R+, N is compact,
and the metric has the form ds2 = dr2 + In this setting, the eigen-
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109SPECTRAL RESONANCES FOR THE LAPLACE-BELTRAMI OPERATOR

values of the Laplace-Beltrami operator on N play the role of the semi-
classical parameter.

This paper is organized as follow. In Section 2, we study spherically
symmetric manifolds tR" with metrics as in (1.2) using the classical Hamil-
tonian (1. 3). We make a preliminary study of the spectral properties of Hg
in Section 3 under the conditions on h formulated in Section 2. We also

give two different conditions on -h which imply the absence of positive
energy bound states. The proof of the existence of bound states or spectral
resonances for Hg is given in Sections 4.and 5. The quantum non-trapping
condition is applied in Section 5 to prove uniform (in ~) bounds on the
resolvent of the distorted Hamiltonian. In Section 6, we sketch, the proof
of the upper bound on the width of the resonances in terms of the width
of the classically forbidden region in the Agmon metric. An application
of these results to surfaces of revolution is given in Section 7. We present
a model which illustrates the dissolution of bound states and their subse-

quent reappearance as resonances as a parameter is varied. We conclude
with some comments on generalizations and extensions of this work in
Section 8. In Appendix A, we formulate a quantum non-trapping condition
and prove that it implies a uniform lower bound on the distorted Hamil-
tonian restricted to the non-trapping region. In Appendix B, we prove that
the classical non-trapping condition on the metric formulated in Section 2
implies that the quantum condition of Appendix A holds.

2. CLASSICAL BOUNDED ORBITS
AND NON-TRAPPING CONDITIONS

We consider the most general C2, spherically symmetric (i. e. SO(n)-
invariant) Riemannian metric on [Rn (n &#x3E; 1). In spherical coordinates

(u, co) E x Sn -1, it is given by

where f, k E C2(R+) are strictly positive and is the metric on the unit

sphere in By comparing (2.1) with its expression in Cartesian coordi-
nates in a neighborhood of the origin, one sees that

and

Vol. 48, n° 2-1988.



110 S. DE BIEVRE AND P. D. HISLOP

We introduce a new radial variable r as follows :

so that r’ (u) - and r E (0, b), with b = r( (0). The coordinates
(r,~)e(0,b) x are called geodesic coordinates. In terms of them,
(2.1) becomes

with

It follows from (2 . 6), (2 . 2)-(2 . 4) that b)), h &#x3E; 0 and

Calculating the curvature R of (2. 5), one finds

Since we assume that (2 . 5) is the restriction to [R" B{ 0 } of a metric on !R",
the limit as r ~ 0 of R(r) exists and is finite; using (2. 7) and (2. 8), we find

Hence we conclude that h"h -1 is bounded on any interval (0, ho), bo  b.
We now turn to the study of the geodesic flow of (2. 5). It is well-known [10 ]

that the geodesics of a Riemannian manifold (M, g) can be found by inte-
grating the Hamiltonian equations of motion on T*M, obtained from the
Hamiltonian

(in local coordinates). With the metric as in (2.5), this reads

where we write x Hs.-i is the Hamiltonian

obtained from the Riemannian metric on as in (2 .11 ). Let { ., . }
denote the Poisson bracket on TW. As a result of the spherical symmetry
of H, one finds

so that Hsn-1 is a constant of the motion. It is then a simple matter to verify
that

Annales de Henri Poincaré - Physique ’ theorique ’
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where we set

and H is constant. In the sequel, we shall only be interested in geodesically
complete metrics. We have the following criterion :

LEMMA 2.1. - The metric (2.1) is geodesically complete iff roo 
diverges (i. e. b = 00~). J 0

Proof.
1) From (2.14) it follows that the condition is necessary; to see this it

suffices to take ~ = 0.

2) Conversely, suppose ~=00. Let y : (c, d) ~ be a maximal

integral curve of the Hamiltonian vector field XH, with H = 
as before; y(s) _ (x(s), p(s)) :

Compute the length of the projected curve x : (co, d ) -~ 

where we used the constancy of H. Now, if (d - co)  oo, then we show
that x(s) lies in a compact subset of Indeed, let {3) ~ fR" be a
curve that leaves every ball of radius U in [R".
Then

where I is the open subset of (a, /3) on which u &#x3E; 0. Changing variables,
we have

Since !im M(s) = 00, we know that u(I) = (inf u(I), (0) and hence
s-~

so that ~((x, ~3) is infinite by assumption. Consequently x(s) lies in a compact
set.

Vol. 48, n° 2-1988.
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3) Since XH is a C1 vector field (because the metric is C2) we have that

where we used (2 .16). Using (x 1, v 1) as a new set of initial conditions in the

geodesic equations of motion, the existence and uniqueness of solutions to
ordinary differential equations guarantees that we can extend y to some
interval (c, d + 8), 8 &#x3E; 0. But that contradicts our assumption that y is

maximal. So (d - co) = oo and hence ~=00. Similarly one proves c = - oo .
D

As a result of Lemma 2.1, the metric in (2.5), with h defined on (0, b)
and satisfying (2 . 7)-(2 . 8), is geodesically complete iff b = oo . From now

on we always work with geodesically complete, SO(n)-invariant metrics
on !R", expressed in geodesic coordinates as in (2.5). We summarize the
conditions on the allowed functions h as follows : 

B

CONDITIONS A’. - (Conditions on the metric-classical case).

We now determine under what additional conditions on h there exist

geodesics of (2.5) that lie inside a compact subset of I~". We will refer to
these as bounded orbits. We have the following result:

THEOREM 2.2. - The initial conditions in leading to bounded

orbits under the flow of (2.12) are a set of non-zero measure iff 30  rl  r2

such that

Proof. 2014 Suppose (2 . 23) is satisfied; consider initial conditions 
such that

where r3 = sup { ~=~2)}; ~ certainly exists as a result of (2 . 21).
Then the initial conditions (2.24) lead to bounded orbits in view of (2.14) ;
moreover, they clearly form a set of non-zero measure. Conversely, sup-
pose (2 . 23) does not hold; then it follows from (2 . 21) that h is monotonically

Annales de l’Institut Henri Poincaré - Physique theorique
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non-decreasing. It follows from (2.14) that bounded orbits are then of the
form

where r is such that h’(r) = 0. It follows that

so that initial conditions leading to bounded orbits are a set of measure zero.
D

We remark that if n = 1, it follows from (2.11) and the analog of (2.14)
that there are no bounded geodesics; this is why we exclude that case. Note
also that it is possible for r2 in Theorem 2.2 to be infinite. However, the
non-trapping condition below will guarantee that this possibility does not
occur.

