
ANNALES DE L’I. H. P., SECTION A

ALESSANDRA CELLETTI

CORRADO FALCOLINI

ANNA PORZIO
Rigorous numerical stability estimates for the existence
of KAM tori in a forced pendulum
Annales de l’I. H. P., section A, tome 47, no 1 (1987), p. 85-111
<http://www.numdam.org/item?id=AIHPA_1987__47_1_85_0>

© Gauthier-Villars, 1987, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1987__47_1_85_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


85

Rigorous numerical stability estimates
for the existence of KAM tori in a forced pendulum

Alessandra CELLETTI (*), (**), Corrado FALCOLINI (*)
and Anna PORZIO (***)

Ann. Inst. Henri Poincaré, ,

Vol. 47, n° 1, 1987, ] Physique , théorique ,

ABSTRACT. 2014 We study KAM estimates for a one dimensional, time
dependent hamiltonian system corresponding to a forced pendulum. We
study the stability of a KAM torus with rotation number equal to the
golden section as a function of a parameter e. We first use the Birkhoff algo-
rithm in order to reduce the perturbation to high order (up to eighth),
then we apply four different methods, comparing our results with numerical
experiments ( [7], [21 ]). We find that the KAM torus is rigorously stable for

 s*J with E* smaller than the experimental value by a factor", 40
(the previously known rigorous estimate was lower by a factor", 106.

RESUME. - On etudie les estimations de type KAM pour un systeme
hamiltonien unidimensionnel dependant du temps correspondant a un
pendule force. On etudie la stabilite d’un tore KAM dont Ie nombre de
rotation est egal au nombre d’or en fonction d’un parametre E. On utilise
d’abord un algorithme de Birkhoff pour reduire la perturbation a un
ordre eleve (jusqu’a huit), on utilise ensuite quatre methodes differentes et
on compare les resultats avec ceux d’experiences numeriques ( [7 ], [21 ]). On
trouve que Ie tore KAM est rigoureusement stable pour  E*, avec E*
plus petit que la valeur experimentale par un facteur ’" 40 (Festimation
rigoureuse connue precedemment etait inferieure par un facteur ’" 106).
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, §1 INTRODUCTION

Rigorous stability estimates on the quasi periodic solutions of almost
integrable hamiltonian systems with given (diophantine) rotation numbers
appeared to be still quite far from « reality », if reality is defined either
by the computer experiments or by the requirement that the results should
have practical relevance [7] ] [2] ] [4] ] [5] [6 ].

This has led to the widespread belief that the KAM-theory, which is
essentially the only general tool available for such estimates, does not
have a practical interest.
The problem with KAM-theory is its great generality : in fact it provides

simple stability theorems under minimal assumptions (e. g. non isochrony,
or twist, property of the unperturbed system and regularity, say analyticity,
of the perturbing function); a closer analysis of the proofs of the KAM
stability theorems shows that in fact the estimates met in the proofs are
not really bad (i. e. not too pessimistic) given the generality under which
they hold).

This remark can be used to implement a different use of the KAM-theory
which may lead to (much more) realistic stability estimates, and is therefore
closer to practical usefulness.
The idea is to make explicit use of the peculiarities of the actual hamil-

tonian that one is using, which is always very special, by performing a
few changes of variables which bring the system much closer to an integrable
one, near the selected quasi periodic motions, at the expense of making
the perturbing function very complicated.

It is to this new, equivalent, hamiltonian system that one shall apply
the stability estimates of KAM-theory : such estimates will no longer be
« too bad » because they are now applied to a rather complicated hamil-
tonian (hence « close to a general hamiltonian ») and one can hope that
the net result would be a not unreasonably small bound on the stability
threshold of the selected quasi periodic motion.

In this paper, pursuing a program initiated in [5] (and applied also to
the Siegel problem in [7~] ] [7 J]), using the KAM-estimates given in [5 ] [6]
[16 ], we shall study a one dimensional non autonomous hamiltonian
system describing a forced pendulum

Numerical as well as non rigorous theoretical results on the stability
threshold 0 are 

