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An explicit determination of the space-times
on which the conformally invariant scalar wave

equation satisfies Huygens’ principle. 2014

Part II: Petrov type D space-times

J. CARMINATI and R. G. McLENAGHAN (*)
School of Mathematics and Computing,

Curtin University of Technology
Bentley, Western Australia, Australia

Inst. Henri Poincaré,

Vol. 47, n° 4, 1987 Physique theorique

ABSTRACT. - It is shown that there exist no Petrov type D space-times
on which the conformally invariant scalar wave equation satisfies Huy-
gens’ principle. Some related results concerning Maxwell’s equations and
Weyl’s neutrino equation are also given.

RESUME. - On demontre qu’il n’existe aucun espace-temps de type D
de Petrov sur lequel 1’equation invariante conforme des ondes scalaires
satisfait au principe d’Huygens. On donne aussi quelques resultats de
nature analogue pour les equations de Maxwell et pour 1’equation de neu-
trino de Weyl.

1. INTRODUCTION

This paper is the second of a series devoted to the solution of Hada-
mard’s problem for the conformally invariant scalar wave equation,

(*) On leave of absence from the Department of Applied Mathematics, University of
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338 J. CARMINATI AND R. G. MCLENAGHAN

Maxwell’s equations and Weyl’s neutrino equation. These equations may
be written respectively as

where D denotes the Laplace Beltrami operator corresponding to the
metric gab of the space-time V4, u the unknown scalar function, R the
curvature scalar, d the exterior derivative, b the exterior co-derivative,
OJ the Maxwell 2-form, the covariant derivative on 2-spinors, and ø A
a valence 1-spinor. Our conventions are those of McLenaghan [17 ]. All
considerations in this paper are entirely local.

According to Hadamard [7.?] ] Huygens’ principle (in the strict sense)
is valid for equation (1.1) if and only if for every Cauchy initial value pro-
blem and every the solution depends only on the Cauchy data in
an arbitrarily small neighbourhood of S n C-(xo) where S denotes the
initial surface and C-(xo) denotes the past null conoid from Ana-

logous definitions of the validity of the principle for Maxwell’s equa-
tions (1. 2) and Weyl’s equation (1. 3) have been given by Günther [77] ]
and Wunsch [27] respectively in terms of the appropriate formulations of
the initial value problems for these equations. problem for
the equations (1.1), (1. 2) or (1. 3), originally posed only for scalar equations,
is that of determining all space-times for which Huygens’ principle is valid
for a particular equation. As a consequence of the conformal invariance
of the validity of Huygens’ principle, the determination may only be effected
up to an arbitrary conformal transformation of the metric on V4

where ø is an arbitrary function.
Huygens’ principle is valid for (1.1), (1.2) and (1. 3) on any conformally

flat space-time and also on any space-time conformally related to the
exact plane wave space time [10 ] [l4 ] [28 ], the metric of which has the form

in a special co-ordinate system, where D and e are arbitrary functions.
These are the only known space-times on which Huygens’ principle is

valid for these equations. Furthermore, it has been shown [7J] ] [72] ] [28]
that these are the only conformally empty space-times on which Huygens’
principle is valid. In the non-conformally empty case some further results
have been obtained under various additional hypotheses, a review of which
is given by one of us [18 ].
More recently, the authors have outlined a program [2] for the solu-
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339PART II. PETROV TYPE D SPACE-TIMES

tion of Hadamard’s problem based on the conformally invariant Petrov
classification [22 ] [8 ], of the Weyl conformal curvature tensor. This involves
the consideration of five disjoint cases which exhaust all the possibilities
for non-conformally flat space-times. As a first stage in the implementation
of this program, the case of Petrov type N (the most degenerate) was consi-
dered, where we have proved the following theorem: Every Petrov type
N space-time on which the conformally invariant scalar wave equation ( 1 .1)
satisfies Huygens’ principle is conformally related to an exact plane wave
space-time (1. 5), [3] [4] ] (denoted by CM in the sequel). This result together
with Gunther’s [70] solves Hadamard’s problem in this case.
The proof of the above theorem was obtained by first solving the following

sequence of necessary conditions for the validity of Huygens’ principle
for the equations (1.1), (1. 2) and (1. 3) [9 ] [2~] ] [77] ] [7~] ] [7J] ] [27]:

where

In the above Cabcd denotes the Weyl tensor, Rab the Ricci tensor and TS [ ]
the operator which takes the trace free symmetric part of the enclosed
tensor. The quantities k1 and k2 appearing in Eq. (1. 7) are constants whose
values are given in the following table :

The final step in the proof involved the imposition of a further necessary
Condition VII, valid for the scalar case, derived by Rinke and Wunsch [23 ].
However, it should be noted that Hadamard’s problem still remains open
for Maxwell’s equations and Weyl’s equation. The general solutions of
Conditions III’ and V’ have been obtained for these equations [4 ], but it is
not known whether Huygens’ principle is actually satisfied on the resulting

Vol. 47, n° 4-1987.