The metrics we wish to consider will have bounded orbits in some

compact region of [R", but outside a (possibly larger) compact set we want
almost all initial conditions to lead to orbits that move out to infinity.
In light of Theorem 2.2 we have

DEFINITION 2 . 3. - We say a metric (2.5) on Rn, satisfying Conditions A’,
is non-trapping for r &#x3E; R iff

We can paraphrase the non-trapping condition (2.27) by saying that
there are almost no bounded orbits for r &#x3E; R. We illustrate a typical func-
tion h with trapped orbits and satisfying (2. 27) as well as A’, together with
the effective potential ~2h - 2, in Figure 2.1.

The bounded orbits stay within the region ~3  r  r2. Note that the
depth of the potential well behaves as C~(~2) for large ~, so that it becomes
deeper as t  oo .

Vol. 48, n° 2-1988.
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3. PRELIMINARIES
ON THE LAPLACE-BELTRAMI OPERATOR

In this Section, we make a preliminary study of the Laplace-Beltrami
operator Hg = - We show that under Conditions A (given below),
Hg is essentially self-adjoint on Co(!~n). Spherical symmetry is used to

reduce the problem to a one-dimensional problem. It is shown that Hg
restricted to each angular momentum subspace is unitarily equivalent to
a Schrodinger operator on the half-line. We show that under the

hypotheses of Theorem 2 . 2, the potential Yz is similar to the type of poten-
tial studied in the shape resonance problem. In the present problem, ~ plays
the role of the semi-classical parameter. We formulate a separate condition
on h which we prove implies the absence of positive eigenvalues for Hg.
We will always assume that the function h, which determines the metric g

on [R" as in (2.5), satisfies the following Conditions A, which are an extension
of the Conditions A’ given in Section 2.

CONDITIONS A. - (Conditions on the metric-quantum case) .

h’h-1 is bounded outside of any neighborhood of the origin; 
is everywhere bounded’

REMARK 3.1. 2014 The curvature R, defined in (2. 9), is everywhere bounded
under Conditions A.

In addition, we will at times impose the following conditions :

CONDITION B. - (Exterior non-trapping.) There exists an RNT &#x3E; 0

(RNT must satisfy an additional condition specified in (4 . 2) below) such that
for r &#x3E; RNT, ~) &#x3E; 0 (see Definition 2 . 3), and h’(r) &#x3E; 0 for r E [RNT, r ]
where r = inf { r &#x3E; RNT = min Y1(s)}.

. 

CONDITION C. - (Existence of bounded CfesJ

i ) h satisfies the hypotheses of Theorem 2 . 2 for some (and at most finitely
many) pairs of points (rl, r2);

ii) for any such pair (rl, r2),

Condition C ii) implies that the effective " potential given below is a shape
resonance 

" potential of non-threshold 0 type in the terminology of [1 ].

Annales de l’Institut Henri Poincare - Physique - theorique
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Two other technical conditions, D and E, will be given below. To simplify
the proof of the existence of bound states or resonances, we will assume
that if h satisfies Condition C, it does so for only one pairs of points (r 1, r2).
This amounts to treating a shape resonance potential with a single well.
We comment on the general case in Section 8.
Note that as in the shape resonance problem, Condition C i ) that

h"(r 1 )  0, is required for the harmonic approximation. This is not essen-
tial and can be replaced by any condition which guarantees that the
embedded eigenvalues of an approximate Hamiltonian Ho, given below, do
not move together at an exponentially fast rate as the angular momentum ~
increases.
The significance of Conditions Band C for the geodesic flow was dis-

cussed in Section 2. We will explore the quantum consequences of these
conditions in this and the following sections. We will show that they imply
that Hg has either bound states or spectral resonances. We assume that Hg
represents the appropriate quantization of the generator of the geodesic
flow (however, see Section 8).
We begin by showing that the dynamics generated by Hg is well-defined.

This reflects the fact that the manifold is geodesically complete. We have
the following standard result, essentially due to Chernoff [11 ].

LEMMA 3.2. - Let h satisfy Condition A. The Laplace-Beltrami oper-
ator Hg is essentially self-adjoint 

Proof 2014 By Theorem 2.4, Condition A on h implies that (tR", g) is geo-
desically complete. As hE C2, then by the Hopf-Rinow Theorem [72],
(tR", g) is a complete metric space. It now follows by a theorem of Chernoff
that Hg is essentially self-adjoint on D
We now proceed to the analysis of Hg . By the spherical symmetry 

we reduce questions about Hg to ones about the restriction of Hg to SO(n)-
invariant subspaces. We have

where is the inverse of det Hg acts on ~f = 
From (2.5) and (3.1), it is a simple calculation to show that

where L2 is the Laplace-Beltrami operator on S" . We have that

The Hilbert space ~f affords a direct sum decomposition ~f = Ef) ~~,
where ~ ~ L2(I~+, Q ’~’~, Jf~ is an SO(n)-invariant subspace and,
for each ~, ~~ is a (finite-dimensional) carrier space for inequivalent repre-
sentations of SO(n).

Vol. 48, n° 2-1988.
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Since L~!~=~+n-2), we define _

where

Let Uh: L 2(!R+, h(r)n-ldr) ~ L 2(!R+, dr) be the transformation defined by

Then U~, is a unitary operator. We define acting on L2(1R+, dr) by

where

LEMMA 3 . 3. - Let ~C satisfy Conditions A and let be the symmetric
operator defined in (3.4) with domain Cü(l~ +). For n &#x3E;_ 4, and 0,

is essentially self-adjoint on Cü(IR+). For n = 3 (.f’or n = 2), 
is essentially self-adjoint on Cü(1R +) for l ~ 1 2, respectively).
Proof This follows from a simple application Qf Weyl’s limit point-

limit circle criterion [13 ]. Let Vt == 03BB(l)h-2 -t- ( 1 /4)(n - 1 )(n - 3)(h’h -1 )2.
It is easy to check that Vt is in the limit point case at infinity by verifying
that 3/2 1S bounded in a neighborhood of infinity and that