’ available in the literature; this threshold 0 is defined
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87RIGOROUS NUMERICAL STABILITY ESTIMATES FOR THE EXISTENCE OF KAM TORI

as the largest E* such that for E  E*(ccy) the quasi periodic motions with
rotation number

exists on a which is obtained by continuity as E grows from 0
to E*(cvo) from the unperturbed torus ~o = {A, /&#x3E;, t/A = in the (three
dimensional) phase space of ( 1.1 ).
A non rigorous computation [21] ] suggests that

and non rigorous theoretical results are also available ( [7]). For simplicity
of notations, we denote with EED the critical value (1.2) given in [7].
A « naive » application of KAM-theory ([4D gives instead of ( 1. 2)

the estimate 1020 &#x3E; 1 (a rigorous but « useless » result, if one
believes ( 1. 2)), while a first application of the above ideas gives a result
like 3 .10’ E*(a~°) &#x3E; 1 ([5 D.
However the latter rigorous estimates appear to be improvable because

the main limitation was the excessive length of the calculations : one gets
the feeling that dramatic improvements would be possible if only one was
able to perform very long, straightforward, calculations. This led to the
idea of improving the bounds via a computer assisted analysis where the
role of the computer was to evaluate actual bounds on the value of very
long, but algebraically simple, formulae arising in perturbation theory.

In this paper we report a method leading to the lower bound on 

which is « only»’ about three order of magnitude away from the empirical
result ( 1. 2). The same method, applied by using the new stability statement
of the KAM theory [16 ], gives a better lower bound :

which is now away from (1.2) by a factor 40.
The value is often called the « stochasticity threshold » and it

has been closely investigated in many other systems starting with the
numerical experiments of Henon-Heiles on the axisymmetric poten-
tial [9]:

and successively on the restricted three body problem [10 ] : this analysis
was based on perturbation theory.
More recently, new numerical methods have been developed in [11] ] [12]

and theoretical results have been obtained (see [7] ] [7~] ] [7~] ] [15 ]) : to
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88 A. CELLETTI, C. FALCOLINI AND A. PORZIO

some of the above problems the methods of this paper might be appli-
cable too.
The scheme of this paper is the following. In § 2 we explain our per-

turbation theory method. In § 3 we give four algorithms, each of them
parameterized by an integer N called the « order ». In method 1 we use
the rough estimate (3.9) of the perturbation function and we obtain the
final estimate making use of the general bound (3.3). In method 2
we use again (3 . 3), computing explicitly the new hamiltonian and perturbing
functions and evaluating various constants by using the explicit formulae
for the new hamiltonian and perturbation with the help of a computer.
In method 3 we improve (3 . 3) replacing it with the set of conditions (3 .12),
(3 . 13)~ (3.14). (3.16) below; their discussion for a general analytic hamil-
tonian would lead to (3. 3), but one can improve their discussion (and in this
way the final result), by making use of the explicit form of the hamiltonian
and perturbing functions. In method 4 we use the new proof of KAM
theorem given in [16 ]. In § 4 we discuss the numerical aspects of the imple-
mentation of the algorithm (which we have been able to carry only up to
« 8-th order » because of memory and time limitations of the available

computer (Vax 11/780)).

§ 2 . THEORY OF THE NUMERICAL ALGORITHM:
COORDINATE TRANSFORMATION
AND CORRESPONDING BOUNDS

We consider the hamiltonian system (1.1) and we wish to follow conti-
nuously, as E grows, the invariant torus ~(E) on which a quasi periodic
motion with rotation number

takes place and which at E = 0 is the torus described by the parametric
equations

We start by building explicitly a canonical change of variables transfor-
ming the hamiltonian (1.1) into a- new hamiltonian, which has the form
of an integrable part plus a perturbation of order for some fixed N.
Although we are interested in the simple case (1.1), we will formulate

the method in a general form.

Annales de l’Institut Henri Poincaré - Physique theorique
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Let

where ho is real analytic on and holomorphic on §po(Ao), while fo
is real analytic on x ~2 and holomorphic on Spo(Ao) x C~ where,
for A0 ~ R:

and fo is regarded as a function of Spo(Ao) x C~o by regarding it as the

analytic continuation of its restriction to SPo(Ao) x 02 and identifying
the points (03C6, t) ~ b2 with z = (zl, z2) _ (as it is natural to do).
The parameters po, Ço measure the regularity of ho and fo : their size will

be measured by suitably using the norms

(see below), where g is holomorphic in Sp(Ao) and Sp(Ao) x C~ , respecti-
vely. Let in fact :

and let Eo, r~o, ~o, be three numbers such that

The physical interpretation of Eo B ~-10 is that of time scales charac-
teristic of the unperturbed motion or of the perturbation respectively,
while measures the non isochrony of the unperturbed system (i. e. the
strength of the twist it generates in phase space as A changes).
With the above notations the hamiltonian (1.1) takes the form (remem-

bering our notation z 1 z2 - eit):

and comparing (2.6), (2.7) we see that we can regard it as holomorphic

Vol. 47, n° 1-1987.
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in Spo x C~o with any pair po, Ço of positive numbers, and correspondingly,
given one can take

where Ao = ( 1 + ./5)/2.
We keep the freedom of choosing po, Ço with the intention of trying to

choose eventually values which optimize the final estimate of the threshold
Other parameters will arise and will be treated in the same way.

