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ABSTRACT. - For one-dimensional mixing Gibbs systems of molecular
type it is proved that two such systems are finitarily isomorphic if and only
if they have equal entropy. Using the notion of approximately finite groups
of non-singular transformations of a measure space, a necessary condition
is given for these finitary isomorphisms to have finite expected code-length.

RESUME. - On demontre que deux systemes de Gibbs moleculaires uni-
dimensionnels melangeants sont presque partout homeomorphes si, et seule-
ment si, leurs entropies sont egales. En utilisant la notion de groupe de trans-
formations non singulieres approximativement fini d’un espace mesurable,
nous donnons une condition necessaire et suffisante pour que l’isomor-
phisme ait une longueur de code finie.

1. INTRODUCTION

Markov chains are the best understood examples of measure-theoretic
dynamical systems. Besides their importance as mathematical objects,
Markov chains can be used as models in classical statistical mechanics
(lattice gas Ising model with finite range interactions).
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398 V. WARSTAT

The configuration space Q of a Markov chain is the set of all two-sided
infinite sequence of elements of a finite set Qo

In the lattice gas Ising model we have Qo = {0,1}, where 0 represents
the absence of a particle and 1 represents the presence of a particle. The
elements úJ E S2 can be interpreted as arrangements of indistinguishable
point particles on the lattice Z.
From the point of view of classical statistical mechanics there is an

interest to have models for systems of extended particles, e. g. hard rods
or particles with hard cores.
For the description of such situations configuration spaces of molecular

type, that are introduced in [9] and [18 ], can be used. The configurations
in these configuration spaces are, roughly speaking, sequences of extended
particles and empty places on the lattice Z.
On corifiguration spaces of molecular type Markov measures ~ can be

defined by imposing a Markov property on the conditional probabilities
of ,u. These Markov measures are, by a result of the autor in [17 ], Gibbs
measures for nearest neighbour potentials. These potentials describe the
interactions between particles, that are close to each other.

All these notations are introduced in the sections 2 and 3.

Both the configuration space S2 and the Gibbs measure ~ are supposed
to be invariant with respect to the shift operation T. Thus we have a measure-
theoretic dynamical system

and it arises the isomorphism problem. In section 4 an answer is given to
this problem by the following theorem.

THEOREM. - Two topologically mixing Gibbs systems (Qi, T) and
(Q2. ~2, T) with equal measure-theoretic entropy are finitarily isomorphic,
i. e. there is an invertible measure-preserving map I : 01 ~ S22 that com-
mutes with the shift and there are null-sets S2~ c= i = 1, 2 such that the
restriction of I to 03A91B1 and of 1-1 to 02 BQ2 are continuous.
By this result the entropy is a complete isomorphism invariant for such

systems. A similar result was proved by Keane and Smorodinsky in [5]
for Markov chains.
The fifth section of this paper is devoted to the examination of the finitary

isomorphisms between Gibbs systems. There is given a necessary condi-
tion for the finitary isomorphism to have finite expected code length.
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399ISOMORPHISM PROBLEM FOR ONE-DIMENSIONAL GIBBS SYSTEMS

2. CONFIGURATION SPACES OF MOLECULAR TYPE

The systems under consideration are one-dimensional, i. e. they are
defined on the lattice Z. On Z the group translations
is defined by

where denotes the set of all nonempty finite subsets ofZ. We construct
now the configuration space of the system. The following are supposed to
be given : 

.

and

The set ~ is generated by shifting ~o over the whole lattice, i. e.

For each G we set

and

The element 0 E Qö will represent the absence of a particle of the shape G.
For each s E 7~ we introduce the notations

and

The configuration space of the system is defined by

Let ~(~) be the set of all nonempty finite subsets of ~. Then we use for
~’ E ~(~) the notations
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400 V. WARSTAT

and

X~ : Q - the natural projection operator.
Note that in general 
The space Q consists of configurations 03C9 having the property : In any

point s E 7~ there is at most one G E ~(~) with (D 0. So it will be conve-
nient to interpret the configurations as arrangements of nonoverlapping
extended particles on the lattice.
One has to pay attention to the following interesting case : Suppose