(this latter condition guarantees that the classical motion is complete at
infinity). As for the behavior at r = 0, for n ~ 4, (3/4)r - 2 in a small
neighborhood of zero, for all t  0 as lim r-1h(r) = 1. For n = 3, the
same result holds provided ~ &#x3E;_ 1; for n = 2, we must take ~ &#x3E; 2. Hence,
- Dr + VC is in the limit point case at zero and infinity and, consequently
it is essentially self-adjoint on under the restrictions on ~. Since
h"h -1 is bounded, this perturbation does not change the domain of essen-
tial self-adjointness. D

This lemma suffices to define as a self-adjoint operator for our
purposes since we are concerned with high angular momentum ~. However,
for completeness, we note that should be defined by the Friedrichs

Annales de l’Institut Henri Poincaré - Physique theorique
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extension of the symmetric operator - Dr + YI on C~(~) for the cases
(when n = 2, 3) not covered by Lemma 3.2.
As a final topic of this Section, we consider some conditions on h which

guarantee the absence of positive energy bound states for We will
see in Section 5 that when h satisfies this condition, Hg(t) will have spectral
resonances, i. e. the imaginary part of the resonance energy will be strictly
negative. Our condition Dl on h is motivated by well-known results on
the absence of positive energy bound states for Schrodinger operators [14 ].
The alternative condition D2 is a condition used by Escobar [7] in a recent
paper.

CONDITION D. - (Absence of positive energy bound states) .

(Dl) For some b &#x3E; 0, h satisfies roo h"h -1 ~  oo and lim 
b 

for some small G &#x3E; 0 and 0  c  oo .

(D2) Let K be the radial curvature defined by K == - h"h -1. Then either

THEOREM 3 .4. - Let h satisfy Conditions A. If h satisfies Condition D1
or Condition D2, then (and hence - ~g) has no positive energy bound
states. 

’

Proof That D2 implies the absence of positive energy bound states is
proved in [7] or [8 ]. We consider D 1. Note that lim r ‘ 1/2+~h(r) = c implies
that r1/2 + Eh’(r) - c’, 0  c’  oo by l’Hopital’s rule.Any eigenfunc-
tion u for with eigenvalue k2 &#x3E; 0 must be an L2-distributional solu-
tion of

Conditions D1 imply that V~ E L1( [b, oo)) and Conditions A imply that
Vc E Consequently, any solution of (3 . 5) must be a linear combi-
nation of Jost solutions [7~]. As these solutions behave asymptotically
as eikr (l = 0) and (l &#x3E; 0) (where jl is the spherical Bessel
function), they are not L 2 at infinity. Consequently, (3. 5) has no L2-solu-
tions. D

REMARKS 3.5.

1 ) The second alternative in Condition D2, K  0, will be excluded
when we impose Conditions C, since as a consequence of Conditions C,
the case of K ~ 0 everywhere is ruled out. Note that, as discussed by Esco-

Vol. 48, n° 2-1988.
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bar [7 ], in the case of negative radial curvature the absence of positive
eigenvalues is unstable under even compact perturbations of the metric,
unlike the non-negative curvature case.

2) Escobar [7] also mentions that S. T. Yau [7~] proved that if M is a
complete, non-compact Riemannian manifold, then there are no non-
constant harmonic function in Lp(M), p E (1, oo). Consequently, 0 is not
an eigenvalue of - Ag and Theorem 3 . 4 implies that - Ag has no eigenvalues.

4. APPROXIMATE HAMILTONIAN
AND SPECTRAL DISTORTION

We continue our study of the Schrodinger operator on dr)
as defined in (3.4). We will assume that h satisfies Conditions A-C of Sec-
tion 3. We will not impose Conditions D at this point. As a consequence,
we will prove that has either a bound state or a spectral resonance in
a neighborhood of an eigenvalue of Ho 1 (defined below) which describes
a particle confined to the potential well of Yt. This result is obtained by
modifying the proof given in [1] ] for the shape resonance problem, as we
have already noted that ~,(~)h(r)-2 has the form of a non-threshold shape
resonance potential. The V2 part of the potential is bounded on any set
[E, oo), 8 &#x3E; 0, and O(03BB(l)-1) relative to V1. Hence, in the large l regime,
it will contribute negligibly to the calculations.

In this and the next sections, we outline the main steps of [1 ], using freely
the material developed there. There is one major difference between the
problem at hand and the shape resonance problems studied here. In [1 ],
it was assumed that on the exterior of a ball of radius R, the potential
is a sum of homogeneous functions. This allowed one to obtain specific
estimates on the resolvent of the distorted Hamiltonian restricted to

BBR(0)). In the present case, we are dealing with more general poten-
tials and we replace this argument with a non-trapping argument derived
from [9] (see Section 5 and Appendix A). Consequently, Condition B on h
will play a major role in these estimates.

A The Approximate Hamiltonian.

1 be a partition of unity for W,O  ~ ~ 1, with 7?=1

and jl(o) = 1. Let Vo(~) == min = and let Sri &#x3E; r2 be such
rr2

that Yt(Sri) = Sri is the exterior exit point for energy Note
that = O(l2). Let r2  R2  We choose j1 and j2 such that
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supp [0, R2] = Di, supp ~IZ)= [R2, (0) == D2 and 7i(R2)=7’2(R2)=0.
Choose ~1~2 &#x3E; 0 small such that

and take j3 such that supp (j3) = [R2 - Gl, R2 + ~2]. A partition of unity
is sketched in Figure 4.1. We assume that the non-trapping radius RNT
described in Condition B satisfies

By the IMS localization formula, we have

so we define localized Hamiltonians i = 1, 2, by

where J -= - and xi is the characteristic function for Di, i = 1, 2.
The approximate Hamiltonian is
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acting on L 2(1R + , dr). The localized perturbation W is given by

Ho2 is essentially self-adjoint on C~(D2). It follows from the proof of
Lemma 3.4 that H01 is essentially self-adjoint on 2. For

~ = 0, 1, we take Ho 1 to be the Friedrichs extension from the domain

B. Spectral Preliminaries.

We now study the spectra of the self-adjoint operators Ho~
under Conditions A and C. Since is unitarily equivalent to 0

(see (3.3)) we have [0, oo). Moreover, we will prove below
that (under an additional Condition E), extends to an analytic type A
family of operators. It is proved in [7] that = e-2e~+. Then,
by a standard argument [14 ], these two facts imply that ~.

Because we have defined Hoi using smooth cut-off functions, the operator
Ho 1 may have essential spectrum. The spectra of Hoi are characterized
in the following theorem. The proof follows along the same lines as that
of Theorem 3 . 3 in [1] so we only comment on part of it.