The golden section that we have chosen as rotation number has very
convenient arithmetic ( « diophantine » ) properties; namely for all integersp,
q E  (see [8 ]) :

In terms of the above conventions we define a canonical change of
coordinates « removing the perturbation to order higher than N » : we use
here the standard perturbation theory (a method sometimes called « Bir-
khoff method » ), and construct the canonical map via a generating function
of the form :

where

and the coefficients must be determined so that in the new canonical
variables (A’, t ) the hamiltonian (2 . 7) takes the form :

The change of coordinates t ) = (A, cjJ, t ) is related to ~rN
by the well known relations (see for instance [1 ]) :

Annales de l’lnstitut Henri Physique - theorique "
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or in its complex form :

Of course we must not only deal with the problem of determining the
(~-coefficients, but also with that of transforming the (2.14) into a map
%N(A’,z~Z2)=(A~i,z2). The latter problem is a somewhat involved

implicit function problem which contains also the problem of determining
the domain of definition of so far unspecified.
The determination of is a purely algebraic task and eventually it

will be computerized : one just inserts (2.14) in (2 . 7) obtaining

and one imposes that (2.15) plus 20142014~(A’,~) (which by the general
M

theory of the, time dependent, canonical maps is the new hamiltonian)
has the form (2.12), i. e. the new hamiltonian is ~-independent up to order N
(included) in G. One easily finds:

The new hamiltonian (2.12) will then be in the (A’, z)-variables :

where C~(A’, ~, t ) = ~ and in (2.17) one has to think that ø
nm

is a function G) obtained by inverting the second term of (2.13)
or (2.14) at fixed A’, t, G.

Vol. 47, n° 1-1987.
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The inversion problem is in fact a very important (and somewhat delicate)
aspect of the theory.
We shall invert (2 .14) in the form :

with defined and holomorphic on a domain of the form

for suitably chosen with p 1   Ço and for |~|  further-
more for 8 Eo, E and A are also holomorphic in G and

In ref. [1] ] (§ 5 .11 and appendix G) a general theory of the inversion
problem leading from (2.14) to (2.18) is presented : it is shown that if
P ~ = I 

= ~o - ~ for T, 5 &#x3E; 0 then E, A exist and are holomorphic
in Spl(Ao) x C~1 x Sf 0(0) provided, for  Eo, one has :

where yl, y2 are numerical constants (in the given reference they are res-
pectively, in our notations, 28 et and 28: however a careful examination
of the proof easily leads to the much smaller values, if ç  1, used in [5] ] [6]
[7~], which are the values we shall in fact use here :

The new hamiltonian HN, holomorphic in x describes
the motion canonically in this domain : the parameters 5, L will be even-
tually chosen to optimize the final estimate.
We now look for a point AN in such that ~

Annales de l’Institut Henri Physique - theorique -
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This is another implicit function problem: we rewrite (2.21), using (2.17),
as

and we apply the implicit function theorem (sect. 1.1 of [1 ], proposition 19)
to deduce that if

where y3 is a suitable constant ( = 2g in the quoted reference; however a
remark like the one following (2 . 20) applies here as well and leads to y3 = 2
as a possible choice for y3), then AN exists and verifies

We shall now restrict further the domain of definition of hN, fN to be
x C~N with /)N = ÇN = ~ 1 - ~ « centering » it around AN,

which will appear to be a convenient choice.
Numerical analysis of data and results, see § 4, will lead to the following

« good » choices of the parameters pN, ÇN (in methods 1, 2, 3) :

For methods 1, 2, 3, we choose pN, large set of values, making trials
on the find estimate on G; the result is that the « optimal » values of 03C1N, ÇN for
each method (when N6) differ slightly from ~N==0.1) ÇN = 1. For this
reason and in order to make a comparison among methods 1, 2, 3, we
whoose the same values pN=0 ~ ~N=1.
The decrease of PN from PN = .1 to PN = -045 is due to the presence of

new small denominators, which appear at N = 7.
The choice of pN, ÇN in method 4 is different from the others. The values

p7, ç 7 are chosen so that the final estimate on E is empirically optimal
(i. e. among the various choices tried), taking into account small denomi-
nators and the conditions (2.20), (2.23), which impose a further decrease
of pN.
The function ei° determining the canonical map exists, I  E

Vol. 47, n° 1-1987.
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where 8 is so small that (2.20), (2.23) hold with the above choices of p~
ÇN, and is holomorphic in (A’, zi, z2, Spi(Ao) x ell x Sg(0).