340 J. CARMINATI AND R. G. MCLENAGHAN

space-times other than the conformally plane wave space-times. The
derivation of the analogue of Condition VII for these equations might
settle the question, as it did in the scalar case.
Our analysis has now been extended to include the case of Petrov type D

space-times. We recall that such space-times are characterized by the
existence of pointwise linearly independent null vector fields l and n satis-

fying the following equations [8 ] :

The main results of this paper are contained in the following theorems:

THEOREM 1. - The validity of Huygens’ principle for the conformally .
invariant scalar wave equation (1.1 ), or Maxwell’s equation (1. 2), or
Weyl’s neutrino equation (1.3) on a Petrov type D space-time implies that
both principal null congruences of the Weyl tensor are geodesic and shear-free,
that is

THEOREM 2. - The validity of Huygens’ principle for the conformally
invariant scalar wave equation (1.1 ), or Maxwell’s equations (1. 2), or
Weyl’s equation (1.3) on a Petrov type D space-time satisfying

implies that both principal null congruences of the W eyl tensor are hyper-
surface ortho onal that is

THEOREM 3. - The validity of Huygens’ principle for the conformally
invariant scalar wave equation (1.1 ) on a Petrov type D space-time implies
that both principal null congruences of the Weyl tensor are hypersurface
orthogonal.

THEOREM 4. - There are no space-times of Petrov D where both prin-
cipal null congruences of the Weyl tensor are hypersurface orthogonal,
on which the conformally invariant scalar wave equation (1.1 ), or Max-
well’s equations (1.2), or Weyl’s equation (1.3) satisfy Huygen’s principle.
As a consequence of Theorems 1, 2, and 4, we obtain the following

theorem, which solves Hadamard’s problem for the equations (1.1), (1.2)
and (1. 3) on type D space-times satisfying (1.14) :

THEOREM 5. - There exist no Petrov type D space-times satisfying (l.14)
on which the conformally invariant scalar wave equation (1.1 ) or Max-
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341PART II. PETROV TYPE D SPACE-TIMES

well’s equations (1.2) or equation (1.3) satisfies Huygens’ principle.
In the case of the conformally invariant scalar wave equation (1.1),

Theorems 1, 3 and 4 imply the stronger result, stated without proof in [5 ],
which solves Hadamard’s problem for this equation on type D space-times.

THEOREM 6. - There exist no Petrov type D space-times on which the

conformally invariant scalar wave equation (1.1 ) satisfies Huygens’ principle.
It is worth noting that Conditions III’ and V’ were sufficient to establish

Theorems 1, 2, 4, and 5. However, the proofs of Theorems 3 and 5 depend
also on Condition VII. A deeper analysis of Conditions III’ and V’ might
permit the removal of the restriction (1.14) thereby completing the solu-
tion of Hadamard’s problem for the Eqs. ( 1. 2) and ( 1. 3) in Petrov type D.
Alternatively additional necessary conditions for (1.2) and (1.3) analogous
to Condition VII for the scalar equation may be required, as they appa-
rently are in the case of Petrov type N.
The results obtained thus far for the Petrov type N and type D cases

lend weight to the conjecture that every space-time on which the conformally
invariant scalar wave equation satisfies Huygens’ principle is conformally
related to the plane wave space-time (1. 5) or is conformally flat [2] ] [3] ] [4 ].
The above theorems include Wunsch’s result [28 ] that the validity of
Huygens’ principle for any one of the Eqs. (1.1), (1. 2) or (1. 3) on a 2 x 2-
decomposable space-time implies that the space-time is conformally
flat, since any such space-time is necessarily complex recurrent of Petrov /
type D or conformally flat [7~].
The plan of the remainder of the paper is as follows. In Section 2, the

formalisms used are briefly described. The proofs of the theorems are given
in Section 3.