THEOREM 4.1. - Assume Conditions A and C hold.

REMARKS 4.2.

1) As in [1 ], the 6ess(Hoi) comes from the regions where j’i ~ 0. The

proof follows from local compactness and Weyl criteria arguments as

given in [1]. We present details of a similar local compactness argument in
this setting in Section 7, Lemma 7.2.

2) The discrete spectrum ofHo1 is established using the harmonic approx-
imation and the Min-max Principle. The comparison harmonic oscillator
Hamiltonian is :

The minimum of Vi at rl is non-degenerate by Condition C. Consider the
related oscillator
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acting on L 2(!R). If { is a listing (in increasing order) ofcr(K), then

Note that all of the eigenvalues are simple. If E 7(K(~)), it is easy to
see that :

from (4 . 7)-(4 . 9). Then, the full statement of the harmonic approximation is :

The proof of (4.11) follows from [7] ] or [7~] ] (see also Theorem 7 . 2).
Note that for large ~,  

3) For any let F~) denote the classically forbidden
region for energy i. e.

and let Sn be the classical turning points for energy i. e. Sn  R2  S~
and V~(S~) = Then, (S~, S~). Note that the condition Sn  R2
and Sn &#x3E; R2 is a restriction on n. We will always suppose that n is small
enough such that this condition holds.

C. Spectral Distortion.

We use the method of smooth vector fields developed in [1] ] (see also [9 D.
In order to construct analytic families of operators associated with Ho
and we must make additional assumptions on the function h.

CONDITIONS E. - (Analyticity).

is the restriction to 5o, oo) of a function h analytic in a sector ~h
with vertex at ~o and angle Bh ;

Note that given RNT of Condition B, we can always find RNT such that
R~S  RNT  so without loss of generality we will assume that

R~S  RNT  Sri. As a consequence of Condition E, VC in (3.4), when
restricted to extends to a bounded, analytic, operator-valued
function on ~h. We note that functions h with polynomial and exponential
growth satisfy Conditions E.
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We consider flows on R (and C) generated by Ck vector fields f, k &#x3E;_ 2

with /’ and f " bounded and which are linear at infinity, i. e.

We require that f, together with its first derivative, be monotonically
increasing. In addition, f has the form

Here,  is the restriction to 5i, oo), for some 03B41 &#x3E; 0, of a function

analytic on a sector ~ f with vertex at b 1 and angle 0  9 f  7L

An example of such an  is

see Figure 4.2.

a) Sector ~~,

b) Vector field f

It follows from Section 4 of [1] ] that any vector field f as above generates
a global flow ~~ e which has an analytic continuation in e onto a

strip S’7 = { e I Im 03B8|  ~} for some ~ &#x3E; 0 determined by the sec-
tor angle 0~. Note that the segment [0, RcJ consists of equilibrium points
for the flow ~.
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We proceed to construct the analytic families 8) and e)
using a flow ~e as described above. Given the functions hand h satisfying
Conditions A and E, we choose the vector field f satisfying the conditions
above. Moreover, we require that there exists ~, 0  ~, such that

(If eh &#x3E; 0y, we take 17 == ij, otherwise we can always restrict f to a smaller
sector.) Then is analytic in () on We assume that this has been
done and write ~ for  below.

Let () e [R, be the unitary group defined by

where Je(r) == J is the Jacobian of the flow. By an elementary
calculation we have

where p = 2014 id/dr. This can be expressed in the following useful form :

where Fe is the function

Note that by construction, Ue has a natural action on L2(D1) E9 L2(D2).
Defining and by and 
respectively, we have :

Proof
1) By construction of j we have for 0 E !R:

where pe is defined in (4.16 a). From (4.16 a), it is clear that foru~D(j2p2j2),

is analytic on S~. As in Section 4 of [7], one shows that j2p2j2 and j2p203B8j2
are mutually, relatively bounded on some strip  01  11. This

Vol. 48, n° 2-1988.



124 S. DE BIEVRE AND P. D. HISLOP

establishes the type A property for j2p203B8j2 on By Condition E,
i = 1, 2, extend to bounded, operator-valued analytic functions

on S~. Hence, by relative boundedness, 0), and consequently Ho(t, 8)
by (4.17), is a type A analytic family on the strip Sei with domain 

2) 2, is essentially self-adjoint on by Lemma 3. 3,
and C~(!~), 0e [R. Let X be a smoothed characteristic func-
tion with support B, oo), some B &#x3E; 0, and X oo) = 1. Then
II X(Y¿ -  C(~), some 0   oo, for 0e S~ We compute for

By (4 .16 a),

It suffices to consider () = By continuity and boundedness of f’ and f ",
we have that !!  b and

where X is the characteristic function for oo). Moreover, as Yt is

bounded on supp x :

The bounds (4 . 24) follows from (4 . 23), for let ~ &#x3E; 0, supp ~ = 2E, oo)
and ç supp X = 1. Then with R = + 1)-1,

7C~R= ~(~ + 1) 1(~ + 1)~R= ~(~ + 1) 1 ~2~ ~ ~R + ~(p2 + 1) 1 ~(p2 + 1)R
and each term is bounded; the second one by (4.23). Combining (4.21)-
(4. 24) in the right side of (4 .19) yields

where Ei(~3) -~ 0 as ~3 -~ 0 due to (4.21)-(4.24). Hence for 0  ! 1131  t, it

follows from (4 . 25) that :

on Likewise, there exists (}2, 0  (}2  ~, such that 0   e2 :
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on i/3)). By (4.26)-(4.27) and the analyticity of 8)u on Se2
for u E we obtain that is type A on S02 with domain

Setting eo = min (0i, 82), we obtain the theorem. D

5. EXISTENCE OF SPECTRAL RESONANCES
’ 

OR BOUND STATES

We sketch the proof that Hg(t, o), 8 E S~ ~ { 8 E Im o &#x3E; 0} has an
eigenvalue in any small complex neighborhood of an eigenvalue 
of the approximate Hamiltonian for all l sufficiently large.
Throughout this section we assume that h satisfies Conditions A, B, C
and E. If, in addition, h satisfies Condition D 1 or D2, the imaginary part
of this eigenvalue is negative and an upper bound for it is given in Section 6.
The major difference between the existence proof in this case and the one
presented in [1] ] for the nonthreshold case is the use of a non-trapping condi-
tion in the proof of the bound on the resolvent of 8). This appears
in the proof of Theorem 5.1 below.
The non-trapping condition used here differs from those used in [2] and