Therefore it can be expanded in powers of G and leads to the expression
of z1 in terms of A’, zi, 

The remainder 1 is the part of order greater equal to N + 1 in E
of the function (exp (i0) - 1 and, being holomorphic for I G  8, can
be bounded (by Cauchy’s theorem) :

while the coefficients Ok can be easily determined as follows.

Set gk = M 
and write the second equality of (2.14), using (2.10) and

expanding exp ( - igk~k) in powers, as

with

and Hp is a function of A’, ~1~2 " z2’
Substituting (2.25) in (2.27) one obtains

Annales de Henri Poincaré - Physique ’ theorique ’
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(* means : p + ... + N and kl + ... + kN = q) where the
arguments A’, z2, have been omitted in Hp and A’, z~ z~ have been omitted
in 6~
Comparing (2.29) and (2.25) we see that

(* means : p + k 1 + ....+ NkN = N and k 1 + ... + kN = q) which deter-
mines eN inductively because the restrictions on the sums 1

The (2.14), (2.17), (2.25), (2.30) and the bound (2.26) complete the
description of the change of variables.

§3 THEORY OF THE NUMERICAL ALGORITHM:
THE BOUNDS ON THE NEW HAMILTONIAN

AND THE KAM THEOREM

Having under control the coordinate transformation, we must analyze
the properties of the hamiltonian describing the motion in the new variables

1. e. 2. 15) plus at

(see (2.17)), regarded as defined in x C~.
We plan to use the KAM stability theorem which allows us to infer the

stability of the motion which would take place on the torus A’ = AN,
if in (3 .1 ) one disregarded the term EN + 1 fN . We introduce the characteristic
parameters EN, 11N, EN of the hamiltonian (3 .1) :

The result that we use in methods 1,2 is a general bound of the form :

[6 ]) where 03BEN  1, r = 1.43.1017, a = 2 . 07, /3 = 2, y = 10 . 36 and C
is related to the arithmetic properties of the rotation number ccy (i. e.

Vol. 47, n° 1-1987. 4
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C = (3 + ~/5)/2, see (2.9) in our case). Eq. (3--: 3) is very general and holds
for any hN, fN holomorphic in the domain SpN(AN) x CN.
The estimate (3 . 3) can be used for our purposes as soon as we find esti-

mates for EN, EN, pN, ÇN, 11N.
Such estimates for N = 0 are easily deduced from (2.8) and lead to a

stability theorem (note that 110 = 1) of the form: if

then the motion with rotation number cvo is stable.
We propose to apply the following alternative improvements to obtain

eventually the stability result :

We follow four different methods providing successive improvements
on the final estimate on G and we always compare it with the experimental
value EED (see (1.2)). Dividing the procedure leading to this estimate in
a first part, in which we compute the estimates of the renormalized hamil-
tonian and perturbing functions hN, fN (namely and a second

part, which is the discussion of the conditions under which the KAM sta-
bility holds, we have the following possibilities.
Method 1: application of (3 . 9) in order to obtain ~N (without computer

. assistance), numerical evaluation of EN, 11N and application of KAM gene-
ralized condition (3.3).
Method 2: improvement by numerical evaluation of the value EN and

application of (3 . 3).
Method 3: numerical evaluation of GN, EN, the final result on ~N is

obtained by discussing the set of conditions (3.12), (3.13), (3.14), (3.16)
below.
Method 4: same EN, EN, 11N as in method 3, with the new KAM conditions

derived in [16 ].
We explain each method, reporting every time a table for the final

estimates on G. The first column refers to the order N + 1 of the perturba-
tion (see (3.1)). The second column is the final estimate on G, while EED/E
is the comparison with the bound (1.2). pN, ÇN are the parameters chosen
each time. The last column « ~init » indicates the initial hypothesis we make
on 8: I G  this is necessary because our bounds are derived by sup-
posing a priori that is not too large, i. e. not larger than a prefixed ~init.
After having applied KAM theorem, we check if the final G is less than Einit
(if not we start again with a greater Then, in order to minimize the diffe-
rence between G and we change ~init and we reapply KAM theorem.