- 2. FORMALISMS

We use the two-component spinor formalism of Penrose [20] ] [22] and
the spin coefficient formalism of Newman and Penrose (NP) [79] whose
conventions we follow. In the spinor formalism, tensor and spinor indices
are related by the complex connection quantities = 1, ..., 4; A = 0,1)
which are Hermitian in the spinor indices AA. Spinor indices are lowered
by the skew symmetric spinors GAB and EAB defined by ~01 = ~01 = 1,
according to the convention

where ÇA is an arbitrary 1-spinor. Spinor indices are raised by the respective
inverses of these spinors denoted by EAB and EAB. The spinor equivalents

Vol. 47, n° 4-1987.



342 J. CARMINATI AND R. G. MCLENAGHAN

of the Weyl tensor ( 1. 8) and the tensor Lab defined by ( 1. 9) are given res-
pectively by

where ’(ABCD) denotes the Weyl spinor, where 
denotes the Hermitian trace-free Ricci spinor and where

The covariant derivative of spinors is denoted by « ~ and satisfies

It will be necessary in the sequel to express spinor equations in terms of
a spinor dyad {oA, lA} satisfying the completeness relation

Associated to the spinor dyad is a null tetrad {l, n, m, m} defined by

whose only non-zero inner products are

The metric tensor may be expressed in terms of the null tetrad by

The NP spin coefficients associated with the dyad are defined by the
equations ;

where

The NP components of the Weyl spinor and trace-free Ricci spinor are
defined respectively by

Annales de l’Institut Henri Poincaré - Physique theorique



343PART II. PETROV TYPE D SPACE-TIMES

where the notation ... oAp, etc. has been used. The NP

differential operators are defined by

The equations relating the curvature components to the spin coefficients,
and the commutation relations satisfied by the above differential operators
may be found in NP.
The subgroup of the proper orthochronous Lorentz group L + pre-

serving the directions of the vectors l and n is given by

where a and b are real-valued functions. The corresponding transforma-
tion of the spinor dyad is given by

where w = a + ib. These transformations induce transformations of the

spin coefficients and curvature components which will be needed later.
The following discrete transformation of the dyad preserving (2.6) is

also important

This transformation induces the following transformation of the NP

operators, spin coefficients and curvature components

We also shall need the following transformation of the null tetrad

which induces via (2.9), the conformal transformation of the metric (1.4).

Vol. 47, n° 4-1987.



344 J. CARMINATI AND R. G. MCLENAGHAN

3. PROOF OF THEOREMS

Recall from CM that the spinor form of the conditions ( 1. 6) and ( 1. 7)
are given by

We now make the hypothesis that the space-time is of Petrov type D. These
space-times are characterised by the existence of null vectors l and n satis-
fying Eq. (1.11). In terms of spinors, this is equivalent to the existence of
two 1-spinors oA and iA satisfying Eq. (2.6) such that

Selecting {~ as the spinor dyad, it follows from (2.15) and (3 . 3)
that Bf2 ’= ~ is the only non-vanishing NP component of the Weyl spinor.
It should be noted that Bf 2 is invariant under the continuous transforma-
tion (2.19) and the discrete transformation (2. 20). However, the conformal
transformation (2.26) induces the transformation

We proceed by substituting for 03A8ABCD in Eqs. (3.1) and (3 . 2) from (3 . 3).
The covariant derivatives of oA and A that appear are eliminated using
Eqs. (2.10) and (2.11) respectively. The dyad form of the resulting equa-
tions is obtained by contracting them with appropriate products of oA
and A and their complex conjugates. In view of the conformal invariance
of conditions III’s and V’s [77] ] [26 ], it follows that each dyad equation
must be individually invariant under the conformal transformations (2. 26).
The first contraction to consider is oABCDoABCD with Condition V’s which

yields the equation

This implies

since 0, by assumption. The result of the ABCDABCD contraction
with Condition V’s, may be obtained by the application of the discrete
transformation (2.20) to equation (3.6), which yields

