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ABSTRACT. - We prove estimates on time decay for products of Schro-
dinger evolution groups between weighted L2-spaces by using commu-
tator techniques. These estimates are used to show that, for potentials V(:!)
decaying more rapidly than I :! 1- 2, the scattering operator leaves a certain
dense subset ~ of the domain of definition of Q2 invariant. This implies
the existence of the global time delay (defined in terms of sojourn times)
on ~ if V(x) = O( I ~ 1-2-B) at infinity, G &#x3E; 0.

RESUME. - En utilisant des techniques de commutateurs, nous demon-
trons des estimations concernant la décroissance temporelle pour des
produits de groupes d’evolution de Schrodinger consideres entre des

espaces L2 a poids. Nous utilisons ces estimations pour montrer que,
pour des potentiels decroissant plus vite que x|-2, l’opérateur de
diffusion laisse invariant un certain sous-ensemble dense ~ du domaine

de definition de Q2. Ceci implique 1’existence du temps de retard global
(defini en termes de temps de sej our) sur D si V(x) = 0( |x|-2-~) a l’infini,
s &#x3E; 0.

(*) Partially supported by the Swiss National Science Foundation.
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1. INTRODUCTION

Recently ( [1 ]- [3 ]) there has been some renewed interest in the problem
of proving the existence of time delay, defined as the limit as r --+ 00 of
the difference of the sojourn times of a scattering state and of the asso-
ciated asymptotic free state in a ball Br of radius r centered at the origin’of
configuration space. Mathematically this problem amounts essentially
to that of extracting the finite part from the difference of two diverging
quantities, and physicists expect this finite part to be the Eisenbud-Wigner
time delay (the energy derivative of the phase of the S-matrix).

In [7] and [2] the existence of the time delay was obtained under very
weak decay assumptions on the potential (it suffices for V to decay
as x r" with a &#x3E; 1), but at the expense of replacing the sojourn time in
a ball Br by a slightly different quantity (a « weighted » sojourn time, with
the weight of localization at a point x depending on the distance of x from
the origin). The paper [3] on the other hand deals with the case where all
points x in Br have the same weight; this has the most satisfactory physical
interpretation within the framework of quantum mechanics, since it can
be expressed in terms of projections. However, the decay assumption on
the potential made in [3] was rather strong (a &#x3E; 4).
The principal purpose of the present note is to show that the above-

mentioned rather strong decay condition of [3] can be considerably relaxed
(a &#x3E; 2 is sufficient). We recall that the paper [3] contains a general theorem
on the existence of time delay under certain regularity assumptions on
the S-matrix. It will be shown below that these regularity conditions are
satisfied for potentials decaying with a &#x3E; 2. The proof relies on
commutator methods (similar to those used in [4]- [6] and in [1 ]); these
are more powerful than the Hilbert-Schmidt estimates used in [3 ].
The organization of the paper is as follows. In Section 2 we recall the

general theorem from Ref. [3] ] and introduce the notations that we shall use.
Section 3 contains some preliminary commutator estimates involving the
Hamiltonian. In Section 4 we derive the principal inequality for the time
evolution group, and in Section 5 we use this inequality to verify the hypo-
theses of the general theorem of Section 2.

2. NOTATIONS AND BASIC THEOREM

As in [3 ], we denote by Q = (Q 1, ... , Q") and P = (Pl’...,1&#x3E;n) the
n-component position and momentum operator respectively in the complex
Hilbert space ~f = The free Hamiltonian is Ho = ~2 = 
and the total Hamiltonian has the form H = Ho + V(Q). Throughout

l’Institut Henri Poincaré - Physique theorique



369CONFIGURATION SPACE PROPERTIES OF THE S-MATRIX

the paper, the potential V(x) is assumed to satisfy the following j condition :
(HI) V is a ’ real-valued function defined on [R" of the form

with a &#x3E; 0, Wl E and W2 E for satisfying q &#x3E; 2 and

q &#x3E; n/2.
In Sections 4 and 5 we shall need stronger assumptions on Wl and W2,

and the results of Section 4 will hold for a &#x3E; 1, whereas those of Section 5
will require a &#x3E; 2. We denote by Ut = exp ( - iHt) and U~ = exp ( - iHot)
the unitary time evolution operators associated with Hand Ho respectively.