METHOD 1. - Just apply (3 . 3) to (3.1) evaluating carefully EN, ~N ;
this requires the use of a computer not only for the actual calculation of EN,

Annales de l’Institut Henri Poincaré - Physique theorique
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11N, but for the optimization of the final result on E in terms of the choice
of the original parameters.
The results obtained in this rather simple way are summarized, for each N,

in the following table (remember that EED = .31 see ( 1. 2)) :

To apply this method we had to find also an estimate for GN and fN.
For this purpose we simply observe that ~N+1 fN is the part of order greater
or equal to N + 1 of

once A, Zi, Z2 are expressed in terms of A’, z~ z~ via (2.14).
If B is a value such that for I G  E the map (2.14) is well defined and

holomorphic in A’, zi, (the conditions determining 8 in terms of po,
Ço are the (2. 20) to which (2.23) should also be added because we want AN
to be well defined, then

where M is the maximum of (3 . 6) as A, z 1, Z 2, G vary in the image via (2 .14)
of Spl(Ao) x C~1 x The maximum is bounded by the maximum
in the initial domain :

having bounded - via (2.20).
~

Then in the smaller domain x C~N we bound the derivatives
of ~N by a « dimensional estimate », i. e. by Cauchy’s theorem and (3.8):

(where Q = 2[p,(l - e ~) ~ 1 + 
After evaluating numerically (see § 4 for the numerical method

and the error control methods used) we substitute them in (3 . 3) and then
optimize numerically (in a large set of tentative values) over the allowed

Vol. 47, n° 1-1987.. _ 4*
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choices of po, ~o, ~, ~ (i. e. subject to the conditions (2. 20), (2. 23)). The
results are in the above table.

METHOD 2. - The main advantage of method 1 is that the numerical
analysis is rather limited : in particular the coefficients (2 . 30) do not need
to be evaluated.
One can rightly suspect, however, that the bound (3 .9) is a rather poor

one : in fact, one can improve it by computing the coefficients (2 . 30) and
expressing in terms of them the term of order N + 1 in G of ~N+1 fN explicitly,
where fN is the perturbation (2 .17), computed in terms of the new variables
(A’, z~, z~) via (2 . 25). As we explain in § 4, we memorize the generating
function in a matrix with relatively large dimension. From the recursive
construction (2.16) of ~~k~(A’, 4&#x3E;, t ), one can easily see that the generating
function is a sum of products of the form :

(m, n refers to the particular Fourier component we are computing)
and every row of the matrix in which we store D~(A’, 4J, t ) (up to order N
included) contains a product of this form. Formula (2.17) for the construc-

~03A6(r) ~03A6(s)
tion of involves the products or -’ - which are
sums of terms like : 

and in order to obtain the estimate of hN, IN we bound it as :

(see § 4 for the analysis of the numerical method and error control).
Using the estimate of the new hamiltonian hN and the perturbation fN,

the final estimate on G is obtained through (3.3).
This leads to significant numerical improvements as the table shows

Annales de l’Institut Henri Poincaré - Physique ’ theorique
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Before examining the next method, we report here a table in which we
compare the values of II / at each order. The first column refers to

Method 1, while the second is the explicit computer assisted (but rigorous)
estimate of f (Method 2 and, as we shall see, Methods 3, 4) :

METHOD 3. - The (3 . 3) is obtained under general assumptions, namely
without making use of the special form of the functions hl, ..., ~~.’’’. fN.

In this method we consider conditions (3.12), (3.13), (3.14), (3.16)
below to be discussed separately. Their discussion for a general analytic
hamiltonian leads to a condition equivalent to (3.3).

But using the special form of h 1, ... , hN, f i , ... , , the discussion

of these conditions gives better bounds of apparently more complicated
structure, but trivial to evaluate numerically.
The explicit computation of EN, EN (used instead of (3 . 9) as in method 1)

provides better results in comparison with method 1, while the discussion
of conditions (3.12), (3.13), (3.14), (3.16) gives an improvement of the
condition (3.3) used in method 2.
We refer to [7] for the general KAM theory and to [4] ] [5] ] [6] for the

necessary few modifications to adapt it to non autonomous one-dimensional
hamiltonian systems.