[17 ] and is based upon the more general formulation given in [9 ]. We say
that a potential V is non-trapping with respect to energy E if there exists a
vector field f and ~bo &#x3E; 0 such that for all u E [R, oo)) (for some R &#x3E; 0):

where  A B E= ( u, Au ~. The proof of the fact that (5 .1) implies the absence
of spectrum for Hg( t, 8), restricted to the exterior region [R, oo), in a neigh-
borhood is given in Appendix A. In Appendix B, we prove that the
classical non-trapping Condition B on h implies that the potential Yt
is non-trapping with respect to the energy en ,: ~,(~) ‘1/2(en(~) _ YoM)
and vector fields of the type considered in Section 4 on the exterior region
[RNT, oo), for some RNT  RNT  Sn .
Because of the expansion for the eigenvalue given in (4.11) it is

convenient to first rescale all Hamiltonians. Let HJL( t, 8), ,u = 0, 1, denote
Ho( t, 8) or Hg( t, 8), respectively. Define operators

and

where " , ’ min as above. (Note that ro + O(03BB(l)-~)
for some E &#x3E; 0). Let U03BB be the unitary defined 0 by
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and define

where acts on the scaled spaces LZ(~,(~) ‘l~2Di). We note that

where f ’(r~ = f (~,( ~) 1 ~4r) and

Because of this scaling, if E 6d(Ho 1), then

where en is defined in (4.9).
The primary technical estimate required for the existence proof is given

in Theorem 5.1. All the details of the proof (except for the non-trapping
part) are given in [1 ]. Below, we will sketch the proof.

The proof of Theorem 5 .1 is based upon the following localization for-
mula which is a slight extension of the IMS formula. Let {gk }Nk= 1 be a

N

smooth partition of unity for with gk = 1. Then (neglecting domain
considerations) : j~

where the remainder R is given by

We apply this to We choose the partition of unity {g~ }2= 1 as
follows; see Figure 5.1.

1) Let RNT be as defined in Appendix A, R~  RNT  S:, and let

83 &#x3E; 0 (small) be suoh that RNT + 83  S:. Then choose g3 such that
supp g3 = [RNT’ 00) and supp (~3) == RNT + 83].
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2) Choose g1 such that j1 supp g1 =1 and, for example, supp (g’1)= [R2-~4,
R 2 - E 1 ] for some ~4 &#x3E; G1 and small such that supp (g’1) lies in the for-
bidden region for 

3) Choose g2 such that 1. Note that supp g2 = [~2 2014~4. 
lies entirely in the classically forbidden region for 

We write gk for gk(03BB(l)-1/4r). Note that Hl01 and that

Sketch of the Proof of Theorem 5.1.

1 ) We use formula (5 .11 ) with the scaled partition of 1

defined above. The remainder term is estimated in [1] ] under an additional
assumption on the rate of decay of gk at the boundary of their support.
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With this assumption, we find that there exist constants &#x3E; 0, ,u = 0, 1;
. = 1, 2, 3 such that for all l sufficiently large :

The first term on the right in (5.13) is brought to the left side in (5.11)
and the last term will be combined with the gl2u-term in the main sum in
(5.11) which will be shown to be 0(/L(~)).

2) For the we have (H~0) - = (Ho 1 - Since
 by Theorem 4.1, 381 &#x3E; 0 such that c 

for all large l by the expansion (5.9). Consequently, we have for all l suf-
ficiently larse:

Turning to the g2u-term, we use the fact that supp g2 c and, conse-
quently Re V(8) - e" &#x3E; x &#x3E; 0 on supp g2. To implement this idea, we
write :

using the Schwarz inequality. For Im () sufficiently small, it follows from

(5 . 8) that : _

where u = u for  = 1 and u = jl2u for  = 0. (Note that this is sufficient
for  = 0 since one trivially has a lower bound on (Ho 1 - z)). As for the
potential energy contribution to (5 :15), we use the facts that [Y2(0) - 
is uniformly bounded on supp g2, that = Y1 + and that
there exists x &#x3E; 0 such that [Vl (r) - Vl (ro) I I supp g2 &#x3E; x &#x3E; 0. It now

follows from (5 . 7) that the potential energy part of (5.15) (with 0 + i/3)
is bounded below by :

so for 03B2 sufficiently small and l sufficiently large, the contribution is bounded
by À(t}1/2c311 II. Combining (5.17) with (5.16) in (5.15), it is clear that
3c &#x3E; 0 such that .

3) The gl3u-term is bounded using the non-trapping condition (5.1).
In Appendix B, it is shown that, under Condition B on h, the potential Yl
is non-trapping at energy en for any vector field f satisfying the conditions
of Section 4 on [RNT, oo). This result is then used in Theorem A. 1 to prove
that z = en - if E supp g3) for 0 = 0i + i /3, /30  {3  {3b and
r sufficiently small (r ~ (l/4)~o~o). We now show that, in fact, the set

po = {z z = E +  (i/i6)~o.! I E - en I  (i/8)(~r’)} (5.19)

(where ~o, ~ 1 are defined in Appendix A) lies in supp g3). It follows
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from the proof in Appendix A that if f  0 (i. e. z E upper half plane)
then E + i ~ supp As for E near en, we see that we get
an additional term of the form

on the right side of (A 16). Tracing through the argument to (A .17) we see
that po in (5 .19) is in supp gl3) provided E 2014 en| is small. From
(A . 2), therefore, if G is sufficiently small, for all z E 

Collecting together the estimates (5.13), (5.14), (5.18) and (5.20) and
using the identity (5.11), we obtain the result. D

Given Theorem 5.1, it is now a straightforward task to apply the
results of Section 6 of [7] ] to prove the existence of resonances. Let

= (H~0) - z) -1 be the resolvents and set

By the second resolvent formula,

As a result of Theorem 5 .1, F is jointly analytic on An,~ x S03B2 for some ~ &#x3E; 0

and S03B2 ~ { o E | 03B20  1m e  /31 1 }.

LEMMA 5 2. - Let z E A",E, where n, E are as in Theorem 5 .1.

sufficiently large.

Sketch of the Proof.

1) Since supp j3 c supp g2 it is sufficient to prove the first statement
for g2. By the remainder estimate (5.13), the lower-bound (5.18) and the
expansion (5.11), we have

or, for sufficiently large :

Letting u = the result follows.