Annales de Henri Physique theorique
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The conditions (3.6) and (3.7), which are invariant under the transfor-
mations (2 .18) and (2 . 26), imply that the principal null congruences of Cabcd
defined by the principal null vector fields la and na are geodesic, which is
equivalent to the conditions ( 1.12).
The next contractions to consider are oABCDoABCD and oABCDoABCD

with V’s which yield, respectively,

where

and « c. c. » denotes the complex conjugate of the preceeding terms.
Now NP Eq. (4. 2 b) gives with x = 0,

so that upon eliminating Do- from (3 . 8), we obtain

If we assume 03C3 ~ 0, Eq. (3.12) implies

At this stage, it will prove convenient to use the conformal freedom to set

which by (3.10), is equivalent to

The real part of Eq. (3.13) now becomes

which implies

since from Table 1, k2 ~ 8k1. The above result implies that Eq. (3.13)
may be written as

where

The relation (3.17) and the NP Eq. (4 . 2 a) also imply that

Vol. 47, n° 4-1987.
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Finally, by virtue of Eqs. (3.15), (3.17), (3.18), (3 . 20) and (3 . 21), the Eq. (3 . 9)
may be written as

It follows from Table 1 that the coefficient of p2 is positive in all cases
while the coefficient of is correspondingly negative. Consequently
Eq. (3.22) implies p = o- = 0, which contradicts the assumption 0.
We conclude that Eqs. (3 . 8) and (3 . 9) together with NP Eqs. (4 . 2 a) and
(4 . 2 limply that

It may be shown in an identical manner that the equations arising from
the contractions ABCDoABCD and oABCDoABCD with V’s which may be
obtained by applying the transformation (2.20) to Eqs. (3.8) and (3.9),
imply that

The conditions (3.23) and (3.24), which are invariant under the trans-
formations (2.18) and (2.26) imply that the principal null congruences
defined by la and na, respectively, are shear-free. This is equivalent to the

. conditions (1.13). The proof of Theorem 1 is now complete.
We now proceed to prove Theorem 2 and 3, which requires the use of

Eq. (3 . 9). After the elimination of Dp by means of NP Eq. (4 . 2 a) it takes
the following form in the scalar case :

We also need the equation resulting from the ABAB contraction with
Condition III, which after the elimination of Dp reads

It should be noted that the form of Eqs. (3.25) and (3.26) are invariant
under a general tetrad transformation (2.18) and a conformal transfor-
mation (2.26), which induce the following transformations on the spin
coefficients :

We now assume that the principal null congruence defined by the vector
field l is not hypersurface orthogonal. This is equivalent to the inequality

Poincaré - Physique theorique
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We use the tetrad transformation (2.18) and conformal transformation
(2.26) to set

It follows from NP Eq. (4 . 2 a) that

We use some of the remaining freedom in (2.18) to set

It follows from the above that the Eqs. (3.26) and (3.25) take the form

A first consequence of these equations is the inequality

If this inequality does not hold, Eqs. (3.34) and (3.35) imply that

both of which are impossible. We note this result also holds for the Eqs. ( 1. 2)
and ( 1. 3). It may be shown similarly by the application of the discrete
transformation that  ~  implies the inequality (3.36). Since B}I2 = 03A82,
is equivalent to Eq. ( 1.14) the proof of Theorem 2 is complete.
We proceed with the proof of Theorem 3 by solving Eqs. (3 . 34) and (3 . 35)

obtaining .

Applying the D operator to this equation and using it to eliminate the
second derivatives from the result, we obtain the following expression
for the third derivative of 03A8

The next step is to invoke the necessary condition VII [2~] for the vali-
dity of Huygens’ principle for ( 1.1 ). This condition in the form we require .

is given by CM Eq. (1.15) and will not be repeated here. We only need
the condition that results by contracting the spinor equivalent of this

Vol. 47, n° 4-1087.
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o equation with oABCDEoABCDEE. In the gauge where 30) and (3.32)
hold, this equation has the following form:

. Eliminating the from the above using Eqs. (3 . 38) and (3 . 39),
we obtain the following simplified equation :

Integrability conditions for the above equation may be obtained by repeated
application of the D operator. The higher order derivatives in these condi-
tions may be removed using Eqs. (3.38) and (3.39). We shall need (3.41)
and the first two of these integrability conditions. They may be written
in a manifestly real form by the substitutions

where 0, U and V are real quantities, as follows :