Let us consider the hamiltonian (3.1) with associated parameters a~N,
as defined in (2. 5), (2. 6). The KAM theorem leads

to a procedure of reduction of the hamiltonian ( 1.1 ) to higher order in G
(see [1 ]), which is valid under some conditions (namely (3.12), (3.13),
(3.14), (3.16)) and requires the definition of iterated parameters related
to the hamiltonian (3.1) of order N at the j-th step (namely after having
reduced the perturbation to order 

(we 11j, as j-th iterated of the initial parameters (;(0) = ~

Vol. 47, n° 1-1987. -"



100 A. CELLETTI, C. FALCOLINI AND A. PORZIO

p(o) = pN, ’’ - ~ { ~} is the « analyticity loss » sequence related to ÇN)’
where (see [6 ]) :

But in this method, we use a more complicated expression for B, obtained
through the explicit form of hN and fN; its simplified expression (which
is also an upper bound for it) is :

We obtained (3.11) by applying the iterated definitions of parameters (2. 5),
(2.6) on the new hamiltonian HN and making use of dimensional esti-
mates (see [7] ] [2] ] [4] ] [6 ]).
We list now the conditions appearing in the KAM theorem (see [1] ] [4]

[5] ] [6 ] for their derivation), having in mind the definitions of iterated
parameters (3 .11) :

(insuring the existence of a quasi periodic motion with pulsation ccy for
the renormalized hamiltonian)

(for the inversion on the circles)

(for the inversion on the annuli), where :

(see [6] for their derivation) and LN is a positive constant depending on ~’
Note that r1 and r2 depend on the choice of parameters pN, ÇN, associated
to hN and fN .

In order to insure the convergence of our method we must discuss for

every j = 0, 1, ... conditions (3.12), (3.13), (3.14) by means of iterated
parameters to which we have added a « fast convergence » hypothesis,
that is :

where ~, has to be chosen belonging to (0,1).
Conditions (3.12), (3.13), (3.14) are implemented by

Annales de Henri Poincaré - Physique theorique
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Using (3 .11 ), we obtain also :

We report in the following table the values of B, ~, { ~n ~ for methods 2, 3.
Note that the values of ~ ~n ~ and B are different in method 3 for N =1- 6
and N = 7, because they depend on pN, which decreases at N = 7.

We find that 5 the condition insuring convergence (namely,
the validity of (3.12), (3.13), (3.14), (3.16) for every j ~ j’ = 5), is obtained
giving the bound EN  2Eo, using (3.15), (3.17) and choosing f ~n ~ as
shown in the table. Using (3.11), (3.15), (3.17), we discuss conditions (3.12),
(3 .13), (3 .14), (3 .16) by using the computer for j = 1, ... , j’ with suitable j’
and with a suitable choice of { ~}~5 as explained in the table. Then
we make some more general choices of the parameters and we compute
the same conditions with the assumption j &#x3E; j’ to insure convergence.
This condition is of the same order of magnitude of the stronger statement
obtained by discussing each of (3 .12), (3.13), (3.14), (3.16) for7=0,1,2,3,4:
this is the reason why we pick j’ = 5 (see [6] for the method of discussion
of the conditions).
We provide here the results on the final estimates on 31,

see ( 1. 2)) :

Vol. 47, n° 1-1987.



102 A. CELLETTI, C. FALCOLINI AND A. PORZIO

METHOD 4. - The best result (1.4) we have obtained, by applying
again the procedure of method 3, is due to the recent estimate for a general
one-dimensional non autonomous hamiltonian system, found in [16]
(to which we refer for more details).

Like in method 3, we report the conditions to be satisfied. We do not
perform here the optimization of constants appearing in (3.23)-(3.28),
although it has been considered in the numerical work.

Considering the hamiltonian :

we introduce another set of parameters :

where

and oc &#x3E; 0 is to be chosen.
We denote with 03B4j the (first) « analyticity loss » due to the control of

the derivatives of the generating function C;(A’, 4J) and with 03B4j (the (second)
« analyticity loss » for the inversion problem related to the canonical
transformation :

We shall choose

where ð &#x3E; 0 is to be fixed.
We introduce also the cut-off parameter of the regularized perturbation

(corresponding to the Nj of [1 ], p. 502) :

where
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After having renormalized the hamiltonian at the j-th step by means of
the canonical change of variables (3 . 20), we define the iterated parameters :
Bj+ 1, ~; ~ ~; ~ Pj+ 1, G ~+1, ~;, in terms of the parameters at the ( j -- l)-th
step.
We can conclude (see [16 ], where the result is derived in detail) that if G

satisfies the following conditions (3.23)-(3.28), then the invariant torus
is shown to exist :

(for the control of the domains Sp~ + 1 (A°+ 1~ c 

(so that the map (3.20) is well defined, being 20142014e 

(for the implicit function problem related to (3.20),

(for the definition of the new perturbation function f ’~ + 1 ),

(for the definition of the iterated parameters), .