0 E Qo for all G i. e. S2G = this case it is possible to have confi-
gurations OJ such that for some points s there is 03C9 |G = 0 for all G E V(s).
Such points are called empty for a).
But without loss of generality one can assume 0 ~ 03A9G for all To

realize the above situation one has to add to ~o the set {0} and to assume
= {oc}. If { 0 } was already an element of ~o one only has to add to

the original the element a. Empty points are then represented by one-
point a-particles.
The classical situation of a configuration space of the lattice gas Ising

model is realized by the following choice of the parameters : ~o = ~ ~ 0 ~ }?
Q~={~1}.
The configuration space Q will be equipped with the topology induced

on Q c by the product topology on On the finite sets S2G
aE~ GE~

the discrete topology is assumed. With this topology Q is a compact space.
On Q the groupe homeomorphisms is is defined by

Michel and Schwenzfeger studied the pairs (Q, r) as topological dyna-
mical systems. Michel proved in [9] ] that in the special case mentioned
above, ’! is a topologically mixing transformation group on Q. In [16]
Schwenzfeger proved : If 0 ~ Qc for G ~ g, then r is a topologically mixing
transformation group on Q, if and only if the greatest common divisor
of the natural numbers ji, that uniquely define the set ~o, is equal to one.
Furthermore he showed there that two systems (Q’, T) and (Q", T) are
topologically conjugated, if and only if the sets ~ó are identical

and card S2G = card S2G lor all G E ~o.
In the present paper we add to the configuration space Q a r-invariant

Gibbs measure /1 and study measure-theoretic isomorphisms between
such measure-theoretic dynamical systems (Q, /1, T).

3. GIBBS MEASURES

The most instructive and most examinated class of examples in the iso-
morphism theory of abstract measure-theoretic dynamical systems is

Annales de Henri Poincaré - Physique theorique
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the class of Markov chains (see for example [3] ] [72]). From the papers
of Averintzev [7] ] [2] ] we know that there is an equivalent description
of the Markov property of measures with the help of nearest neighbour
interactions, that allows an effortless characterization of measures on
the configuration space, having the Markov property. In fact Averintzev
showed this equivalence for lattices Zd with d  1. In [77] such an equi-
valent description by interactions was obtained for configuration spaces
of the structure described above. In what follows, the interactions will
have the same importance as the transition matrices have in the case
of the classical theory of Markov chains.
An interaction U is a map U : ~ f(~ ) x Q ~ IR with the property :

For fixed V E Pf(g) the value U(V, co) depends only on 03C9|V. An inte-

raction is translation invariant, if

It is called to be of finite range, if there is a set ~ E ~ f(~ ) with ~ n ~o ~ ~
such that U(V,.) ~ 0 implies the existence of an s ~ Z with 0398sV ~ D.
For ~ E ØJ (~) and OJ E we denote

A measure is called a Gibbs measure for the interaction U, if for all

V E 03A9V, ~ ~ 03A9 the conditional probability that on V the confi-
guration is equal to 03C9 under the condition that on gBV the configuration
is equal to is

In the equation (4) the factor Zlí,’1(U) is a normalizing constant, making
,u.~( . ~ r~) a probability measure on The family

is called the family of Gibbs distributions in the finite volumes for the
interaction U. For finite range interactions the Gibbs distributions in the
finite volumes are well defined. Moreover it is known (see [7~] ] [7~])
that for each finite range interaction there exists a Gibbs measure.
For the formulation of a Markov property it is necessary to have a

neighbourhood relation. Thus a set 9t c { { G, K } G, K is sup-

posed to be given, that has the properties:

for some fixed do E ~*

Vol. 46, n° 4-1987.
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If { G, K } E then G and K are called neighbours. For ~ E ~f(~)
the set ~V = { G E gBV| ~K E f with { G, K} is called the boundary
of.

In the classical case of the Ising model with nearest neighbour interaction
one has translation invariant inte-
raction U is called a nearest neighbour interaction (n. n. interaction), if

Each n. n. interaction is obviously of finite range. The condition jj )
is introduced, because it ensures the uniqueness in the theorem 1 below.
It is easily seen that for n. n. interactions the Gibbs distributions in the
finite volumes have the following Markov property :

holds for j.1-a. a. ç E with ~|~V = 03BE |~V, i. e. the conditional probability
of finding in ~ the configuration OJ under the condition that on ~B~" there
is the configuration ~ !~B~ depends only on the configuration on the
boundary of ~. The importance of Gibbs measures for n. n. interactions,
from the mathematical point of view, lies in the following theorem that
is proved in [77] for the class of configuration spaces under consideration.