2) This estimate is based upon the first one and the identity

for some 0  03B11, 03B12  00, which follows from (5 .11 ). (We have neglected
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the remainder term as it contributes a lower-order term). We let u - 
Then, by part (1), the last term in (5.23) is bounded above by

for some constant c &#x3E; 0. Using this in f5.23B we 

and the result follows from this and the definition of D

THEOREM 5.3. - (Existence of Resonances or bound states). Let

{ be the distinct positive eigenvalues of below inf 

arranged in increasing order :  e2(~)  .... Let be such that
RNT c for all large ~. Then for any E &#x3E; 0 sufficiently small, there
exists such that for all l &#x3E; ln,~, Hg(l) (and hence Hg --_ - Og) has a
spectral resonance or bound state (with multiplicity 1) satisfying:

and

Proof Choose any G &#x3E; 0 such that Theorem 5 .1 holds. By Lemma 5.2
and (5.21), F~z, 0)!! = 0, uniformly on for any 0e Sp. Let 
be the projector for for the eigenspace ~,-1/2(e"(~) _ i. e.

where 03B3~ is a simple closed contour in By Theorem 5 . 2, the integral

exists and P(l)-P0(l)~ = O. Hence, for l sufficiently large, 
has an eigenvalue in

z -  E ~ and dim (Ran P( ~)) = dim (Ran Po(t)) = 1. D

COROLLARY 5 . 4. - Suppose h satisfies Condition D 1 or D2. T hen
Im  0, i. e. Hg( t) has spectral resonances sufficiently large.

Proof. 2014 Conditions D guarantee that n (0, 00) = (~, as proved
in Theorem 3.4. The corollary now follows from the stability, with respect
to 0, of real eigenvalues of H~(0). D

REMARK 5.5. - Theorem 5.3 establishes the existence of positive
energy bound states or spectral resonances for the Laplace-Beltrami oper-
ator Hg = 2014 Ag when the manifold (!R", g) has sufficiently many bounded
geodesics. Note that the angular momentum quantum number provides
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an « internal » semi-classical parameter which does not appear in Hg
(unlike the shape resonance problem). We have used this parameter to
prove the existence of spectral resonances or bound states associated with
high angular momentum subspaces.

6. LOCATION OF THE RESONANCES
OR BOUND STATES

We assume Conditions A-C and E in this section. The purpose of this
section is to derive a precise estimate on the location of the resonance or
bound state of Hg(t) with respect to be eigenvalue of the approxi-
mate Hamiltonian Specifically, it is shown that I
is exponentially small in ~,(~)1~2 = O(~). If, in addition, we impose Condi-
tion D, then by Corollary 5.4J &#x3E; 0 and this result shows that

Im is exponentially small. The exponentially small width of the reso-
nance reflects the fact that it is due to tunneling through the potential
barrier formed by the metric for sufficiently high angular momentum
states. As in the shape resonance problem, the difference I
is given in terms of the exponential of the distance, in the Agmon metric [18]
[19 ], between the classical turning points Sn and Sn for the potential YI
and energy 

For any r E define pn(r) to be the distance in the metric pA from Sn (l) to r:

and let --_ the distance between the classical turning surfaces
for energy 
We are interested in the leading asymptotic behaviour of as a func-

tion of ~. Note that V2 is bounded over and that

for as in (4 . 9). Consequently, we can write for large ~ :

where

and So’ satisfies + is the exterior turning
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point for the bottom of the well and is asymptotically independent of ~).
Note that po is the width of the classically forbidden region for the poten-
tial Vl and energy YI(rl), its local minimum (recall that ro = r 1 + O(~,( ~) - E)).
We can now state the main result on the resonance width.

THEOREM 6 . 2. - Let be a spectral resonance or bound state of 
in a neighbourhood of E as described in Theorem 5.3 for all
large l. Then for any E &#x3E; 0 there exists a constant dn,£ &#x3E; 0 such that for all l
sufficiently large: ,

( I n the case that Condition D holds, the inequality on the left in (6.5) is
strict.)

Sketch of the Proof.

1) Fix n as in Theorem 5.3 and let be an eigenfunction of such
that Let be such that ri &#x3E; 0, supp r~ _ [Sn (~) + E,
S+n(l)], supp ri’ n D1 c with ~ |[S-n(l) + 2~, R2] = 1. We take
s = 0(~’~). Using the Agmon technique [18 ], one proves that there exists
a constant cn &#x3E; 0 such that for all l sufficiently large :

where pn is defined in (6.2).
2) We next obtain an expression for 0" _ ~ I in terms of

the norm of the eigenfunction of Ho 1(~) localized to supp (/3). We use
the Feshbach method [20] to decompose with respect to the pro-
jection Po - Pö 0 0, where Pö is the projection on corresponding
to the eigenspace of with eigenvalue The major technical
part of this step consists in obtaining uniform bounds in l on the resolvent
of the reduced Hamiltonian where Po = 1 - Po, at the spectral
resonance or bound state The proof of this fact is similar to the proof
of Theorem 5.1 (see [1 ]). The result of this analysis is as follows. Let 03BEn
be an eigenfunction of Hg(t, 8) for the eigenvalue Let x3 be a smoothed
characteristic function for supp (j3). Then there exists a constant dn such
that for all l sufficiently large

3) We now combine (6.6) and (6.7) to obtain a preliminary estimate
on 0" as supp (x3) n D 1 ~(r) = 1} for all l large. There exists a
constant an &#x3E; 0 such that for all large ~ :

where ’ p" - E2) is the infimum of on supp 0 (j3) n D1. In the
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last step, we show that we can replace pn by po~,(~~1~2 with a small error.
Let 8 &#x3E; 0 be given. By the triangle inequality for the Agmon metric

so we must show that ~(P2 - ~ S~) = ~2)  ~,(~)1~2E. This we arrange
by taking R2 sufficiently close to 82 sufficiently small, and noting that So
is asymptotically independent of ~. Then, for all large ~ :

for some constant c &#x3E; 0. (Note that as we take R2 close to So , we must
take lowlying eigenvalues of so that the relation R2  S~(~)  So
is maintained.) Consequently, for R2 such that So - G + G2  R2  Só,
we have pA(R2)  E~.(~)1~2 and from (6 . 8) and (6 . 9) :

for some dn &#x3E; 0 and all l sufficiently large. If we impose Condition D the
rough lower bound on the left in (6. 5) follows from Theorem 3.4 and the
fact that the real positive eigenvalues of and 8) are the same.