(for the control of the analyticity losses b~, ~~), where :

But in practical problems, we can not control (3 . 23)-(3 . 28) for every 7 2 0;
for this reason we fix an integer jo : we control (3 . 23)-(3 . 28) when 7  ./o
and then we impose a stronger condition which guarantees (3.23)(-(3.28)
for every 7 &#x3E; 7o’
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To this end, we consider again conditions (3.23)-(3.28) with (3.24)
substituted by : , . ,

and (3 . 27) substituted by :

with y, y’ &#x3E;_ 2 to be chosen and

We denote with :

where

If

being :
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one can conclude (see [16 ]) that conditions (3 . 23), (3 . 29), (3 . 30), (3 . 24),
(3.25), (3.31), (3.27), (3.23) are bounded by an expression of the form:

where a = &#x3E; 0, b E N and one can control these condi-
tions as long as

Once the new condition (3. 32) is satisfied, if G is small enough, say

the torus 0(G) is an invariant one (for further details see [16 ]).
By applying the general theory to ( 1.1 ), we obtain, for N = 0 :

(compare it with (3.4) !).
This new estimate allows us to obtain substantial improvements of the

previous results, as is shown in the following table :

Note that the last value of £ is away from the numerical value EED (see (1. 2))
only for a factor 40. 25

§4 NUMERICAL SCHEME

Formulae (2.17) for the construction of the new hamiltonian system
are suitable for an iterative numerical computation.
Each formula depends upon the expression of the generating function ~~k~,

that we indicate as

We want a good estimate of the generating and perturbing functions;
to this end, we try to store completely the expression :
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in a bidimensional matrix with relatively big size, that we shall indicate
with « A ».
The Fourier components are, as we can deduce from (2.16),

sums of products of the form (3 .10), that we rewrite in the slightly different
form (we use this form in order to economize memory) :

where ai, bi, ci, d 1 depend upon N, k, n, m.
It is necessary to memorize, in each row of the matrix, the order k of

the generating function we are computing, the couple of integers (n, m),
the numbers a~, bi, ci, d 1, which characterize every term of ~~n~m) .
For example, at N = 1:

At this order we have four terms corresponding to the Fourier compo-
nents (1, 0), (20141,0), (1, -1), ( -1, 1) and we memorize them in two rows
(note that each term appears two times with opposite signs, so that we have
to store only half of these terms) :

With this procedure it is possible to have more rows corresponding to
the same Fourier component (n, m). In order to obtain ~ we have to sum
over every row with the same (n, m).
Using this method, we are able to obtain a fast estimate of the generating

function and of the relevant quantities.
We need some device for storing data, using them for purely algebraic

operations. Once the available memory is exhausted (this happens when
N = 6), the progress continues through the recursive construction of the
generating function in this way : after the computation of each row, related
to a not memorized order, we pursue with every operation connected
to this row. Then we delete the row in order to make more space.
Of course, this device makes the program extremely slow. For this reason

and for the impossibility of memorizing large quantities of data, we are
not able to compute higher orders of the generating function (and, in any
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event, it is clear that the results will not improve forever with the order).
Going back to the description of our numerical method, we observe that

the generating function, its derivatives and the perturbation are exactly
computed, namely without numerical error (in fact, we represent these
functions through the set of integers a~, bi, c~, At this stage of memoriza-
tion of the generating function by the matrix « A », every entry is an integer
number and we avoid approximation errors (that would damage the efficacy
of the method), because a~, b~, ci, d 1 in (4 . 2) are the result (less then the
maximum integer allowed by the computer which is 2147483647 as stated
in [17 ], p. 2-5) of sums and products among integers. The estimate of the
generating function and of every other related expressions is :

We adopt this estimate because numerical experiments show that can-
cellations are not relevant.
There is empirical evidence that every order has a leading term of the

form (compare with (4 ]) :

We deal with the remainder by using the iterative formula (2. 25), which
depends only upon ~~k~.

Looking at the expression of the Fourier components the least
value of ~~k~ is reached when + I is minimum. Through (4. 3),
we compute the estimates of the terms which are sums of products
of the form (4 . 2)) :

Once obtained these values, we compute estimates of derivatives through
Cauchy’s estimates.