IfV satisfies (HI), then H is self-adjoint with domain D(H) = D(Ho) c D(V),
and ~ (Wl + W2)(Ho+a)-111  oo for each a &#x3E; 0. If a &#x3E; 1, then the wave
operators Q± = s - lim as t ~ ± ~ exist and are complete,
and the scattering operator S = Q*Q- is unitary. If Fr denotes the ortho-
gonal projection in ~f onto the subspace of all state vectors localized in
the ball Br = {~ e I x  r} in configuration space, then the local
time delay of a state vector f E Jf is defined as

The following general theorem on the existence of the global time delay
(i. e. the limit of as r ~ oo) was given in [3 ] :

PROPOSITION 1. - a) Assume that f ’ E L2(~n) is such that i ) its Fou-
rier t2ansform f has compact support in Rn B { 0 }, ii) Q2, f E 
iii) Q2Sf E L 2(Rn),

Then the sequence {03C4r(f)} converges as r --+ 00.

b) Assume in addition that the S-matrix S(~,) at energy ~, is continuously
differentiable with respect to ~, on some interval (a, b) c (0,00) and that the
support of f’(k) lies a  ~2  b ~. Then

where T is the Eisenbud-Wigner time delay operator (i. e. T is a decomposable
operator in the spectral representation of Ho: T = { T(~,) ~ ~ &#x3E; o, with
T(À) - - i s(a,)*d s(~,)~d~,).
We denote by ~p (H) - 6p the set of all positive eigenvalues of H (if

any) and by OJ a positive number such that H + OJ &#x3E; I (I denotes the iden-
tity operator, and the existence of OJ is guaranteed by the fact that H is
bounded from below if V satisfies (HI)). We set L = (H + cv)-1 and
Lo = (Ho + and have ~L~ ~ 1 and II L0~ ~ 1. We denote by A

Vol. 47, n° 4-1987.



370 W. O. AMREIN, M. B. CIBILS AND K. B. SINHA

the self-adjoint infinitesimal generator of the dilation group and define V by

with

We set |Q| = (03A3nj=1 Q2j)1/2, Q&#x3E; = (1
where B &#x3E; 0. 

- -

If B is a linear operator in ~f, we write B E ~(~f) if its domain D(B) is
dense in Jf and B is bounded on D(B) or if one can associate to it a densely
defined bounded sesquilinear form. We shall then denote its closure by
the same letter B. We define ~ °° to be the set of all functions t/1: [R" -~ C
such that 03C8 and all its partial derivatives (of any order) are in 
The letter c will be used for various constants that need not be identical

even within the same proof.
Finally we mention some commutator identities that will frequently

be used (z denotes a complex number) :

if D is self-adjoint.

3. PRELIMINARY COMMUTATOR RELATIONS

In this section we show that certain operators are bounded between

weighted L2-spaces. In general we shall indicate the proof only for the case
where the weights are integer powers of 1 + the corresponding result
for non-integer powers then follows by interpolation. We shall use the
fact that D( = and that ~| Q| f~2 = (see
Lemma 5 of [3 ]). For Lemmas 1-7 we assume that V satisfies (HI).

LEMMA 1. - Let each

real number /1 &#x3E; 0.

Proof. - Let  &#x3E; 0 be an integer. It suffices to prove that, for each

n-tuple (CX1, ...,xJ of non-negative integers such that CXj = /1, the

operator Z =  Q ~ -"~ is in ~(~). This is easily checked

by commuting the powers of Q 1, ... , Qn through ~(P), using the rela-
tion = + which expresses Z as a finite sum

of bounded everywhere defined operators. -

Annales de l’Institut Henri Poincaré - Physique theorique
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LEMMA 2. - Let 03C8 E or let 03C8 be the function 03C8(03BB) _ (03BB + 03C9)-1.
Furthermore, let W be a Ho-bounded operator commuting with _Q. Then one
has for each ,u E IR and j = 1, ... , n :

Proof 2014 ~) and b) follow from Lemma 1, since the functions defined
as t/Jo(ç) = (ç2 + and ~rk(_~) = Çk(ç2 + (k = 1, ... n) belong to
11/,00 for each ~’. c) follows from b)by noticing that A= Q p- Q + 
To derive d ) for ~r(~,) = (2 + one proceeds as in the proof of

Lemma 1 by noticing for instance that + c~) -1 W  Q ~ - "~
is a sum of terms of the form 03C61(P)(H0 + 
if y~  ~ since, for any n-tuple ( ~31, ..., of non-negative integers :

with () E Next, if 03C8 E C~0(R), we have for example :

and each of the two factors on the r. h. s. has already been shown to be in
.