THEOREM 1. - For each measure ~ such that

and such that (7) is fulfilled, there exists a unique n. n. interaction U such
that /~ is a Gibbs measure for U.
At the end of this section we want to give an example of a system of two

kinds of hard rods. Each hard rod covers exactly two points of the lattice, and
we allow empty points between hard rods. For this situation we choose :

with

where 0 is the fixed symbol in the definition of the configuration space.
The symbols A and B describe the two different kinds of hard rods. Let
us assume that the particles have a chemical potential and that hard rods
of the same kind attract each other, if they are close together, and that
hard rods of different kind repel each other. We describe this situation

Annales de l’Institut Henri Poincaré - Physique theorique
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by introducing the neighbourhood relation 9t and the interaction U in
the following way:

if and only if either G = { i, i + i } , K= {f+2~+3} }

U(~,.) = 0 in all other cases of ~’ E ~f(~).
The interaction U is obviously a nearest neighbour interaction. It is

not hard to see that for fixed ~ E ~f(~), OJ E the Gibbs distribution

depends for ~ E Am,f only on ~ 

4. THE FINITARY ISOMORPHISM PROBLEM

We are going now to look at (SZ, ,u, -r) as a measure-theoretic dynamical
system. We call it a Gibbs system, if

S2 is the configuration space determined by ~o and 

,u is a 03C4-invariant Gibbs measure for the n. n. interaction U on Q with

respect to the neighbourhood structure 91 and

-r is the shift transformation group on Q.

A Gibbs system (S2, ,u, -r) is said to be topologically mixing, if -r is a topo-
logically mixing transformation group on Q.

It is well known that a necessary condition for two abstract measure-

theoretic dynamical systems to be measure-theoretically isomorphic,

Vol. 46, n° 4-1987.
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i. e. for the existence of an invertible measure-preserving map that commutes
with the transformation group almost everywhere, is the equality of the
entropies of the measures. In [4] Friedman and Ornstein proved that in
the case of finite state mixing Markov chains this condition is sufficient, too.
In [5] ] is proved that two finite state mixing Markov chains r)
and (22, ~2? T) with finite memory and equal entropy are finitarily iso-
morphic, i. e. there exists an isomorphism I: O2 and there exist
null-sets S2i c i = 1, 2 such that the restriction of I to 03A91B1 and
the restriction of 1-1 to 03A92B2 are continuous. The notion of finitary
isomorphism can be applied to Gibbs systems in the same sense. Then,
if I is a finitary isomorphism, it maps finite dimensional cylinder sets onto
finite dimensional cylinder sets with the exception of nullsets. We are
now in the situation to formulate the main theorem of this section.

THEOREM 2. - Let 03A91, 03A92 be two configuration spaces such that the
shift transformation group T acts on both of them as a topologically mixing
transformation group. Let furthermore for each i = 1, 2 i be a r-invariant
Gibbs measure on S2I with respect to a nearest neighbour interaction Ui.
Then, if the measures ,ul and ,u2 have equal entropy, the measure-theoretic
dynamical systems (01,)11, 1:) and (~2~2~) are finitarily isomorphic.
The proof proceeds in the following way : We associate at first to each pair

(Q,, 1:), i = 1, 2 a suitable subshift of finite type (Q~, T’). The map I1: Q~
generates a measure I’i i on Moreover I’i is chosen to be a finitary iso-
morphism between 1:) and r’). Then we show that the sys-
tem (S2i, i’) is a finite state mixing Markov chain with finite memory.
This, together with the theorem of Keane and Smorodinsky in [5 ], will
complete the proof.

Proof. Let (Q, ,u, T) be a topologically mixing Gibbs system. Without
loss of generality we assume 0 ~ Qo for all G ~ g. To this Gibbs system we
associate the sub shift of finite type (Q’, 1:’). The alphabet of Q’ is the set

Let for 5’ E Z

The system of blocks occuring in Q is

Annales de l’Institut Henri Poincaré - Physique theorique
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The set Q’ is then defined by

The elements are compositions of blocks of the form

The notations Q~ and for V will be used in the same sense
as described above for Q.

Let now be a family of maps

with

It has the property : For each s ~ Z and each 

holds.
Thus this family defines a continuous map

by

The map I is a bijection. To see this we construct a map I’ : Q ~ Q’ with

We define a family of maps

with Go = OZG for some z ~ Z and y = s + z.
This family has the property: For each s ~ Z and each 

holds. Thus it defines a continuous map

by

It is not hard to see that (9) is fulfilled.