This work is carried out with a Vax 11/780 with floating point notation
and in double precision (1). This means that any number is represented by
a sign, a normalized positive fraction less than one and with the first decimal
digit different from 0, and an exponent which gives the position of the point

e) We have seen, with a rough estimate on numerical errors and on their propagation,
that the error in computing the generating function can be bounded by 1.5 therefore

the final results are exact up to the (15-N)-th decimal significative digit. Using simple pre-
cision, the final results would be meaningless for N &#x3E; 5.
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(which means for example the representation of 123456. 78 as 123456789.10~
or .001234 as .1234’10’~).
Moreover « double precision » means that any number is stored in eight

contiguous bytes with bit 15 the sign bit, bits 7-14 an excess 128 binary
exponent, i. e. represented by the binary equivalents of 0 throught 255,
and bits 0-6, 16-63 a normalized 56 bit fraction. For this reason the absolute
value of a number is at most of the order of 212 g (i. e. in the approximate
range ( . 29 10 - 3 8, .17 103 9)) and the precision of the computer is approxi-
mately one part in 255 (i. e. typically 16 decimal digits) (see [19]).
We indicate in the following with « i-th digit » of a number, the i-th

digit of the normalized fraction in the floating point notation.
As we noted before, we compute exactly the Fourier components of the

generating function (representing them through the set of integers n, m,
a~, b~, Ch in this way the numerical errors (due to the precision of
the machine) arise only in the estimate of the generating function and in
the discussion of the final conditions of methods 2, 3, 4.

In order to obtain an upper bound on the final estimate which includes
the numerical errors, we have first divided every formula of the program
into the most elementary operations (precisely : sum, difference, multi-
plication and division), for which one obtains the result exact up to the 16-th
digit, that is the 56-th bit of the normalized fraction (see [17 ]). Then, after
every such operation, we have increased (or decreased where it was neces-
sary) the result of each operation, adding (or subtracting) one to the 54-th
bit of the normalized fraction; we have used the library functions LIB~INSV
and LIB ~ FFC (see [20 ]).
For other functions, like the exponential, that we can not divide into

elementary operations, we have computed their exact value with series
expansion up to the 16-th digit and we have increased (or decreased)
their last exact digit.
We can conclude that the final results, for the estimate of the generating

function, are exact up to the 4-th digit.
After having obtained the new hamiltonian and the new perturbing

function we pursue by applying KAM-theory in the general form : we discuss
the set of the final conditions, repeating the same procedure above (splitting
formulas, decreasing or increasing results of each operation, etc.), in order
to take into account the numerical error.
We find our results at each order, by choosing the analyticity parameters

PN, ÇN in a large set of tentative values. The decrease of pN and 03BEN is caused
by two factors : first, we have to control the conditions (2 . 20), (2 . 23), which
impose a constraint on p~ ÇN; second, the presence of small denominators.
At every order, the number of Fourier components increases, while the
domain of holomorphy of  and f is smaller.

Finally, the results are obtained imposing G  ~iniz and verifying the
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agreement between the final and the former hypotheses as explained in § 3.
The flow-chart given here represents the part of the program which

evaluates the generating function, computed through (2.16). We denote
with « A » the matrix related to the generating function (2.10), (2.11).
Each row contains a term like (4. 2) of the Fourier expansion (2.11).
The first element of the j-th row (A(/, 1) is the order k of the generating

function C~(A’, /&#x3E;, t ), that we are computing. The second and the third
elements refer to the couple of integers (n, m) of the Fourier expansion
term A(j, 2) = n, A(j, 3) = m.
The remaining elements of the j-th row are occupied by the set of numbers

ai, bi, c~, di, which appear in (4.2).
In this way, in order to obtain a Fourier component we have to

sum over the rows such that :

If A( j, 1 ) = k and A( j + 1, 1 ) = k + 1, we define the array C(k) so that
C(k) = j, namely C(k) takes memory of the index j of the last row related
to the generating function of order k : 0~(A’, 4J, t ), and we set C(O) = 0.
We denote the subroutines with the following symbols :

it calculates the value of ai, bi, ci, d~ of the each row of « A » ;

it estimates a single row of « A » and its derivatives;

it constructs the hamiltonian and perturbing functions hN, fN
through recursive formulae (2.17).

For simplicity of notations, we set in the following flow-chart :

and we denote with k, r, s, the same indexes appearing in (2.16).
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