Proof. 2014 We prove for example that  Q + cv) -1 W ~ Q ~ - u E 
for ,u &#x3E; 0. Since W* is ’also H-bounded, this clearly holds for J.l = 0. By the
second resolvent equation and (1) one has

We take ,u = a and find from Lemma 2 d ) that each term on the r. h. s. of (9)
is in ~( ~ ). Hence, by interpolation, 
for all ,u.E [0, a ]. Next we choose ,u E (a, 2a and obtain, by using the pre-
ceding result and (9), that ( Q + Q ~ - "~ E ~( ~) for these
values By iteration (take  E (2a, 3a ], then  E (3a, 4a ], etc.) one obtains
the desired result for all ,u &#x3E; 0. - 

.

Vol. 47, n° 4-1987.
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LEMMA 4. - Let L = (H + T hen for each J.1 &#x3E;_ 0 there , is a ,

constant c~ such that for all re lN

Proof 2014 f) Let m be an integer, m ~ 2, and let B &#x3E; 0. Then, since V
commutes with Q, it is not difficult to calculate the following commutator
(first on the Schwartz space S(fR") of infinitely differentiable function of rapid
decay, then by approximation on D(Ho)), by writing 

Similarly one finds that

For later use we observe that these commutators have the following struc-
ture :

and

with

and

ii) Now let J1 = 1, f E Yf and g E D( 0 !). Then, by using (8) and o (7),
we obtain that, for k = 1, ... , n :

Annales de l’Institut Henri Poincaré - Physique théorique
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The absolute value of the first scalar product on the r. h. s. is less than
!! / !! !! for all s &#x3E; 0. By virtue of (11) and (13), the absolute value of
the integral in the second term on the r. h. s. is majorized, for all s e (0,1),

by c!!/!!!! I ( I L !!’ + !! L ~n~ |I P L!! |)d03B6. Hence (15) implies that
Jo 

-

which proves (10) for ,u = 1.

iii) We now let  be an integer m, m &#x3E;_ 2, and proceed by induction. As
above we have

The norm of the first term in the square bracket is less than 1 for all B &#x3E; 0,
whereas the norm of the second term is majorized by

The curly bracket is seen to be bounded by a constant independent of
BE (0, 1) by virtue of (14) and Lemma 3, and the norm under the integral
is bounded by cm _ 1 ( 1 + I (I )m-l ~ cm -1 ( 1 + I L I )m-l from the induction
hypothesis. -

LEMMA 5. - Let W be as in Lemma 2, let 03C6 E and let a be the
number appearing in (1 ). Let /3, y E (1~ be such that /3 + y  a. Then one has

and

Proof 2014 Without loss of generality we may assume that ~p E C~(( 2014 00 )),
where co is such that H + (D &#x3E; I. Let o be defined by 0(~) = ~p(~, -1 - and
observe that and that supp e c (0,00). We have, with L= (H+ 

and similarly = 0(Lo).

Vol. 47, n° 4-1987.
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We indicate the proof of the last assertion of the lemma. The proof of
the first two assertions is similar. By the second resolvent equation we have

Hence

The second and the fourth norm in the integrand are finite by Lemma 3,
since a - /3 &#x3E;- y, and the product of the remaining two norm~ is majorized
by c(l + ~ t by virtue of Lemma 4. Since () E the double inte-

gral is finite. II

LEMMA 6. - Let W be as in Lemma 2, and let T hen one has for

Proof. This follows immediately from Lemma 2 c, d) and Lemma 5.
II

LEMMA 7. - and m =1, 2, .... T hen : a) the func-
tions T and T 

are continuous in operator norm. b) One has (as forms on ~ )

and

Proof 2014 ~) It suffices to prove continuity at L = 0. First, because all
partial derivatives of the function ~ H [exp ( - 1]~(~) converge
to zero in as 03C4 ~ 0, it follows from the proof of Lemmas 1 and 2 