D

7. AN APPLICATION TO SURFACES OF REVOLUTION

In this section, we construct a family of surfaces of revolution Mp for
which the metric depends on a parameter p &#x3E; 0. We study the Laplace-
Beltrami operator - 0p on Mp and shown that for p &#x3E; U 1 (a value spe-
cified below), - Op has positive eigenvalues located near the energy levels

of an effective potential well. For p  U1, these eigenvalues dissolve
and - Op has spectral resonances with Re zn(l) ~ en(l) (for l suffi-
ciently large). In fact, it follows from Section 6 that en(~) - 
the eigenvalues or resonances of - is exponentially small in ~,(~)1~2.

Let [Rn+ 1 = [R with coordinates (x, u, 8i), where and 
are spherical coordinates on We consider surfaces of revolution M
in [Rn+ 1 of the following from. Let ~ Rn+1 be a C2 injective immersion
such that, in spherical coordinates on 

with lim x(i) = 0 = lim u(i). Then M = i ( f~n ) ; see Figure 7 .1.

In coordinates (i, e), the metric is
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As in Section 2, we introduce a new variable

and write :

with h(r(i)) = u(i). That h satisfies Conditions A’ of Section 2 follows as
in Section 2 because we assumed that (7 . 2) is the restriction to R+ x 
of a metric on Rather than listing in detail all of the conditions on
(x(-r), u(i)) that guarantee that h satisfies Conditions A-E, we explicitly
construct a one-parameter family Mp of surfaces of revolution satisfying
Conditions A-E and show that they exhibit the properties described above.
The surfaces Mp are given as the level surfaces

where the function is given by :

(see Figure 7 . 2). The function g E C2( [0, x2 J) and satisfies g(o) = 0 and
g(x) &#x3E; 0 for x &#x3E; 0; g’(o) = ~; g’(x2) = 0; g"(x2) &#x3E; 0. We define U 2 == g(x2)
and take p &#x3E; U2 ; k &#x3E; 1 and b --_ (1/2)g"(x2)( p - U2)- lk-1 &#x3E; 0. Moreover,
we assume that g has a unique, non-degenerate maximum at x 1  x2,

g"(xl)  0 and g(xl) _--_ U1.
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Introducing a new coordinate (the distance along the curve) :

and defining

the metric on Mp is

With Xl and x2 as above, we define

and

and note that from (7 . 7) and (7 . 6 a), rl and r2 are independent of p.
Under the above assumptions, it is easily checked that h p satisfies Condi-

tion A and Condition B with RNT = also satisfies Condition C provided
p &#x3E; U 1. The choice of fp in (7 . 6) guarantees that the analyticity Condition E
is satisfied by hp.
As in Section 3, we have that - Op restricted to a rotationally invariant

subspace is unitarily equivalent to

and ~,(~) = + n - 2). We have from (7.10), (7 . 8) and (7 . 6) that

A sketch of Vl is given in Figure 7. 3.
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We note that it follows from (7. 6)-(7. 8) that

and that

As a consequence of (7 .13), it follows by a simple modification of the argu-
ment in the proof of Theorem 3.4 that

As a result of this we have :

PROPOSITION 7.1. - &#x3E; U1 then for sufficiently large 
has spectral resonances with Im  0 and zn(~) ~ bounded
as in T heorem 6 . 2.

Proof - If p &#x3E; U 1, Condition C is satisfied and by (7.13) has no

positive eigenvalues above ~,(~)p-2 which lies below Hence Theo-
rem 5.3 guarantees the existence of resonances. D
We now study the case p  U 1. Condition C now fails and the bottom

of the well lies below the value of + V2 at infinity. We expect
that there are bound states associated with the bottom of the well. To

prove this, we first use a local compactness argument (for any p &#x3E; U2)
to locate the bottom of and we then use the Min-max Theo-
rem [7~] in conjunction with a semi-classical approximation [7] ] [76] to
prove the existence of positive eigenvalues below in (A similar
local compactness argument is used in the proof of Theorem 4.1. For a
general result on local compactness see [21 ].)

a) Hp(t) is locally compact, i. e. for any X E [a, b D, 0  a ,  b ,  oo,

compact for an y z, Re z ~ : 
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Proof
1) It suffices to consider z = - 1 so let R == + 1)-1. Choose

b ]) and b’ &#x3E; ~ ~  oo . Let p D be the Dirichlet Laplacian on
[0, ~];/~ is invertible and ( p D) -1 is compact. Then

so it suffices to show that x’pR is bounded since (~,(~)Vl + V2)x is bounded.

and it is easily seen that both terms on the right in (7.15) are bounded
(here, p2 is the Dirichlet Laplacian 

2) By part a) it suffices to show that xpR is compact, for x as above.
Let RD~2 - I pD I ‘1~2 and I p = I pD ~1~2; is compact. Hence, since

and xpR is bounded, the result follows. D

Proof. - Let OJ E and let { be a Weyl sequence for 03C9 and

and yR is compact by Lemma 7 . 2. Consequently, ~=(1-/)~ satisfies
I -~ 

since

and [x, p2 ]R is compact by Lemma 7 . 2. Hence { ~n ~ is a Weyl sequence
for and cv. Now, by the Schwarz inequality, we have :

where Vp - + Y2. We now choose r2  b  b’  oo and a &#x3E; 0
small enough such that ~,(~)p-2 (recall that X E C"( [a, b])).
Then, we obtain a lower bound for (7.17) :
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so if OJ  ~.(~)p - 2, the right side of (7 .18) is positive whereas the left side
converges to zero. This proves the result. D

PROPOSITION 7 .4. - Let U2  p  U1. For fixed n and all l suffzciently
large, has at least n eigenvalues below inf and

where en = (1/2 + n E 

Proof - Since Y1 has a non-degenerate minimum at r 1 and as

the result follows from [76] or [1 ]. D

8. COMMENTS

1) Our results can be slightly generalized to manifolds of the form
M = X x N, where X = or IR and N is a compact, n-dimensional
manifold n ~ 1, with the metric given by :