Annales de Henri Poincare - Physique " theorique "
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The essential feature of the system of polynomial equations (3 . 43) to (3 . 45)
is that it possesses finitely many solutions. This conclusion follows from the
application of Buchberger’s Grobner basis theory [1 ]. The reduced mini-
mal Grobner basis GB for the polynomial ideal generated by F := { ii, f2, f3 ~
was computed using the Maple [6] Grobner basis package of Czapor [7 ].
The basis GB contains twenty-one elements and does not contain the
polynomial 1 implying that the system F has solutions possibly complex
(Method 6 . 8). An examination of the elements in GB reveals that the power
products X4, U8 and v9 appear among the leading power products of the
polynomials in GB. Thus by Buchberger’s Method 6.9, we conclude that
the system F has finitely many (possibly complex) solutions. Since our
unknowns are real, the system in fact may possess no solutions which leads
to a contradiction with the assumption p ~ p in Eq. (3.29).
We now assume that the system F possesses finitely many real solutions

[X j, U V~]J=1,...~ where r E P. It follows from (3 . 42) that for any j
we have

where

A consequence of these equations is that

The Eqs. (3.35), (3.47) and (3.50) together imply that

which is impossible. We thus concluded that (3.29) does not hold and
consequently we must habe

Since

it follows that the null congruence defined by l is hypersurface orthogonal.
The application of the discrete transformation (2 . 20) to (3 . 52) yields

which implies that

This completes the proof of Theorem 3. -

We now proceed with the proof of Theorem 4. The hypothesis of this
theorem and Theorem 2 imply that

Vol. 47, n° 4-1987.



350 J. CARMINATI AND R. G. MCLENAGHAN

We may use the same conformal transformation as that used to obtain (3 . 30),
to set

It immediately follows from the NP Eqs. (4.2) that

From the Bianchi identities and Eqs. (3.59) and (3.60), we have

which implies that DBf and are real. In view of the above, the Eq. (3 . 26)
reduces to

It follows from Eqs. (3.59) to (3.62) and Eq. (3.9) that

On account of the transformation laws (3.26), the condition (3.63) has
the form

in an arbitrary conformal gauge. The application of the discrete transfor-
mation to Eq. (3.64) yields the analogous condition

We proceed with the proof by using the conformal transformation to
achieve = 1 or equivalently H + H = 0. It follows immediately from
this and Eqs. (3 . 57), (3 . 58), (3 . 64) and (3 . 65) that

As a consequence of these equations and NP Eqs. (4. 2) we also have

We next contract Condition V’s with oABCDoABCD and oABCDoABCD,
respectively, obtaining 

,

It is convenient at this stage to distinguish the cases L + vc 5~ 0 and L -t- 7C = 0

The dyad transformation (2.19) is used to set

Annales de Henri Poincaré - Physique - théorique
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The operators D and ð applied to Eq. (3 . 71) yield, on account of Eqs. (3 . 69),
(3 . 70) and NP Eqs. (4. 2), 

_ «

This implies that

The [0, D] commutator applied to ’t + 7r then gives

which in conjunction with the NP Eqs. (4.2) implies

The Eqs. (3.71) and (3.76) give the important relation

When this is taken into account in NP Eqs. (4.2), we obtain

The operator ~ applied to Eq. (3.77) yields

while the commutator [~, D] ] applied to H implies

The next step is to obtain the equations resulting from the contractions
oABAB and. with Ill’s, which, with the help of NP Eqs. (4 . 2),
may be written as

Subtraction of the first of these equations from the second yields

In view of Eqs. (3.10), (3.14), (3.81) and (3.82), this equation reduces to

Combining Eqs. (3.84) and (3.87), one obtains

Vol. 47, n° 4-1987.
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This implies

since 03A8 + 03A8 = 0, is impossible in this case. Finally we need the equation
arising from the contraction with V’s, which after elimination
of 03B4H and may be written as 

.

However, this equation is incompatible with the inequality

From this contradiction we conclude that the assumption ’t + 7r # 0
is untenable.

We begin by using the dyad transformation (2.19) to set

It follows immediately that

The NP Eqs. (4.2) imply that

which together with Eq. (3.14) yields

The above results in conjunction with the equation resulting from the
contraction with IIFs, yield

We next impose the above conditions on the equation arising from the
contraction oABCDoABCD with V’s thereby obtaining

Finally, we appeal to the last equation contained in V’s which is obtained
by the contraction oABCDoABCD. In view of the results already obtained
it reads

However, this is incompatible with the equation

which arises from NP Eq. (4.2h).
This completes the proof of Theorem 4.
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