‘

that  Q Q ) -m and  Q Q )-’" are conti-
nuous at L = 0. Next we proceed as in the proof of Lemma 5 to show that
 Q Q&#x3E;- and 
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are continuous We may again assume that ~p E C~((2014 co, oo)), and
we set (- i~/~,+ We observe that 0o(~)]
converges to zero in d~,) as T --+ 0, for each ~ = 0,1,2,..., which implies
that [ 9~(t) - 8o(t) ](1 + ~ t ( )~ converges to zero in as T --+ 0 for
each &#x3E; 0. Then for example the first of the claimed results follows from (17)
in which 8(t) is replaced by 0~) - eo(t).. -

b) The result of a) implies for instance that the operator-valued function

is strongly continuously differentiable, so that (19) is a special case of (8),
obtained by integrating the derivative of (20). II
For the remainder of the paper we need a somewhat stronger assumption

on V than (H 1 ), viz. the following condition: .

(H2) the function V : ~n ~ ~ has the form (1 ) with a &#x3E; 0, Wl E L oo(~n),
:! . grad Wl E L oo(~n) + and (1 + I:! I )W2 E L oo(~n) + where

q 1 and q2 satisfy 2 and q~ &#x3E; n/2.

LEMMA 8. - Assume that V satisfies _(H2). Let {3, y be such that

03B2 + y _ a and let 03C62 E Then the operator  Q 
belongs to ~( ~ ).
Proof - Notice that V has the form

with

The contribution of the first term in (21 ) to the norm of

is majorized by

which is finite by Lemma 6. The contribution from the second term (and
similarly that from the third term) in (21) to this norm does not exceed
the number

which is again finite by Lemma 6. II

4. TIME DECAY FOR EVOLUTION GROUPS

The main purpose of this section is to show that, if V satisfies (H2) with
a &#x3E; 2, the function t ~ II (1 + I decays faster

Vol. 47, n° 4-1987. 
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than |t|- 2 for suitable 03C6, 03C8 and for f E D( 1 Q with a’ &#x3E; 2. This result
will be an easy consequence of the following lemma.

LEMMA 9. - Let V satisfy (H2) with a &#x3E; 1. Let (0)B0-;) and
i/r E Cü(O, oo )). Then, for each real number x E [0, a ] and each E &#x3E; 0, there
is a constant c such that for all s, t E ~:

Proof 2014 We observe that the 1. h. s. of (22) can be obtained from that of
(23) by setting s = 0 and 03C8 = 1. Since the proofs of (22) and (23) are similar
and can be done together, we also admit in the equations and inequalities
below the function = 1. We refer to Case a) if s = 0 and 03C8 = 1 and to
Case b) if 03C8 E oo)), and our task is then to prove (23) in Case a) and
in Case b).

ii) We fix a function () E oo ) B 6 p ) such that = ~p and write (for
the moment formally) :

By (8) and the fact that [A, Ho] = 2iHo, this leads to

We observe that, by virtue of Lemmas 6 and 7, the identities (24) and (25)
are meaningful when sandwiched between ( Q &#x3E; - 1 X(H) and Q &#x3E; - 1

Let oo )B 6 p ) be defined by 03C61(03BB) = 03BB -103C6(03BB). Upon premul-
tiplying and postmultiplying (25) by ( and Q )’" res-
pectively (~ &#x3E; 1) and by noticing that [A, 
one finds that

with

Annales de Poincaré - Physique theorique
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ii) We first let x = 1. To prove (22) and (23) for x = 1, it suffices to show
that each t) is bounded (in Case a) and in Case b)) by a constant
independent of sand t. For l = 1 this is evident. For l = 2 it follows from
Lemma 6 (with ,u = 1) and for = 3 from Lemma 2 c) in Case b) and from
the fact that E in Case a). To treat N 1,4 one can use Lemma 8
with [3, y &#x3E; 1 /2 and the fact that ( 1 + _Q ( ) - a is locally H-smooth on
(0, if ~ &#x3E; 1/2 (see for instance [7] or Lemma 2. 3 of [4 ]). For = 5
and l = 6 the result follows from Lemma 5 with ~8=1 and y==0, since a &#x3E; 1.