Vol. 46, n° 4-1987.
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For c/ E Q’ let ’03C9’ ~ Q’ consist of all those ~’ such that = yy’ L
except for finitely many s E ~, and define similarly Aro c Q for cv E Q.

Then, I maps A~,. into by construction. Since I’ has a similar property
and since the equations (9) hold, the restriction of I to A~, is a bijection to
Afro’ for all OJ’ E Q’.

Hence, I is endowed with all properties to be an isomorphism between
two configuration spaces in the sense defined by Ruelle in [14, p. 25 ],
and so is I’. 

-

On Q’ one can introduce the notions of interactions, Gibbs distributions
in the finite volumes and Gibbs measures in the same way as in the case
of Q. In the formalism g has to be replaced by Z. The shift on Q’ is denoted
by T’. Obviously = r o I holds everywhere on 0’.

Following Ruelle [14, p. 26 ], the isomorphism I : 0’ ~ Q defines for each
interaction U on Q an interaction I*U on Q’ by

Then, if U is a n. n. interaction, I*U is of finite range. We quote now from

[14, p. 27, 29] ] the following proposition.

PROPOSITION. - Let v’ be a Gibbs measure on 0’ for the interaction I*U.

Then Iv’ is a Gibbs measure on Q for U. Furthermore, I is a bijection of
the set of Gibbs measures for I*U on 0’ to the set of Gibbs measures for U

on 03A9.

Using this proposition, we conclude that I is a measure-theoretic finitary
isomorphism

where I-1/l is a r’-invariant Gibbs measure for I * U. Since U is assumed
to be a n. n. interaction for Q equipped with the neighbourhood structure 91,
I*U is of the form

It follows immediately that (S2’, I - l,u, i’) is a finite state Markov chain

with a memory smaller or equal to the number

that is finite by the definition of 91. We are going now to show that this
Markov chain is mixing.
By the assumption of the theorem (Q’, !’) is a topologically mixing topo-

Annales de l’Institut Henri Poincaré - Physique theorique
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logical dynamical system. The measure-theoretic mixing property follows
from a proposition, that is proved not only for interactions of finite range.

PROPOSITION [14 ]. - Let U’ be an interaction of finite range for the
topologically mixing subshift of finite type 0’ and v’ the unique Gibbs
measure. Then, if 03A9’ consists of more than one point, the measure-theoretic
dynamical system (Q’, v’, 1"’) is isomorphic to a Bernoulli shift and thus
measure-theoretically mixing.
As a consequence we get the following diagram, that completes the proof

of the theorem.

Here is the finitary isomorphism, existing by the theorem of Keane and
Smorodinsky [5 ].

5. FINITE EXPECTED CODE LENGTH

The remarkable result that mixing Markov chains of the same entropy
are finitarily isomorphic induced several authors [8] ] [70] ] [77] ] ] to
look for isomorphisms between such Markov chains that reflect the sequen-
tial structure of the underlying configuration space, especially to look for
isomorphisms with finite expected code length. Since we know from Theo-
rem 2 that two topologically mixing Gibbs systems with equal entropy are
finitarily isomorphic, we will do this for isomorphisms of topologically
mixing Gibbs systems. For this we introduce the notation of code length.

In this section we assume 0 ~ S2G for all G too. Then, if OJ E Q is a
configuration, it determines uniquely a set ’~’(cv) by

The elements of are by the definition of Q pairwise disjoint. It is
intuitively clear, what it means to say : « G lies on the left or on the right
of K » for G, K E ~(a~). For co E Q and n we define n) to be the
smallest integer such that there are on the right of the origin and on the
left of n) n sets G E The integer n) is the greatest one such
that there are on the left of the origin and on the right of n) n sets
G E Furthermore we denote

Let I be the finitary isomorphism between the two topologically mixing
Gibbs systems ’t), i = 1, 2, of equal entropy and Qi c Oi the two

Vol. 46, n° 4-1987.
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sets of measure one, where I respectively 1-1 are continuous. Then there
exist obviously two maps

such that CD, c/ E S21 with cv = o/ for all a(c~)) u 
implies

The map m is called the memory of I ; a the anticipation of I. The iso-
morphism I is called to have finite expected code length, if

It is the aim of this section to give a necessary condition for the isomor-
phism to have finite expected code length. Our approach to this problem
and the result are near to that of Krieger in [8] ] in the case of mixing Mar-
kov chains. It is based on some notations concerning countable groups
of non-singular transformations of a measure space, that are developed
in [6] ] [7]. We quote them here now.