Here d03C92 corresponds to a fixed metric on N and h E C2(X). In local coor-
dinates on N we write

so we can introduce, as in (2 .11 )-(2 .12) :

and the Hamiltonian

The Hamiltonian HN is a constant of the motion and the classical equation
of motion (2.14) follows if we set HN = 62. When X = IR +, the manifold
is not geodesically complete.
Turning to the Laplace-Beltrami operator Hg = - Ag, it is straight-

forward to determine the equivalent of Conditions A-C on h. When X = f~,
conditions at r = 0 are unnecessary and we require Condition C ii), that
lim h(r) &#x3E; h(r 1 ), hold at least in one direction and in that direction Condi-

tion B hold for some RNT. When X = R+, M is not geodesically complete
so we can define Hg with Dirichlet boundary conditions at r = 0.
As in Section 3, the fact that HN is a constant of the motion means that

we can express Hg as a direct sum of one-dimensional Schrodinger opera-
tors. Let - ON denote the Laplace-Beltrami operator on N with spectrum
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~,1  ~2 ~ -’.? which we denote by ~,. Let Hg(~.) denote the restriction of Hg
to the invariant subspace indexed by /L Then

where YÅ is as in (3.4) with ~, replacing ~). We note that Condition E on
the analyticity of h assumes the same form.
We conclude that, in this case as well, the existence of a sufficiently large

set of bounded geodesics for M implies that Hg has either bound states
on resonances in subspaces corresponding to sufficiently high eigenvalues ~,
of - 

2) It is sometimes argued [22] ] [2~] that the correct quantization of the
classical Hamiltonian (2.11) is not the Laplace-Beltrami operator Hg
but rather

where R is the scalar curvature on M, (2.19), and ç is a constant. Since
under assumptions A-C the scalar curvature R is bounded, we can incor-
porate çR into V2 given in (3 .4 b). Hence, all the results of this paper hold
for H( ç) as well.

3) We comment on the situation when there are finitely many pairs
of points (rl, r2) at which h satisfies Condition C. This corresponds to the
case of multiple minima in the shape resonance problem; see Figure 8.1.
In this case, we simply define the partition of with respect
to the last well. The potential of the internal Hamiltonian has
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several non-degenerate minima and consequently is richer.
The spectrum of a multi-well Hamiltonian has been studied and it is

known [79] that the degeneracy of eigenvalues from different wells may be
broken by tunneling. The splitting is exponentially small in ~,(~) ‘1~2,
however, so will consist of groups of eigenvalues whose asymp-
totic behavior in l is similar to that given in (4.11). Hence, the groups
of eigenvalues are separated by 0(~(~)) and the analysis presented here
applies.
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APPENDIX A

RESOLVENT ESTIMATE
IN THE NON-TRAPPING REGION

In this appendix, we prove that if the quantum non-trapping condition (5.1) holds for
energy E, then there is a neighborhood of ~.(~)E which is in the resolvent set of Hg( t, 8)
for sufficiently large and Im 8 sufficiently small. This theorem is based on ideas pre-
sented in [9 ]. We use the notation of the text. We assume Conditions A, Band E.

THEOREM A. 1. - Suppose 3E &#x3E; 0 such that the following holds : ~RNT &#x3E; 0 with
R~S  RNT  SB and ~~o &#x3E; 0 such that for all oo)):

Proof.

1) By the Schwarz inequality,

for any 03C6 E [R. Upon expanding the right side of (A. 3), we obtain

where we write He - Hg(~, 9). From (3.4) and (4.16), we have

where

and Vi (9) --_ Vi 0 ~; V2 is defined in (3 . 4). Note that on oo), V2(9) is uniformly bounded
and of lower order. Likewise, Fe is uniformly bounded. Without loss of generality, we take
8 = i~i, ~3 &#x3E; 0. We first analyse the kinetic energy contribution to the right side of (A . 4) :

We choose the real phase ~ such that

where  A ~u - ~ u, Next, we compute tan ~ to O(~). We have

so
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and consequently,

and

Now, the first term on the right side of (A. 7) is

since f’ ~ [RNT, oo) &#x3E;: 51 &#x3E; 0, so this term is non-negative. As for the second term on the
right in (A. 7), it follows from (A . 9) and the boundedness of Fi03B2 that it is 0({3) II u~2. Conse-
quently, K~ contributes only O( ~3) ~ ~ u ~ ~ 2 to (A . 4).

2) We next turn to the potential energy contribution to (A. 4). It has the form

We expand each Vk, k = 1, 2, in /3:

(The uniform boundedness of the remainder follows from Condition E iii). The second
term in A 10) is easily seen to be bounded below by

for some constant cl 1 &#x3E; 0, as follows from (A. 9) and (A .11) and the boundedness

of V2. As for the first term in (A. 10), we first derive an estimate for tan 4&#x3E;. Since

M 1 = sup { /’(r))  ~}  oo, it follows from (A. 9) that

Let x = sup { Vi(r) - E  oo }. It follows from (A .13) and (A .11) that the

first term of P03B2 in (A. 10) is bounded below by :

Combining (A .12), (A .14) and (A .15) in (A .10), we obtain :

3) To complete the proof, we combine (A 16) with the result of part (1) to obtain a lower
bound for (A . 4) :

which verifies (A. 2). D
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APPENDIX B

QUANTUM NON-TRAPPING

With the notations of the text, we prove (see Figure B .1).

LEMMA B. 1. - Let f be a vector field as defined in Section 4 and V1 = h-2 with h satis-
conditions A i) and A iv) and B. Let V1(RNT) &#x3E; E &#x3E; min V1(r) &#x3E; lim V1(r). Then

3Ro &#x3E; RNT and ~03B40 &#x3E; 0 such that ~R for which Ro  R  S + and Vu E Cü( [R, (0», we have

where ~ A B ==  u, 

Proof. - Choose RNT  R  Introduce a smooth partition of unity Xb x2 for [R, oo)
Xl + x2 = 1, such that supp x2 c [S~ + 8, oo) and supp Xl c [R, SE + 28), for some 8 &#x3E; 0.
Hence (E - Vi) supp x2 &#x3E; r~ &#x3E; 0; moreover [RNT, oo)  0 as a result of condition B.
Then

Since the first term in the right hand side of (B . 2) is positive and f’ is bounded on [R, oo)
(i. e. B5i, c52 &#x3E; 0 such that c52 &#x3E; f’ &#x3E; c51 &#x3E; 0 on [R, oo)), we find, for some C &#x3E; 0

where K(R) = V1(R) - E. Equation (B . 3) holds ’v’R E (RNT, Ss). Now - SE +2a)
is bounded below by a constant D &#x3E; 0 and K(R) can be made arbitrarily small by choosing R
close to S;. Hence we get from (B. 3), 3Ro &#x3E; RNT and C’ &#x3E; 0 such that ’v’R &#x3E; Ro,
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