All the above estimates hold in Case a) and in Case b). In Case a), N 1,7 = 0,
hence (22) holds for x = 1, with B = 0. This result, with H replaced by Ho
(i. e. for V = 0, with 6p (Ho) _ 0), can be used to estimate N 1, 7 in Case b).
It suffices to observe that ~p 1 (H)(W 1 + W 2 )  Q ~ - °‘ + 1 E ~( ~ ) and

  Q &#x3E; - 1 II  const. for all s E ~ by (22).
iii) By interpolation between 03BA = 0 and 03BA = 1, it follows that (22) and (23)

hold (with 8=0) for each x E [0,1], each oo)B6p ) and each
~r E oo)) (the constant c depends on ~p and ~). 

-

iv) As in the proof of Lemma 3, we now derive (22) and (23) for general x
by a recursion procedure. It suffices to prove the following: Let v E (1, a]
and assume that (22) and (23) hold for x = v 2014 1; then these inequalities
are true also for x = v. This follows from (26) provided that we can show
that, for any ~ E (0, v 2014 1), one has

This inequality is immediate for l =1 (in Case a) and in Case b)) by the recur-
sion hypothesis, and similarly for l=2 
by Lemma 6. To deal with Nv,3 in Case a), we write

and use the recursion hypothesis and Lemma 6. In Case b) we choose a
function such that write

and then proceed as in Case a).
Next we majorize the norm of the integrand in as follows (01 is a

function in 00)B(J;) such that e 1 e = 9):

Vol. 47, n° 4-1987.
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We extend the domain of integration to all of IR and choose 03B2, y as follows:
(1) if L E [~3~/2]:~ = l,y = [~3~/2]:j8 = = 1.

The second norm in (28) is then finite by Lemma 8, and the other two
norms can be estimated by using (22) and (23) for K: = 1 and for 03BA = v 2014 1.
This leads to

where Cl1 is a finite constant depending on ~, v, 03C61, 01, 9 and V. We observe
that 11: &#x3E; |t|/2 in the domain of the first integral and |t - 1: &#x3E; |t|/2
in that of the second integral. Hence

Since (1 + I L 1)(1 + ~ t - L 1)-1 ~ 1 + t ~ I for all t, L this implies (27)
for=4.
For 1 = 5 we write

We first take ~ = v - 1 and y = 0 and obtain from Lemma 5 and the recur-
sion hypothesis that t)  This implies (27) for
l = 5 in Case a) as well as in Case b) under the additional assumption
! t - s ~ !/2. On the other hand, if /2, we set b = 0 and
y = v - 1 in (29) and obtain that c(l + Is I)-v+ 1 +’1, which
implies (27) for these values of s, t because I s !/2. For 1 = 6 we proceed
similarly.

It remains to treat N~7. In Case a) this term is zero and the proof is
complete in this case. More precisely, if (22) and (23) hold for yc = ~ 2014 1,
then (22) holds also for x = v. One can now use this result to show that (23)
also holds for x = v. It suffices to verify that satisfies (27) in Case b).
This is done by writing 

.

If t - s I &#x3E; ~ ~ /2 we take (3 = v -1 and y =1. The first factor is then bounded
by c(l+!t-5!r~’~~c(l+!~/2)’~’~ the second one is finite

by Lemma 6 and the third one is bounded by a constant independent of s

Annales de l’Institut Henri Poincaré - Physique theorique
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by (22) with x =1. If /2, we have |s| ~ |t|/2, and we choose
~=0, y = v and use (22) for K = v to obtain that

PROPOSITION 2. - Assume ’ that V satisfies (H2) with a &#x3E; 1. Let f E ~f
be such that f has compact suppdrt in 0 } and , f E D( 
p &#x3E; 1. and ’ let T hen there is a 
constant c such that for all t E [R;

Proof - Choose 03C8 E Cü«O, (0)) such that = f and apply
Lemma 9 b) with x = min (a, p), E =:= 03BA - 03B4 and with s ~ ::t: ~. -

COROLLARY. - In addition to the hypotheses of Proposition 2, assume
that a &#x3E; 2 and p &#x3E; 2. Then there is a constant c .and a number ri &#x3E; 0 such
that for all t E IR:

II  Q &#x3E; .f II ~ c( 1 + I t I ) 2 n ~ (31 )
We refer to [8] and to the references cited there for other results on time

decay similar to Lemma 9a).