Let (X, v) be a Lebesque measure space and F a countable group of
non-singular transformations of (X, v).

It is called approximately finite, if there exists an increasing sequence 
of finite groups ffn of non-singular transformations of (X, v) such that

The group [~] ] of all non-singular transformations T of (X, v) such that

is called the full group.
We say that the group F contains the measure v, if the group

is ergodic and if for all T E $’ there is a countable set BlT c (0, oo) such that

The set 0(~, v) == is then a subgroup of (0, oo).
TE~

We construct now for each Gibbs system (Q, ~, 1") an approximately

Annales de l’Institut Henri Poincaré - Physique theorique
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finite group ~~ that contains the measure ,u. For all pairs a, b we use

the notations

and

b) the group of all permutations 7c of elements

Each 7c E b) defines a non-singular transformation T~ of Q by

The condition (14) ensures that T~ is well defined by (15).

THEOREM 3. - Let (Q, /1, T) be a topologically mixing Gibbs system.
Then the approximately finite group

contains the Gibbs measure ,u.

Proof Following the ideas of Krieger in [8 ], we prove at first that the
group

acts ergodically on (Q, ,u, i).
Let C, C’ c Q be two sets of positive -measure. Let a },

{5’} c be such that with the notations

holds.
It follows from ( 16) that

holds.
Fix now a d E fBJ such that

Vol. 46, n° 4-1987.
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This choice of d has the consequence that two elements G, K e~B~(2014~, d ),
that are situated on different sides of the origin, cannot be neighbours,
i. e. U( { G, K }, . ) == 0. Choose a 6 E and set

Then the measure-theoretic mixing property of the Gibbs system permits
us to choose a b &#x3E; a + d such that with the notations

and

the inequalities
and

and

hold. Utilizing once more the mixing property, one can choose a natural
number c &#x3E; 2b + 2d such that with the notations

the inequalities

and

hold. Starting with the last inequalities and then utilizing subsequently (20),
( 17), ( 19) and (21 ) one gets

and

We select now a non-singular transformation T~ E that maps A onto A’
and vice versa. Let us denote ~=~(-c-b2014~ c+b+d). The corres-
ponding to T~ permutation vr that is in T( -c-b-d, c+b+d) is given
for cv E A’) by

For 03C9 ~ XV( ~ A’) it is given by 03C003C9 = co.

Annales de l’Institut Henri Poincaré - Physique theorique
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Since for each co E A u A’

7T is indeed o an element Furthermore it follows
that 

’

We show now that T~ preserves ,u. By definition of ,u as a Gibbs measure
(see 4 we have for OJ E A’)

where ~ is an arbitrary element of X-1~V(~*).
Since OJ = Trco = 6 for all pairs

and by the special choice of d in (18) one has for all (D E Q.y, 11 E 

and

As a consequence we get the invariance of the Gibbs measure  with respect
to Tn. Hence from (23) and (24) it follows

Thus we get n C’) &#x3E; 0. The ergodicity is proved.

Vol. 46, n° 4-1987.
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The existence of the countable sets RT03C0 for (see ( 13)) follows imme-
diately from the fact that the maps T1t are permutations of finite dimen-
sional cylinder sets. The theorem is proved.
We formulate now the main result of this section.

THEOREM 4. - Let and (Q~/~2~) be two topologically
mixing Gibbs systems of equal entropy. Then, if the isomorphism I between
them has finite expected code length,

Proof Let h = max Go. Then it follows from the finiteness of
G0~g0

that

It is then not hard to deduce from the individual ergodic theorem that

Hence there exists a set r1 c Q1 of /11-measure one such that for all co E r1
and all N there is a N) E N with

Let now o/ E rl and N be such that

Then, if S = N) and s &#x3E; S &#x3E; N,

Since hm  - N + s for all s &#x3E; S it follows

i.e.

Annales de l’Institut Henri Poincaré - Physique theorique
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Since ha  - N - s for all s  - S it follows

i. e.

Thus we have shown that it follows from (28) the existence of a natural
number S such that

The theorem is proved.

COROLLARY. 2014 If

then

It arises the question whether the inclusions in (25) and (29) are strong, i. e.
the question whether the isomorphism I and its inverse 1-1 can have both
finite expected code length. Parry was able to show in [70] ] that there
are many cases of Markov chain isomorphisms in which the finitary iso-
morphism and its inverse cannot have both finite expected code length.
According to the fact that Markov chains are examples of Gibbs systems
this is true in our situation, too.
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