5. EXISTENCE OF TIME DELAY

We now prove the existence of time delay for potentials decaying as
I ~ I-:-0152 with a &#x3E; 2. For p &#x3E; 0, we define ~P to be the following dense subset
of ~ :

~p = { gE I gE D( Q g= for some (0) B o’p (H)) }.
We then have the following result:

1 PROPOSITION, 3. - Assume that V satisfies (H2) with a &#x3E; 2, and let f E D03C1
for some p &#x3E; ,2. Then f satisfies all hypotheses of Proposition 1. Hence
lim ir( f ) as r ~ oo exists and is given by (3).

Remark. The assumptions on V imply that S(03BB) is continuously diffe-
rentiable (in operator norm) on (O, oo) B 6p [4 ].

Proof We must show that the assumptions iii), iv) and v) of Proposi-
tion 1 are satisfied. The validity of iii) will be given as a separate result,
see Proposition 4 below.
To verify assumption iv) of Proposition 1, we choose ~p E Cû«O, oo)B6p )

such that = f and write

Vol. 47, n° 4-1987.
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The last term is bounded by c(l + ~ t ~ ) - 2 - n with 11 &#x3E; 0, by Lemma 5 (with
~8=0 and y=a) and (31) (for V=0). Similarly, for ~0:

These ° estimates show that so that

assumption iv) of Proposition 1 is satisfied.
The verification of assumption v) is rather similar. One writes

and proceeds as before by using Lemma 5 and (31). II 
,

PROPOSITION B 4. - Assume that V and f are as in Proposition 3. Then
SZ± f E D(Q2) and Sf E D(Q2). 

’

Proof i ) Let f E ~p, p &#x3E; 2, and choose o E Cü(O, o~o ) B6p ) such that
= f and = ~r. Observe that = = 0; in particular,

since Q = ip:

We first proceed as in part i ) of the proof of Lemma 9. By Lemmas 6
and 7, the following formal identities are correct when sandwiched between
Q)-~(H) and ~(H~XQ)-’:

Now

Furthermore, by using first (19) and the relation [Q2, Ho] = 4iA, and then
(18) and [A,H] = 2i(H - V), one obtains that

Annales de l’Institut Henri Poincaré - Physique theorique
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Upon inserting these relations into (33) and by writing

and using (32), one finds that for each 

where el eCy((0, is such that 03B8103B8 = e.
ii) We now let t -+ :t oo in (34). We observe that the second term on

the r. h. s. converges to zero by Lemmas 5 and 9, since

and

which tends to zero as |t| ~ ~ if G is choseri in (0, x 2014 2). Similarly one
finds, by using (1), (22) and Lemma 5, that the third and the fifth term on
the r. h. s. converge to zero. Since the 1. h. s. and the first term on the r. h. s.
have limits, the fourth term on the r. h. s. is also convergent; in fact the
double integral of the vector-valued function given by the second factor
in the scalar product defines a vector g(t) in ~f, for any t E [201400, +oo],
because one has by Lemma 8 (with ~3 = 0, y = oc) and (23) that

where 2  5  min (a, p). Thus (34) implies, together with the fact that
= that for each hE D(Q2):

Now the following identity is easily checked by simple algebraic manipu-
lations and by using (32) : .

Together with (37), Lemma 5 and (36), this shows that, for each f E ~p
with p &#x3E; 2, there are two vectors f± in ~f such that (_Q2h, S2± f ) _ (h, f±),
for all Thus for each p &#x3E; 2.

iii) Next we fix a vector p &#x3E; 2, and choose real-valued func-
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tions ~ x, ~, (0)B(J;) such that = ~ = ~P, ~x = X
and = ~, and we let I Q 13). Then, since ~p(Ho) [Q2, X(Ho)] = 0
as in (32) and because we have 

-

Also f - x(Ho)g belongs to ~3, since = f Hence we obtain from

(34) or (36), with f = x(Ho)g and h = Q-/=0(H)~-~ that

with () 1 as in (34). As in (35) one sees that the double integral of the vector-
valued function in the first factor of the scalar product defines a vector
in ~f for each t E [201400, + oo ], since by (31)

for some ~ &#x3E; 0. Thus (38) implies the existence of a vector e in ~f such that

(Sf Q2g) _ (e, g) for all g E D( I Q 13), so that because the

operator Q2 is essentially self-adjoint on D( ~ Q ~3). t)
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